Ⅰ 污水处理设计方案怎么做
中国环保频道网有点
我是BFMS工艺设备销售员,下面是我们的建议书(图片粘帖不上)
BFMS水处理工艺技术
20000吨/日市政污水处理技术建议书
1、工程概况
污水处理厂的日处理能力为20000吨/日,设计出水水质达到一级B标准(暂)
2、工程规模
正常处理量:20000吨/日
峰值处理量:24000吨/日
3、设计进出水水质
1)进水水质(需业主提供实际数据)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
悬浮物≤300mg/L;总磷≤5.0mg/L;氨氮≤40.0mg/L
2)出水水质(需业主提供出水标准,暂定为一级B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
悬浮物≤20mg/L;总磷≤1.0mg/L;氨氮≤15.0mg/L;
总氮≤20.0mg/L;粪大肠杆菌≤10000/L。
4、加载絮凝磁分离(简称BFMS)工艺原理和优势
BFMS技术是在传统的絮凝工艺中,加入磁粉,以增强絮凝的效果,形成高密度的絮体和加大絮体的比重,达到高效除污和快速沉降的目的。磁粉的离子极性和金属特性,作为絮体的核体,大大地强化了对水中悬浮污染物的絮凝结合能力,减少絮凝剂用量,在去除悬浮物,特别是在去除磷、细菌、病毒、油、重金属等方面的效果比传统工艺要好。由于磁粉的比重高达5.0×10³kg/m³,大约是砂子的两倍,混有磁粉的絮体比重增大,絮体快速沉降,速度可达20米/时以上,整个水处理从进水到出水可在10分钟左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓进行分离后回收并在系统中循环使用。高梯度磁过滤器捕集流过水中的残余微小颗粒,磁过滤器依照设定的要求被自动清洗,以达到高度净化出水的目的。根据在美国采用BFMS作深度水处理的报告,磁过滤器可达到去除26纳米病菌的结果。下面图示说明了BFMS工艺的处理过程。
BFMS Process 加载絮凝磁分离工艺
絮凝/ + 加载絮凝+ 沉淀分离+磁过滤
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation
该工艺以前在工程中应用很少,原因是磁种的回收技术一直没有很好的解决,而现在这一技术难点已成功地被突破,磁种的回收率达到99%以上,该工艺技术在美国也进行了项目示范和商业项目运行。我们公司已在国内申请多项专利,形成了公司的自主知识产权。在过去三年中,我们公司用250吨/日的中试车已在城市污水处理、中水回用、地表水和地下水以及自来水处理、江水、湖水、河道水处理、高磷废水处理、造纸废水处理、采矿废水处理、炼油和油田废水处理方面成功的做了多项不同运行参数的试验,取得很好的结果;10000吨/日的中试车已于2007年5月在青岛李村河入海口的城市污水投入运行一个月,运行良好。在北京金源经开污水处理厂的出水进行除高磷深度处理运行月余,处理效果佳。作为奥运会应急城市污水处理工程,在北京清河污水厂安装了4×10000吨/日和2×5000吨/日共6组BFMS系统,综合处理效果好。该技术在胜利油田应用于处理采油废水的东营胜利油田一期工程(5000吨/日)已经投入使用,油田500吨/日地下水BFMS项目和30000吨/日采油水BFMS项目也在实施中。
与其他工艺相比,磁分离技术具有以下优点:
1) BFMS工艺能应用于城市污水的一级、二级、三级、中水和各种工业污水以及饮用水。
2) 处理效果好,其出水质与超滤膜出水相媲美,BFMS工艺能有效地从水中除去微粒污染物、微生物污染物和部分已溶解于水中的污染物,如:COD、BOD、悬浮物、总磷、色度、浊度等,特别是对磷有强大的去除效果。也能结合生物工艺非常有效和经济地脱氮。
3) 耐冲击负荷能力强,对水质的冲击有独特的耐冲击能力。当前段工序出现故障时,或其他有害金属离子进入污水处理系统,污水可直接进入磁分离系统,系统仍然能够保持较高的去除效果,大幅度去除水中污染物。
4) 占地极小,20000吨/日BFMS系统的占地约为400㎡左右,另加走道、加药及操作设施总占地约700㎡左右。
5) 投资低,比膜处理有明显的优势。
6) 运行成本低,设备使用寿命长,除了正常的维护外,不用更换部件而造成高昂的二次投资。
7) 运行管理方便,启动快捷,运行管理简单。
5、污水处理厂工艺设计建议
根据工程运行经验,去除污水中的漂浮物和泥砂,保证污水厂的连续运行,进入BFMS系统的污水进行预处理是必备的。依据BFMS系统的工作原理,常规预处理即可,即粗、细格栅和沉淀池。预处理也可考虑采用污水粉碎泵。
BFMS技术具有强大除磷和悬浮物能力,同时对其他指标(氮除外)也有较强的去除能力。对处理城市污水,因BFMS技术脱氮能力较差,建议后续的生化工艺(如BAF、SBR、A/O等)仅按氨氮负荷进行设计,通过调整BFMS系统的加药量即可保证剩余的CODcr和BOD5达到排放要求。因生化脱氮需要必须的碳源,若BFMS系统去除率太高会导致生化系统的碳源不足,微生物生长缓慢,脱氮能力达不到,因此建议对污泥贮池铺设备用管道系统,回流污泥作为备用碳源。
6、工艺流程
考虑市政污水的水质特点,结合BFMS技术的工艺优点,综合考虑投资和运行效果,建议污水处理厂的工艺流程如下:
市政污水
定期外运
达标排放
BFMS技术是污水厂处理工艺的重要部分,对BFMS系统排除的剩余污泥必须进行处理。
下图仅为BFMS工艺流程图:
污水厂来水 出水
污泥脱水系统
BFMS系统平面图布置如下:
7、BFMS系统设计
1)BFMS系统共2套,单套处理量10000吨/日。
2)其他
(1)BFMS系统建议放在室内,设备空间要求L30×W20×H10米,采用轻钢结构形式。
(2)污泥处理建议不采用浓缩池,直接采用污泥贮池和污泥浓缩脱水一体机,处理BFMS系统排出的剩余污泥。在正常运行时BFMS系统排除的污泥的含水率在98-99%。
(3)配套电压为380V,每套BFMS系统装机容量为61KW(不含进水泵),运行负荷为40KW。总装机容量为122KW,总运行负荷为80KW。
(4)每套BFMS系统配套操作人员每班1人,4班3运转,均应经过上岗培训。
(5)污泥产量:0.4kgGS/m³废水。
8、BFMS系统水处理成本
1)直接运行成本:0.2446元/吨污水
A药剂:
絮凝剂干粉(29%纯度):2500元/吨;投加浓度以20ppm(AL2O3)计,成本为0.17元/吨污水;
PAM晶体:25000元/吨;投加浓度以1ppm计,成本为0.025元/吨污水.
B电耗
0.041度/吨污水,电费以0.57元/度计,则成本为0.0234元/吨污水.
C人工:0.014元/吨污水
D维修、维护0.012元/吨污水
2)总成本:0.3244元/吨污水
A直接运行成本:0.252元/吨污水
B固定资产折旧(平均年限法)15年:0.052元/吨污水
C经营管理及其他费用:0.031元/吨污水
9、20000吨/日BFMS系统投资
本工程共需2套10000吨/日BFMS系统,20000吨/日BFMS系统投资为********元(包括设计、安装、调试及系统设备)。
10、说明:
*由于对实际污水状况不了解,未进行水的测试,故BFMS系统的运行费用只是估算,具体数据需待做试验后再确定。
*本文内容仅供内部使用。
