A. 反激变压器一定要开间隙嘛我拆开了,怎么没有间隙呢
反激变压器的本质是耦合电感,能量的存储和释放是交替进行的。而作为储能的电感通常的做法都是要开气隙的。反激变压器也不例外。
开气隙的作用有两点:
一、控制电感量,适合的电感量才能满足设计要求。
电感量太大能量充不进去。电感量太小则开关管电流应力增加。
二、降低磁通密度B。
假设电感量,电流和磁性材料都已经确定,增加气隙可以降低电感的工作磁通密度防止饱和。
基本原理
当开关晶体管Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = Lp*Ip^2 / 2),由于Np与Ns极性相反,此时二极管D反向偏压而截,无能量传送到负载.当开关Tr off 时,由楞次定律:(e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通,反激式转换器之稳态波形。
B. 开关电源(反激变换电路)调节输出电压
改变R4(R6)/R7的分压比就可以改变电压源TL431的稳压值,改变了TL431的稳压值也就改变了输出电压。
Udc是市电整流滤波后的直流,也可以是其他较高电压源。
C. 为什么反激电路一定要加气隙
反激式开关电源的高频变压器在磁滞回线的第一象限,在开关管导通期间,变压器初级线圈只储存能量,而在截止期间才将初级线圈内储存的能量传递到次级,因此它既是变压器,也是储能电感。在它的中心柱开一定的气隙可降低剩余磁场、提高磁芯的直流磁场强度,使它能承受较大的安匝数,防止磁芯饱和,并可通过调节气隙来达到所需的电感量(AL-Value=L1/N1²)。
D. 何为朋友
摘要:依据一个单端反激电路的实例详细介绍了高频变压器设计的一般方法和步骤,并讨论变压器的绕制工艺问题。
关键词:反激电路;高频变压器;变压器的绕制
Abstract:The method of design high frequency transformer in fly-back circuit in introced in detail, besides the Transformer winding process is discussed.
Keyword:fly-back circuit; high frequency transformer; Transformer winding
0 引言
单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。单端反激电源的工作模式有两种,电流连续模式和电流断续模式。前者适用于较小功率,副边二极管没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。这两种工作模式可根据实际需求来选择。
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率的关键因素。随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器。
本文将以单端反激电路为例,详细介绍高频变压器设计的一般方法和步骤。
1 单端反激电路的工作原理
图1 单端反激电路工作原理图
当加到原边住功率开关管Q的激励脉冲为高电平使Q导通时,直流输入电压Vin加在原边绕组Np两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置截止;当驱动脉冲为低电平使Q截止时,原边绕组Np两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后储存在变压器中的磁能向负载传递释放。因单端反激式变换器只是在原边开关管导通期间储存能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起到变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。
在反激变换器中,一般有两种工作方式
(1)完全能量转换(电感电流不连续方式):在储能周期(ton)中,变压器中储存的所有能量在反激周期(t0ff)中都转移到输出端。
(2)不完全能量转换(电感电流连续方式):储存在变压器中的一部分能量在t0ff末保留到下一个ton的开始。
这两种工作方式的小信号传递函数是极不相同的,动态分析时要做不同的处理。实际上,当变换器输入电压在一个较大范围内发生变化,或和负载电流在较大范围内变化时,必然跨越着两种工作方式,因此反激变换器常要求能在完全和不完全能量转换方式下都能稳定工作。
设计一单端反激电路高频变压器,其主要参数如下:
原边绕组电压幅值 Ui=176~264Vac , 47-63Hz