Ⅱ 关于水处理方面的书籍
1、《现代膜技术与水处理工艺》,作者:张萱;
2、《现代水处理技术》,作者:冯敏;
3、《工业水处理技术问答》,作者:金熙;
4、《污水处理厂工艺设计手册》,作者:王社平;
5、《有机废水处理的基本设计与计算》,作者:王光裕;
6、《水的深度处理与回用技术》,作者:张林生;
7、《光催化水处理技术明链》,作者:张峰;
8、《循环冷却水技术问答》,作者:齐唤槐缓冬子;
9、《废水处理生物膜》和模,作者:温沁雪;
10、《工业水处理及实例精选》,作者:窦照英。
Ⅲ 谁有污水处理厂的设计说明书,越详细越好
第一章 设计资料
一、自然条件
1、 气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、 水文:最高潮水位 6.48m(罗零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;
(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;
(4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1) 生活污水水质指标为
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工业污染源参照沿海开发区指标,拟定为:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、 建设规模
该污水处理厂服务面积为10.09km2, 近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、 处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。
第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。
氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、 处理效果稳定,出水水质好。
3、 基建投资省,运行费用低。
4、 污泥量少,污泥性质稳定。
5、 具有一定承受水量、水质冲击负荷的能力。
6、 占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示)
说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。
第三章 污水处理工艺设计计算
一、水质水量的确定
1. 水量的确定
近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工业废水Q工业=1.5×104m3/d
公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的处理系数为0.8,故近期污水处理厂的处理量
Qp=3.57×104×0.8=2.856×104m3/d
远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工业废水Q工业=2.4×104m3/d
公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d
所以远期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.0×104×0.9=5.4×104m3/d
通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。
2. 水质的确定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
远期COD:
COD= =240 mg/L
远期BOD5:
BOD5= =128mg/L
NH3-N按规定取为30 mg/L
所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。
由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.25—0.3m/s;
(2)水平流速为0.08—0.12 m/s;
(3)最大流量时停留时间为1—3min;
(4)有效水深为2—3m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;
(6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;
(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;
(10)池内应考虑设置消泡装置。
一、 曝气沉砂池的设计与计算
1. 最大设计流量Qmax
Qmax=Kz×Qp
式中的Kz为变化系数,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2. 池子的有效容积
V=60Qmaxt
式中 V——沉砂池有效容积,m3;
Qmax——最大设计流量,m3/s;
t——最大设计流量时的流动时间,min,设计时取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流断面面积
A=
式中 A——水流断面面积,m2
Qmax——最大设计流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池宽B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,满足要求。
5. 池长
L= = m,取L=10.5m
此时L/B=5满足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求
7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量 d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积
式中Qp的单位为m3/h
设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,
沉砂槽高度为 h1=
沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.3×0.7=0.21m
设超高 ,沉沙池水面离池底的高
m
10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,
干管截面积A= = =0.0116m2
d1= = m=120mm,
因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,
支管面积 A= m2
d2= = mm,
取整管径d2=80mm
校核气速v=4.6m/s (满足3—5m/s)
(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.81×10-5m3/s
孔数:n= 个
孔间隔 为 ,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm 有效栅宽B1:850㎜ 有效栅隙:5㎜ 耙线速度:2 m/min 电机功率:1.1kw 安装角度:60° 渠宽B3:1050㎜ 栅前水深h2:1.0m/s 流体流速:0.5~1.0m/s
栅条宽度s=0.01m
1. 栅前后的水头损失
水流断面面积 m2
栅前流速
在0.4~0.9m/s范围内,复合要求
设过栅流速为v=0.6m/s
设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:
。
3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m
因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m
栅后长1米。
所以渠道的总长度
L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。
曝气沉砂池的水面标高:2.38m
细格栅与曝气沉砂池之间的配水井的水面标高: 2.43m
细格栅栅后水面标高: 2.48m
细格栅栅前水面标高:2.48+0.29=2.77m
配水井外套桶水面标高: 2.82m
配水井内套桶水面标高: 2.88
设配水井超高为0.35m
则整个曝气沉砂池系统的最高标高为3.23m
则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。
配水井面积为
配水井直径为
因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为:
潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw
行车速度为2-5m/min,提耙装置功率 0.55kw
驱动装置功率: 0.37×2kw
钢轨型号 15kg/mGB11264-89
轨道预埋件断面尺寸(mm) (b1-20) 60 10(b1:沉砂池墙体壁厚)
轨道预埋件间距 1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算
(1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),
设计温度15℃,最高温度25℃,
进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
远期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。
(3).设计泥龄:
确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d
为了保证污泥稳定,应选择泥龄为30d
(4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h
③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假设污泥中大约含12.4%的氮,这些氮用于细胞合成,
用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L
故脱氮量=30-10-3.55=16.45mg/L。
④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大于100mg/L,可以满足pH>7.2
⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留时间t2=V2/qv=6295/30000=0.21d=5h
⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝气量计算
①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之间 符合)
6.沟型尺寸设计及曝气设备选型
采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d,
则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
单沟好氧区总长度=单沟长*4* V1 /V=126m
单沟厌氧区总长度=单沟长*4* V2 /V=76m
采用四沟道,两台55kW的立式表曝气机(单池)
曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),
设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池
1.设计说明
1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。
1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。
2.设计计算
2.1污泥回流比:
2.2沉淀部分水面面积:
流量: ;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h), 池子数n为2 。
沉淀部分水面面积:
2.3校核固体负荷:
因为142<150,符合要求。
2.4池子直径
池子直径: 根据选型取池子直径为35.0m。
2.5沉淀部分的有效水深
沉淀时间t为2.5s 有效水深:
2.6沉淀池总高
2.7校核径深比:
径深比为 符合要求。
2.8进水管的设计
单体设计污水流量:
进水管设计流量:
取管径D=700mm ,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。
2.9稳流筒
进水井的流速为0.8m/s ,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm, 取管径为900mm。
进行校核:过水面积为
流速为 。
筒上有8个小孔 ,孔面积为S2= ,所以 。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s, 则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。
2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟 流量为
取配水井直径为D=3000mm 则配水井高度
其中,设计水深为7.0m,超高为0.6m。
2.11出水部分单池设计流量:
出水溢流堰设计
(1) 堰上水头 H=0.05mH2O
(2) 每个三角堰的流量0.783L/s
(3) 三角堰个数 因此取n=223(个)
2.12排泥部分
回流污泥量为
剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。
取流速为0.8(m/s) 直径为 取直径为D=400mm
校核:流速为 0.6<0.75<0.9 因此符合要求。
综上, 二沉池采用的是ZBX型周边传动吸泥机 池径为35000mm.
希望能够帮助你,污水净化团队竭诚为你服务!