次级输出电压 Uo=12V
开关频率 f=70kHz
额定输出电流 Io=2A
变压器效率 η=0.78
2 初选磁芯型号
适用于高频的磁芯材料有铁氧体磁芯,铁粉磁芯以及非晶合金。设计时,要查找三类磁芯的基本特性以选择合适的磁芯材料,在一般情况下都可选用铁氧体材料满足设计要求。然后再根据厂家提供的磁芯材料手册(一般可在磁芯厂家网站获得)选取具体的磁芯材料编号并获得其具体特性参数。
磁芯规格的选取通常可先估算变压器的效率,然后由输出功率和估算效率计算出变压器的输入功率,再根据厂家给出的磁芯规格和传送功率的关系数据来选择。初选一磁芯型号代入以后的步骤进行计算。
根据设计要求,查找磁芯手册,选取EI28铁氧体磁芯,其交变工作磁密ΔBac为0.2T,磁芯有效面积Ae为84.41mm2。
3 绕组匝数的计算
原边绕组开关晶体管Q的最大导通时间对应在最低输入电压和最大负载时发生。在这个例子中,假设D=ton/Ts=0.45,工作频率70kHz。
Ts=1/fs=106/(70×103)=14
ton=D×Ts=0.45×14=6.30μs
设当变换器在最低线路输入电压时发生满载工作,计算它的输入端的直流电压Vin。对于单相交流整流用电容滤波,直流电压不会超过交流输入电压有效值的1.4倍,也不小于1.2倍。它与电源线路中的电源阻抗,整流器电压降,储能电容的等效阻抗,以及负载大小均有关,在此取1.3。设交流电压220V下限为176V。
Vin=176×1.3=228.8V
因为作用电压是一个方波,一个导通期间的伏秒值与原边匝数关系为
NP= Vin×ton/(ΔBac×Ae)
式中 NP----原边匝数
Vin----原边所加直流电压(V)
ton----导通时间(μs)
ΔBac----交变工作磁密(mT)
Ae----磁芯有效面积(mm2)
NP= 228.8×6.30/(0.2×84.41)=86匝
以输出电压12V为例进行计算,设整流二极管压降0.6V,绕组压降0.6V,则副边绕组电压值为12+0.6+0.6=13.2V。
原边绕组每匝伏数= Vin/ NP=228.8/86=2.66V/匝
副边绕组匝数NS=13.2/2.66=4.96匝
由于副边低压大电流,应避免使用半匝线圈(除非特殊技术上需要),考虑到磁芯磁路可能产生饱和时,使变压器调节性能变差,因此取4.96的整数值5匝。
因副边取整数5匝,反激电压小于正向电压,新的每匝的反激电压是13.2/5=2.64V/匝。占空比必须以同样的比率变化来维持伏?秒相等。
ton= Ts×2.64/(2.64+2.66)=14×2.64/5.3=6.97μs
4 确定磁芯气隙的大小
上面已经分析过,带气隙的磁芯在一个更大的磁场强度H值下才会产生磁饱和,因此磁芯可经受一个更大的直流成分。另外,当H=0时,Br更小,磁芯的磁感应强度B有一个更大的可用工作范围ΔB。最后,有气隙时,导磁能力降低,导致每匝的电感量减小,绕组总电感值减小,但气隙的存在减少磁芯里直流成分所产生的磁通。
(a)完全能量传递方式 (b)不完全能量传递方式 (c)不完全能量传递方式
(原边电感较大) (原边电感大小适中)
图2 在反激变压器中原边电流的波形(三种情况下Iave均相同)
实际设计工作是通过气隙大小调整来选定能量的传递方式。图2示出三种可能的方式。(a)是完全能量传递方式。这种方式传递同样的能量,峰值电流是很高的。工作中开关晶体管、输出二极管和电容器产生最大的损耗,且在变压器自身产生最大的铜耗(I2R);(b)表示不完全能量传递方式。此时,具有一个低电流斜率,这是电感较大的缘故。尽管这种工作方式损耗最小,但这大的磁化直流成分和高的磁滞将使大多数铁磁物质产生饱和。(c)表示一个较好的折衷方法,它的峰值电流大小适中,峰值与直流有效值的比也比较适中。当经调整气隙,使在合适的气隙大小下,就能得到这一传递方式。工作中噪声较小,效率也合理。
使用图2原边电感量可通过电流波形图的斜率Δi/Δt按下式求出
LP=VinΔt/Δi
在图(c)中,设取IP2=3 IP1,则tOn=t2-t1时间内电流平均值Iave
Iave= IP2 -IP1=3 IP1- IP1 = 2IP1
在周期内TS的平均输入电流IS
Iin=P/Vin=30.77/228.8=0.13A
相应的值为
Iave= IinTS/tOn=0.13×14/6.97=0.26A
IP1=Iave/2=0.13A
IP2=3 IP1=0.39A
在tOn期间电流变化量Δi= IP2 -IP1=0.39-0.13=0.26A带入LP=VinΔt/Δi式中求出原边电感LP
LP= VinΔt/Δi=228.8×6.97/0.26=6.13mH
一旦已知原边电感Lp和匝数Np,求出电感系数AL