Ⅳ 设计污水处理厂UASB 有哪些参考书籍 另外UASB工艺的流程是怎么样的
Metcalf & Eddy的wastewater engineering。里面在UASB这一章,关于基本参数例如loading rate什么的介绍的还比较详细。但是似乎没有三内相分离器的相关设计。可以容看看。下载地址:https://rs84tl2.rapidshare.com/#!download|84dt|276797751|Metcalf-eddy.pdf|70711|R~
Ⅳ 【污水处理厂工艺流程设计计算】 污水处理厂基本流程
1概述
1.1 设计依据
本设计采用的主要规范及标准:
《城市污水处理厂污染物排放标准 (GB18918-2002) 》二级排放标准 《室外排水设计规范》(1997年版) (GBJ 14-87) 《给水排水工程概预算与经济评价手册》
1.2 设计任务书(附后)
2原水水量与水质和处理要求
2.1 原水水量与水质
Q=60000m3/胡携d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2处理要求
污水排放的要求执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水处理工艺的选择
本污水处理厂水质执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准,其污染物的最高允许排放浓度为:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物质为易生物降解的有机污染物,因此常采用二级生物处理的方法来进行处理。
二级生物处理的方法很多,主要分两类:一类是活性污泥法,主要包括传统活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延时活性污泥法(氧化沟)、AB 工艺、A/O工艺、A 2/O工艺、SBR 工艺等。另一类是生物膜法,主要包括生物滤池、生物转盘、生物接触氧化法等工艺。任何工艺都有其各自的特点和使用条件。
活性污泥法是当前使用比较普遍并且有比较实际的参考数据。在该工艺中微生物在处理单元内以悬浮状态存在,因此与污水充分混合接触,不会产生阻塞,对进水有机物浓度的适应范围较大,一般认为BOD 5在150—400 mg/L之间时,都具有良好的处理效果。但是传统活性污泥处理工艺在处理的多功能性、高效稳定性和经济合理性方面已经难以满足不断提高的要求, 特别是进入90年代以来, 随着水体富营养化的加剧, 我国明确制定了严格的氨氮和硝酸盐氮的排放标准, 从而各种具有除磷、脱氮功能的污水处理工艺:如 A/O工艺、A 2/O工艺、SBR 工艺、氧化沟等污水处理工艺得到了深入的研究、开发和广泛的应用, 成为当今污水处理工艺的主流。
该地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低于30mg/L。在出水的水质中,
不仅对COD 、BOD 5、SS 去除率都有较高的要求, 同时对氮和磷的要求也进一步提高. 结合具体情况在众多的污水处理工艺中选择了具有良好脱氮除磷效果的两种工艺—CASS 工 艺和Carrousuel 氧化沟工艺进行方案技术经济比较。
4污水处理工艺方案比选
4.1 Carrousuel氧化沟工艺(方案一)
氧化沟时二十世纪50年代由荷兰的巴斯维尔开发,后在欧洲、北美迅速推广,80年代中期,我国部分地区也建造了氧化沟污水处理工程。近几年来,处理厂的规模也发展到日处理水量数万立方米的工业废水及城市污水的大、中型污水处理工程。
氧化沟之所以能在近些年来裤孝伏得到较快的发展,在于它管理简便、运行稳定、流程简单、耐慎局冲击负荷、处理效果好等优点,特别是氧化沟具有特殊的水流混合特征,氧化
沟中的曝气装置只设在某几段处,溶解氧浓度较高,理NH 3-N 效果非常好,同时由于存在厌氧、好氧条件,对污水中的磷也有一定的去除率。
氧化沟根据构造和运行方式的不同,目前较多采用的型式有“Carrousel 型氧化沟”、“Orbal 型氧化沟”、“一体化氧化沟”和“交替式氧化沟”等,其中,由于交替式氧化沟要求自动化水平较高,而Orabal 氧化沟因水深较浅,占地面积较大,本报告推选Carrousel 氧化沟作为比选方案之一。
本设计采用的是Carrousel 氧化沟工艺. 其工艺的处理流程图如下图4-1所示: `
图4-1 Carrousel氧化沟工艺流程图
4.1.1污水处理系统的设计与计算
4.1.1.1进水闸门井的设计
进水闸门井单独设定, 为钢筋混凝土结构。设闸门井一座, 闸门的有效面积为1.8m 2, 其具体尺寸为1.2×1.5 m,有效尺寸为1.2 m×1.5 m×4.5 m。设一台矩形闸门。当污水厂正常运行时开启, 当后序构筑物事故检修时, 关闭某一闸门或者全部关闭, 使污水通过超越管流出污水处理厂。
4.1.1.2 中格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.02m,格栅倾角α=60°,建议格栅数为2,一备一用。
Q max sin α0. 652⨯sin 60
=≈68个 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.60m,其渐宽部分的展开角
α1=20(进水渠道内的流速为0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 56==0.28m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为20mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
图4-2 格栅计算示意图
4.1.1.3细格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.006m,格栅倾角α=600,格栅数为2。
Q max 0. 652⨯sin 60
=≈109个 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.6m,其渐宽部分的展开角α1=20
(进水渠道内的流速为0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 22
==0.11m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为6mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
4.1.1.4 曝气沉砂池的设计与计算
本设计采用曝气沉砂池是考虑到为污水的后期处理做好准备。建议设两组沉砂池一备一用。其计算简图如图4-3所示。具体的计算过程如下:
(1)池子总有效容积:设t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流断面积:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池设两格,有效水深为2.00m ,单格的宽度为2.4m 。
(3)池长:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池实际沉砂量:设含砂量为20 m3/106 m3污水,每两天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小时所需空气量:设曝气管浸水深度为2.5 m,查表得单位池长所需空气量为28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
图4-3 曝气沉砂池计算示意图
4.1.1.5 厌氧池的设计与计算
4.1.1.5.1 设计参数
设计流量为60000 m3/d,设计为两座每座的设计流量为30000 m3/d。 水力停留时间:
T =2h 。
污泥浓度:
X =3000mg/L
污泥回流液浓度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 设计计算 (1)厌氧池的容积:
V =QT =30000×2/24=2500 m3
(2)厌氧池的尺寸:
水深取为h =5,则厌氧池的面积:
V 2500A ===500 m2。
h 5
厌氧池直径:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考虑0.3的超高,故池总高为H =h +0. 3=5.3 m。 (3)污泥回流量的计算 回流比计算:
R =
X
=0.42
X R -X
污泥回流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化沟的设计与计算
氧化沟,又被称为循环式曝气池,属于活性污泥法的一种。见图4-4氧化沟计算示3
4.1.1.6.1设计参数
设计流量Q=30000m3/d设计进水水质BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水温T =25℃。
设计出水水质BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥产率系数Y=0.55; 污泥浓度(MLSS )X=4000mg/L;挥发性污泥浓度(MLVSS )X V =2800mg/L; 污泥龄θc =30d; 内源代谢系数K d =0.055. 4.1.1.6.2设计计算
(1)去除BOD
氧化沟出水溶解性BOD 浓度S 。为了保证沉淀池出水BOD 浓度S e ≤30mg/L,必须控制所含溶解性BOD 浓度S 2,因为沉淀池出水中的VSS 也是构成BOD 浓度的一个组成部分。
S=Se -S 1
S 1为沉淀池出水中的VSS 所构成的BOD 浓度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧区容积V 1。好氧区容积计算采用动力学计算方法。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧区水力停留时间:t=剩余污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所产生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脱氮
需氧化的氨氮量N 1。氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=进水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脱氮量NR=进水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脱氮所需要的容积V 2
脱硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脱氮所需要的容积:
V 2=
脱氮水力停留时间t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化沟总体积V 及停留时间t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥负荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化沟尺寸:取氧化沟有效水深为5m ,超高为1m ,氧化沟深6m 。
V
=20562/5=4112.4m 2 h
单沟宽10m ,中间隔墙宽0.25m 。则弯道部分的面积为:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直线段部分的面积:
氧化沟面积为A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
单沟直线段长度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
进水管和出水管:污泥回流比R=63.4%,进出水管的流量为:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速为v =1.0m/s。
3
3
则管道过水断面:
A=
管径d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管径850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
实际需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩余污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩余污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124为污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脱氮产氧量:
D 5=2.86×脱氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考虑安全系数1. 2,则AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