AL=Lp/N2p=0.00613/862=829nH/匝2
用下式计算气隙
lg=μ0×N2p×Ae/ Lp
式中lg ------气隙长度(mm)
μ0------4π×10-7
Np ------原边匝数
Lp ------原边电感(mH)
Ae ------磁芯面积(mm2)
lg =4π×10-7×862×84.41/6.13=0.13mm
5 变压器的绕制工艺问题
变压器绕制的基本要求是耦合紧密,以减小漏感。设计时应采用“初包次”的绕法。示意图如下:
初级-------内层
次级绕组
初级--------外层
辅助绕组
图3
在变压器的绝缘方面,线圈绝缘选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力。变压器绝缘则采用整体灌注的方法来保证变压器的绝缘使用要求。
6 结语
本文详细阐述了单端反激变换器中变压器的设计方法,并结合具体设计任务,设计出一个用于176Vac~264Vac输入,12V2A输出的高频开关电源变压器。设计出的变压器在实际电路中表现出良好的电气特性。
参考文献
[1]张占松,蔡宣三。开关电源的原理与设计(修订版)。电子工业出版社,2004。
[2]刘胜利。现代高频开关电源实用技术。电子工业出版社,2001。
E. 开关电源供电方式中的电压变压原理
1.直流变换器式开关稳压电源
直流变换器式开关稳压电源主要包括直流变换器和稳压电路两个部分,该稳压电源的核心是直流变换器。直流变换器是将一种直流电压转换为另一种直流电压的变换设备,它是开关电源的一个重要类别。进行直流变换通常可分为几步:逆变器——将直流电压转换为较高频率的交流电压;高频变压器——将高频交流电压转换为所需的交流电压,并且实现不安全的市电与安全的输出电源有效隔离;整流器——将高频交流电压转换为直流电压。下面介绍2种基本的变换电路,这2种功率变换器可以工作在他激状态作功率方波放大器,也可以工作在自激状态作方波振荡器,产生的方波经变压器次级侧整流,将方波变换为所需的直流,它的基本电路是由一个晶体管组成的单端电路。
晶体管直流电压变换器的基本工作原理,是利用晶体管作为高频开关控制直流电源的通断,经过变压器输出,把直流变成交流。如果所需的输出是直流电压,那么,把变压器输出的交流电压再经过整流,就可以得到所需的直流输出电压。在负载对直流电源精度要求不高、且负载变化不大的场合,直流变换器的输出可以直接向负载供电,而不必再另加稳压电路。反之,当负载对直流电源供电要求较高时,通常则需要在电路中加上稳压控制电路,一般是加上前面所介绍的取样电路、基准电源、差分放大器以及脉冲占空比可调的控制电路,即可构成开关稳压器。由于电路中引入了高频变压器的隔离,可以实现输入电压和输出电压之间的直流隔离,即安全工作点与非安全工作点之间的电气绝缘。
单端晶体管直流变换器具有线路简单的特点,它只用一只晶体管、一个变压器以及电容、二极管构成。功率可以做到150W~250W。根据变压器次级侧整流二极管的接法不同,单端变换器可分为反激式和正激式两种。反激式和正激式变换器两者的差别只是整流二极管的接法不同,但其工作原理差别很大。
2. 单端反激式变换器
在单端反激式变换器中,整流二极管的接法使得开关晶体管导通时,二极管截止,这时电源输入的能量以磁能的形式储存于变压器中;在晶体管截止期间,二极管导通,变压器中储存的能量传输给负载,因此,单端反激式变换器也称为电感储能式变换器。不过这里用变压器,而不是单个电感。单端反激式变换器电路如图2所示。
当开关晶体管V的基极被输入脉冲驱动而导通时,输入电压Ui便加到变压器T的初级绕组N1上,由于变压器T对应端的极性,次级绕组N2的极性为下正上负,二极管D截止, 次级绕组N2中没有电流流过。当V截止时, N2绕组的电压极性为下负上正,二极管D导通,此时V导通期间储存在变压器中的能量便通过二极管D向负载释放。在工作过程中变压器一方面起了电感储能电感的作用,另一方面也起了变压器的作用。由上分析可知,单端反激式变换器与前面介绍的并联开关稳压器的工作原理相似,因此输出电压为
Uo = Ui
设占空比δ= ton/T,可以得到Uo = Ui
+U i D L
• +
n1
V n2 C Uo
•
图2-2 单端反激式变换器电路
3.单端正激式变换器
在单端正激式变换器中,整流二极管的接法是在开关晶体管导通时,经过变压器耦合,能量通过导通的二极管传输给负载,而在晶体管截止期间,二极管也截止。
图2-3是带有回授绕组N3和箝位二极管D3的单端正激式变换器。单端正激式变换器是从串联开关变换器演变得到的,其导电过程与反激式变换器正好相反,却与串联开关变换器完全相同,不同之处这里增加了一个变压器。在V 导通时,由变压器T的对应端和二极管D1的接法决定了此期间D1导通,输入电压经变压器耦合向负载传输能量,此时滤波电感L储能;V截止期间,电感L中产生的感应电动势使续流二极管D2导通,电感L中储存的能量通过续流二极管D2向负载释放,因此单端正激式变换器输出电压为
Uo = Ui = δUi
+ U i D1 L
n1 + Uo
• •
D3 n3 n2 D2
•
V
图2-3 带有回授绕组和箝位二极管的单端正激式变换器
即输出电压仅决定于电源电压、变压器的匝数比和占空比,而与负载电阻无关。
此外,由于变压器线圈存在电感,当V导通时,电感中也储存能量;当V截止时,次级侧二极管D1截止,储存于变压器中的磁场能量必须通过一定的途径释放出来,否则将在线圈的两端产生过电压。比较常见的方法就是如图2-9所示的加设回授绕组N3和箝位二极管D3,通常取N3=N1,这样当绕组N1上的感应电压超过电源电压时,二极管D3导通,将磁能送回电源中。这就将绕组N1上的反峰电压限制在电源电压上,因此V的集-射间的电压被限制在两倍电源电压上。
释放变压器电感中储能(又称祛磁)的方法还可以有很多,如在初级绕组N1两端并联电阻,或者并联电容和电阻串联网络等以吸收反峰电压所产生的能量。
单端正激式变换器同单端反激式变换器一样,变压器中磁通只工作在B-H曲线的一侧,因此也必须遵循磁通复位的原则,磁芯常用EE、EI、EC等型号的铁氧体材料,磁芯要有一定尺寸的空气隙,以免磁芯饱和。
F. 反激电源问题
我们在设计反激变换器时通常更关注输入电压最低时的状态。
因为那时输入电流最大,占空比最大,变换器的发热通常也最大。
而输入电压在最高时往往会被设计者忽略。
此时功率管的电压应力达到最大,占空比最小,电流斜率最大,同样使产品面临危险。
反激变换器在连续电流模式,占空比的计算公式为:D=VOR/((VIN-VDS)+VOR)
VOR为反射电压(假设为100V),VIN为输入直流电压。VDS为开关管压降(假设为5V)。
注意计算最大占空比时VIN要按输入脉动直流的波谷电压计算,假设85VAC时对应VIN为60VDC。
而计算最小占空比时VIN要按输入脉动直流的波峰电压计算,假设265VAC时对应VIN为375VDC。
我们带入公式就可得到最大占空比约65%,而最小占空比约为21%。
上述计算是按连续电流模式计算的。
如果是电流非连续模式,要考虑电流纹波系数K大于1,占空比比连续模式的还要小一些。
再说说85VAC和265VAC是怎么来的。中国大路地区供电系统的相电压为220VAC。
按+20%的波动考虑,就是220*1.2=264VAC,取个整也就是265VAC了。
同理,日本等地的供电是110VAC,按-20%波动考虑,110*0.8=88VAC,取整就是85VAC了。
输入范围还可以更宽,但要牺牲很多性能,同时元器件也会难于采购并且成本陡升。
G. 反激变换器的MOS温升太高要加大占空比吗
如颗是低压输入时MOS温升高,可适当增加占空比,降低初级峰值电流!
H. 反激式开关电源 怎么加大带负载能力 匝数比可以调整
反激式开关电源:初级调到112T,次级38T,辅助23T,把磁芯调到初级电感量等于1.8mH。
反激式(Flyback)变压器,或称转换器、变换器。因其输出端在原边绕组断开电源时获得能量故而得名。
基本原理
当开关晶体管Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形
导通时间 ton的大小将决定Ip、Vce的幅值:
Vce max = VIN / 1-Dmax
VIN: 输入直流电压 ; Dmax : 最大工作周期
Dmax = ton / T
由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.
开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数 相等 NpIp = NsIs而导出. Ip亦可用下列方法表示:
Ic = Ip = 2Po / (η*VIN*Dmax)η: 转换器的效率
公式导出如下:
输出功率 : Po = LIp2η / 2T
输入电压 : VIN = Ldi / dt设 di = Ip,且 1 / dt = f / Dmax,则:
VIN = LIpf / Dmax 或 Lp = VIN*Dmax / Ipf
则Po又可表示为 :
Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp
∴Ip = 2Po / ηVINDmax
上列公式中 :
VIN : 最小直流输入电压 (V)
Dmax : 最大导通占空比
Lp : 变压器初级电感 (mH)
Ip : 变压器原边峰值电流 (A)
f : 转换频率 (KHZ)