标准状态下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃时氧的饱和度,取9.17mg/L;T=25℃;C S(T)25℃时氧的饱和度,取 8.38mg/L;C 溶解氧浓度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝气设备的选择:设两台倒伞形表面曝气机,参数如下: 叶轮直径:4000mm ;叶轮转速:28R/min;浸没深度:1m ; 电机功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的设计与计算
其计算简图如图4-5所示
4.1.1.7.1设计参数
Q max =652 L/s=2347.2 m 3/h;
氧化沟中悬浮固体浓度 X =4000 mg/L;
二沉池底流生物固体浓度 X r =10000 mg/L;
污泥回流比 R=63.4%。
4.1.1.7.2 设计计算
(1) 沉淀部分水面面积 F 根据生物处理段的特性,选取二沉池表面负荷q=0.9m3 /(m2·h), 设两座二次沉淀池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直径 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固体负荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉淀部分的有效水深h 2 设沉淀时间为2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥区的容积V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥区高度h 4
污泥斗高度。设池底的径向坡度为0.05,污泥斗底部直径D 2=1.6m,上部直径D 1=4.0m,倾角为60°,则:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圆锥体高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
竖直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥区的高度h 4=h 4
沉淀池的总高度H 设超高h 1=0.3m,缓冲层高度h 3=0.5m。
则 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接触池的设计与计算
采用隔板式接触反应池。其计算简图如图4-5所示。
水力停留时间:t=30min
12
平均水深:h =2.4m。
隔板间隔:b=1.5m。
池底坡度:3%
排泥管直径:DN=200mm。
4.1.1.8.2设计计算
接触池容积:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面积:
Q 1174==489. 2 m2 h 2. 4
廊道总宽度:隔板数采用10个,则廊道总宽度为B=11×b=11×1.5=16.5m。 接触池长度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水头损失,取0.4m 。 F =
13
Ⅵ 污水处理工艺设计方案找谁写
污水处理装置工艺设计方案1.1污水处理工艺流程框图
格栅污 水 沉砂池 过滤池 复合垂直流人工湿地 达标排放
1.2污水处理工艺流程说明高效垂直流人工湿地系统水质净化技术的基本原理是:在一定的填料上种植特定的湿地植物,建立起一个人工湿地生态系统,利用所建设施的高程差异,让污水流经湿地系统,使得其中的污染物质和营养物质被系统吸收或分解,进而让水质得到净化。农村生活污水经格栅井去除污水中的生活垃圾和大颗粒物质后流入沉砂池,为防止人工湿地堵塞,沉砂池将生活污水中的砂子及淤泥去除后通过配水管流入人工湿地处理处理池。污水经人工湿地处理,达标排放。
3、工艺设计1.1格栅池用于去除原污水中悬浮物及大颗粒杂物,防止管路堵塞,保护后续处理的正常运行。✍ 设计参数:格栅宽度B=0.5m,栅条间隙b=5mm。✍ 结构和数量:新建1座,采用砖混结构建造。✍ 尺寸:L×B×H=2.0m×0.8m×1.2m ✍ 主要设备:人工格栅1台,5目筛网1台。 1.2沉砂池利用自然沉降作用,去除液体中砂粒或其他比重较大颗粒,防止流入人工湿地导致堵塞。✍ 设计参数:水力停留时间:4.8min。✍ 结构和数量:新建1座,采用砖混结构建造。✍ 尺寸:L×B×H=2.0m×2.0m×1.7m
1.3过滤池利用过滤,去除液体中砂粒或其他比重较大颗粒,防止流入人工湿地导致堵塞。✍ 结构和数量:新建1座,采用砖混结构建造。✍ 尺寸:L×B×H=2.0m×2.0m×1.7m
1.4复合垂直流人工湿地在一定的填料上种植特定的湿地植物,建立起一个人工湿地生态系统,利用所建设施的高程差异,让污水流经湿地系统,使得其中的污染物质和营养物质被系统吸收或分解,进而让水质得到净化。去除污水中的有机物及N、P。 ✍ 设计参数:填料孔隙率30%;深度:1.6m;坡度:O.5~2%;水力负荷:0.25 m3/m2/d;水力停留时间:2天。
✍ 结构和数量:新建人工湿地1座,分为两个系列,钢砼结构。✍ 尺寸:L×B×H= 40.75m×35.75m×2.1m✍ 主要材料:填料、管材若干,水池作防渗处理;湿地植物为芦苇、风车草、茭白、浮萍、睡莲、金鱼藻等。
1.5排放水池✍ 功能:暂时贮存系统出水。✍ 设计参数:可根据实际情况稍微增加人工修饰。✍ 面积:1m2,可根据实际情况调整;平均深度:1m,根据实际情况调整;✍ 结构和数量:l座,采用砖混结构建造。✍ 尺寸:L×B×H=2.0m×1.0m×1.8m,可据现场情况调整。
1.6控制系统本处理系统无任何的提升及供氧设备,完全利用地形,污水自动流入流出本系统,充氧采用无能耗跌水充氧;因此本项目运行期间,无任何的动力设备,也无需耗电,也无需人为控制其运行,建成后可实现无人看守。
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
污水处理装置工艺设计方案
污水处理装置工艺设计方案
1.1污水处理工艺流程框图
格栅污 水 沉砂池 过滤池 复合垂直流人工湿地 达标排放
1.2污水处理工艺流程说明
高效垂直流人工湿地系统水质净化技术的基本原理是:在一定的填料上种植特定的湿地植物,建立起一个人工湿地生态系统,利用所建设施的高程差异,让污水流经湿地系统,使得其中的污染物质和营养物质被系统吸收或分解,进而让水质得到净化。
第 1 页
农村生活污水经格栅井去除污水中的生活垃圾和大颗粒物质后流入沉砂池,为防止人工湿地堵塞,沉砂池将生活污水中的砂子及淤泥去除后通过配水管流入人工湿地处理处理池。
Ⅶ 有关污水处理的书籍
污水处理方面书籍50本等你来拿 http://bbs.shejis.com/viewthread.php?tid=419238&fromuid=188957 污水处理一百个为什么 http://bbs.shejis.com/viewthread.php?tid=428873&fromuid=188957 污水处理运行异常技术问答(1) http://bbs.shejis.com/viewthread.php?tid=429743&fromuid=188957 《污水处理技术答疑300问》 http://bbs.shejis.com/viewthread.php?tid=1544446&fromuid=188957 《污水处理厂设计与运行》,曾科 http://bbs.shejis.com/viewthread.php?tid=433598&fromuid=188957 《实用环境工程手册 污水处理设备》 http://bbs.shejis.com/viewthread.php?tid=432751&fromuid=188957 《冶金工业污水处理技术及工程实例》 http://bbs.shejis.com/viewthread.php?tid=431487&fromuid=188957 《间歇式活性污泥法污水处理技术及工程实例》 http://bbs.shejis.com/viewthread.php?tid=408561&fromuid=188957 《工业废水的活性污泥处理法》污水处理精品书籍放送 http://bbs.shejis.com/viewthread.php?tid=432686&fromuid=188957 水处理设施设计计算丛书--《城市污水回用深度处理设施设计计算》 http://bbs.shejis.com/viewthread.php?tid=1544400&fromuid=188957 《低浓度污水厌氧-水解处理工艺》 – http://bbs.shejis.com/viewthread.php?tid=432693&fromuid=188957 《分散式污水处理与回用》 http://bbs.shejis.com/viewthread.php?tid=400700&fromuid=188957 《小区污水处理研究》 http://bbs.shejis.com/viewthread.php?tid=432547&fromuid=188957 《石油石化工业污水分析与处理》 http://bbs.shejis.com/viewthread.php?tid=333313&fromuid=188957 《可持续污水/废物处理技术》 http://bbs.shejis.com/viewthread.php?tid=419306&fromuid=188957 《城市污水处理设备选型手册 》一本好书 http://bbs.shejis.com/viewthread.php?tid=417756&fromuid=188957 《污水处理新工艺与设计计算实例》 http://bbs.shejis.com/viewthread.php?tid=430913&fromuid=188957 《城市污水处理厂的建设与管理》 http://bbs.shejis.com/viewthread.php?tid=374943&fromuid=188957 《污水生物处理工艺技术》 http://bbs.shejis.com/viewthread.php?tid=420630&fromuid=188957 《污水处理工程调试及试运行指导手册》 http://bbs.shejis.com/viewthread.php?tid=428510&fromuid=188957 《小型污水处理站》 – http://bbs.shejis.com/viewthread.php?tid=428513&fromuid=188957 《医院污水处理技术及工程实例》 http://bbs.shejis.com/viewthread.php?tid=428503&fromuid=188957 《污水处理机械设计计算》 http://bbs.shejis.com/viewthread.php?tid=1273739&fromuid=188957 环境工程实例丛书《曝气生物滤池污水处理新技术及工程实例》 http://bbs.shejis.com/viewthread.php?tid=425067&fromuid=188957 《SBR及其变法污水处理与回用技术》 http://bbs.shejis.com/viewthread.php?tid=424762&fromuid=188957 《城市污水处理——投资与决策》 http://bbs.shejis.com/viewthread.php?tid=386205&fromuid=188957 《污水处理工程设计》 http://bbs.shejis.com/viewthread.php?tid=376764&fromuid=188957 《城市污水处理厂运行控制与维护管理》 http://bbs.shejis.com/viewthread.php?tid=432673&fromuid=188957 《油田含油污水处理》 http://bbs.shejis.com/viewthread.php?tid=383168&fromuid=188957 《DAT-IAT污水处理技术》电子版 http://bbs.shejis.com/viewthread.php?tid=430906&fromuid=188957 《分散式污水处理和再利用--概念、系统和实施》 http://bbs.shejis.com/viewthread.php?tid=428505&fromuid=188957 《小城镇污水处理工程BOT》 – http://bbs.shejis.com/viewthread.php?tid=384850&fromuid=188957 《污水处理工程设计》 http://bbs.shejis.com/viewthread.php?tid=431394&fromuid=188957 《污水快速渗滤土地处理》 http://bbs.shejis.com/viewthread.php?tid=433343&fromuid=188957 《污水排放工程水力学》 http://bbs.shejis.com/viewthread.php?tid=431423&fromuid=188957 《污水沉渣的排除处理利用》 http://bbs.shejis.com/viewthread.php?tid=429420&fromuid=188957 《污水处理厂运营管理与考核及规章制度实务手册》 http://bbs.shejis.com/viewthread.php?tid=428508&fromuid=188957 《小型污水处理与回用技术及装置》 http://bbs.shejis.com/viewthread.php?tid=386556&fromuid=188957 《污水处理厂运行管理培训教程》 http://bbs.shejis.com/viewthread.php?tid=424934&fromuid=188957 实用水处理技术丛书--《城市中小型污水处理厂的建设与管理》
Ⅷ 某居民小区生活污水处理工艺设计
小区生活污水处理中水工程工艺设计方案
第一章
工程概况一、设计依据: 1、业主提供资料;
2、国家污水综合排放标准GB8978—1996;
3、生活污水处理工程设计规定DBJ08-71-98;
4、室外排水设计规范GBJ14—87及相关专业设计规范;
5、市区域环境噪声标准GB3096—93。
二、原水来源、水量及中水用途:1、原水来源:小区住户生活污水。2、水量:小区住户1024户,按每户平均3.5人,合计大约3584人。鉴于房产公司尚未提供人均用水量,参照我国南方小城市(<20万人),居民人均住宅用水148.5L/(人.d),并参照高级住宅和别墅人均生活用水300~400L/(人.d),,两者取平均数为250L/(人.d),暂时作为本项目核算水量的依据,那么,本项目设计处理水量=3584人×250L/(人.d)×1.10(未预见水量)=985.6m3/d,取生活排水量与生活用水量相同(DBJ08-71-98)。新建中水处理站设计规模为985.6
m3/d,平均小时处理量为41m3/h。3、中水用途:小区绿化浇水、景观补充水。通过处理后中水主要回用于冲厕、绿化、洗车等方面,因此要求达到CJ25.1—89《生活杂用水水质标准》要求。主要指标为:COD≤50
mg/L;BOD5≤10 mg/L ;悬浮固体≤10 mg/L;浊度≤10度;PH:6.5-9.0;油类≤3
mg/L;总大肠菌群≤3个/L;嗅:无不快感觉;游离余氯:管网末端不少于0.2
mg/L。4、中水回用比例≥80%,其余污水经处理达标排放。污水进水和达标排放主要水质指标如表一所示: 表一:污水进水、达标出水主要水质指标 CODcrmg/L
BOD5mg/L SSmg/L 动植物油mg/L NH3--Nmg/L PH
进水水质 350-450 180-250 200-300 ≤40 35-40 6--9
排水水质 50
10
10
10 15 6--9
注:处理后的出水要求达到国家污水综合排放标准《GB8978-1996》中的一级标准。
第二章
工艺设计方案一、设计原则:
1、严格执行环境保护方面的有关规定,确保处理后尾水的各项水质指标皆符合本方案设计依据中的标准和要求。
2、采用成熟的,功能稳定的污水处理工艺技术,并具有一定的灵活性,可调节性以及应急排放措施。
3、整套污水处理系统,尽可能占地面积小,投资省和运行费用低。4、主体设施采用玻璃钢结构,使用寿命长;选用的设备、仪表、配件、材料,均为质量可靠,运行稳定,便于维修。
5、充分考虑处理过程中二次污染(噪声、臭气、污泥处理)的防治。6、本设计的范围为接入污水处理站集水井至排放池为止的污水处理工艺、电气各专业设计。
二、处理方法:
本工程拟采用调节池—一体化污水处理设备—过滤—消毒的工艺流程
。、
污水经格栅截留大颗粒污物后流入调节池,调节池采用曝气式,以均衡水质水量,并通过曝气搅拌避免污物沉淀。调节池后部设缺氧池,
。
好氧处理采用两级生物接触氧化。生物接触氧化是处理流程中最重要的部分,大量有机物在这里被细菌好氧降解。采用多级分段式接触氧化,形成逐级负荷递减系统,使接触氧化在去除率、抗冲击负荷、出水水质等方面更具优势和可靠性。
生物接触氧化出水再经过过滤、消毒,即可完成深度处理中水回用。
三、工艺流程:
(图略)
按上图所示的处理工艺方案流程,各构筑的作用和说明如下:
为了达到排放要求,处理工艺采用以生化处理A/O法为主处理的二级处理法,本处理系统由集水井、调节池、A段缺氧池、O段生化池、沉淀池、排放池、中水池、污泥池、机房(风机、水泵和电控柜)等构筑物组成。
四、主要构筑物:
1、土建(本钢筋砼设备为地埋式,顶部复土0.3米可绿化环境。)
序 号 名 称 规格(m) 数量(座) 备 注
1 集水井 1.5×6.5×4.5 1 地下式玻璃钢结构
2 调节池 12.5×6.5×4.5 1 同上
3 接触氧化池 12.5×3.5×4.5 2 同上
4 沉淀池 9×3×4.5 1 同上
5 污泥池 9×3×4.5 1 同上
6 排放水池 4×4×4.5 1 同上
7 中水池 9×6×4.5 1 同上
8 机房 4×3.5×2.6 2 设在地面上
五、主要设备:
序号 名 称 型号规格 单 位 数 量 备注
1 人工格栅
台 1
2 一级提升泵
台 2 一用一备
3 罗茨风机
台 3
4 二级提升泵
台 2 一用一备
5 石英砂过滤器
台 1
6 电磁流量计
台 1
7 消毒剂投加装置
套 1
8 活性炭过滤器
台 1
9 污泥泵
台 2 一用一备
10 组合填料
套 1
11 管道及法兰弯头
套 1
12 阀门器材
套 1
13 人孔及阀门盖
套 1
14 填料支架
套 1
15 防腐材料
套 1
16 电器控制系统
套 1
17 配电器材
套 1
18 聚丙稀蜂窝斜板
套 1
19 液面控制器
套 1
注1:该污水处理系统总电机功率55kw, 运行功率35kw。
注2:设施占地面积大约350-400 m2 。
注3:上述构筑物参数或设备配套会因设计时做适当更改,以施工图为准
2.2 常用流程
根据小区废水处理的原则,应选择处理效果稳定、产泥少、节能的处理方法。小区系统中的各类建筑物一般均建有化粪池,所以化粪池应与污水处理方法相结合。常用的工艺流程有:
①污水→格栅→调节池→提升泵→接触氧化池→沉淀池 →出水。
②污水→格栅→调节池→提升泵→ 曝气池 → 沉淀池 污泥回流 →出水。
③污水→格栅→调节池→提升泵→SBR池或CASS池→出水。
④污水→格栅→调节池→提升泵→混凝沉淀(加药)→过滤→出水(物化方法)。
⑤污水→格栅→调节池→提升泵→接触氧化池→混凝过滤(加药)→出水。
国内小区污水处理设计中组合式处理厂曾风靡一时,组合式处理指装配好的或易于组装的定型设备,其主要优点是施工快,不占绿地。但实际应用表明,存在不少问题。如设备的维修管理困难,对运行情况考核不便,单机处理水量有限,使用寿命等均有待时间验证。根据工程设计及实际运行经验,建议日处理能力1000m3以上的污水处理厂宜采用地上式。在水量不大,场地十分紧张时可考虑用埋地设备。