导航:首页 > 废水知识 > 处理器频率提升的障碍

处理器频率提升的障碍

发布时间:2022-08-30 11:19:55

Ⅰ 为什么现在cpu不再提高主频而是走多核

如果你对2004年英特尔总裁贝瑞特当年当着6500人惊天一跪还记忆犹新的话,或许能更能理解这个问题,当年老贝这一跪是对“惟主频论”失误的真心忏悔。

当时NetBurst架构的Prescott(Pentium 4的核心),虽然已经是用了最先进的90nm工艺,但是3GHz主频的CPU功耗就超过百瓦,如果频率要超过4GHz,功耗将是何其了得。

所以,在这儿就可以回答题主, 正是因为功耗(散热)制约了主频的提升 。
登纳德缩放定律的终结
相信你也听过摩尔定律,它告诉我们,芯片中晶体管的尺寸正在不断减小,因此芯片的晶体管数量可以不断增加。虽然近些年,摩尔定律一直在修改,但它似乎尚未完全停止。

事实上,除了摩尔定律,还有一个很重要的定律,称登纳德缩放定律(Dennard Scaling),大体说,随着晶体管尺寸的减小,它的功耗也按面积大致按比例下降。

摩尔定律和登纳德缩放定律这两个好基友放在一起,就是要告诉我们,可以不断缩小晶体管尺寸,并且在CPU中容纳更多晶体管,而功耗基本不变。

但是,到了Pentium 4,基本上宣告了登纳德缩放定律的终结,因为Pentium 4的性能只有486的6倍,但功耗却是后者的23倍(6^1.75)!

好吧,看看上面的图,随着晶体管的面积密度上升(蓝色线)16倍,功耗仅下降约4倍(紫色线),功耗降低已经不再与芯片面积密度上升成正比,Dennard Scaling is dead.

也就是说,继续以提升频率来提升性能的方法已经行不通了!
多核也能刷性能
到底CPU的性能是怎么定义的?英特尔是这么说的:

其中f为频率,提升f就能提升CPU性能,不过这条路已经不通了。

但是,我们还可以提升IPC呀,IPC(instruction per clock)是每时钟周期内所执行的指令数,所以才有了多核,2个核心,IPC就是原来的2倍,4个核心,IPC就翻了4倍,CPU的性能也就得到提升。所以我们消费级的CPU才从2核变成了4核,再到8核,现在已经升到了16核。

反正呢,现在摩尔定律还能苟延残喘,但Dennard Scaling已是过去式,虽然工艺越来越先进,CPU里可以装进更多的晶体管,但由于功耗墙的原因,已经没办法提高单个内核的频率,解决方法是在芯片上保留更多内核以提高CPU性能。当然并非所有程序都可以支持多核,因此这种潜在的性能增益并不总是能够得以呈现,但肯定是越来越好了。

发动机的转速再高,对速度的提升,也比不上气缸多来的直接! V12 发动机不会搞9000转,8000进红线。

一个喇叭尺寸再大,音量再高,看电影的时候,也不可能比7.2声道效果好。

理论上时钟速度越高,也就是主频越高,CPU运行的速度就越快。频率就是指单位时间内完成定期更改的数量,有的指令可以在一个时钟周期内完成,有的指令则需要多个时钟周期来完成,如果将时钟速度提高为3.2GHz,那么CPU每秒就会执行32亿个周期。

大家似乎很难理解主频提高会提高CPU的性能,举个例子:假如你举手需要2秒,让你1秒钟完成一次举手的动作,再让你1秒钟完成10次举手动作,再让你1秒钟完成100次举手动作,性能就是这样被提高的。在能尽可能短的时间内让CPU内的几百亿的晶体管快速的打开和关闭来提升CPU的运算能力。
提升CPU的主频确实能够提高CPU的性能,但很快被玩残了
早期在绝大多数人的认知里,都认为主频越高CPU的性能就一定越高,CPU的制造产商在过去也是一直这样引导普罗大众的。这就引发了英特尔和AMD持久的主频争霸战。

AMD的速龙系列率先突破1GHz,使得英特尔乱了阵脚,慌忙地推出奔腾3系列。仓促推出的奔腾3还有很多问题所以并没有帮英特尔扳回一局,所以很快就推出了基于NetBurst架构的奔腾4。速龙出场1.1GHz左右,而奔腾4则快速的拉到了1.4GHz左右,致使AMD的价格优势尽失。

奔腾4虽然赢得了市场,但有心人很快就发现了问题,奔腾4在很多方面的表现还不如奔腾3,典型的“高频低能”来描述。

这一切都归功于NetBurst架构的超长流水线来提高主频,20级流水线说句不好听的就是在磨洋工,磨洋工就磨洋工吧,但痛点就是CPU的热量大,所以后期的CPU对于风扇和散热器的要求越来越高,这才有了后来的用CPU煮饺子,烤肉的梗。

性能不够、超频来凑,AMD也同样犯过这样的错误,通过超长流水线来提高CPU的频率,比如4.7Ghz主频的是FX-9590,TDP达到了220W,风冷压不住,只能采用高端水冷散热。这才有了网上所说的i3默秒全的梗,追求单核主频的AMD最终坐实了千年老二的位置。不过还好AMD后期开始认识到问题的严重性,多核RYZEN系列开始有翻身的迹象。
单核通过提高主频来提升CPU的性能注定只是一个笑话
2004年64岁的英特尔CEO当着6500多技术人员的面跪下道歉宣布放弃4GHz主频的奔腾4,这说明英特尔也没能解决CPU主频提高散热量增大的问题。这是英特尔的转折点,也是单核到多核的一大转折点,因为英特尔是继Sun、IBM、AMD之后宣布走向多核。

CPU的性能=时钟频率*IPC(IPC即一个时钟周期完成的指令数),而CPU的功耗和电流*电压*电压*主频成正比,增加主频很可能会以3次方的速度增加CPU的功耗,而增加IPC只会线性的增加CPU的功耗。假如增加1倍IPC而减少一倍时钟频率很可能产生一个结果CPU性能没有改变,而功耗却大幅地降低了。毫无疑问多核可以增加IPC,可以减少时钟频率的同时增加CPU的性能。
总结
过去的30多年里,CPU性能随着主频的提高而提高是芯片产业从技术、应用、产业发展的基石,而现在大厦的基石却彻底地改变了。只能说单核提升主频来提高CPU的性能过于理想化,以至于忽略了很多外在的因素,现实无情的打脸最终才让芯片巨头们走向了多核之路。

目前限制CPU的不是技术工艺,而是散热,Intel的CPU可以轻松6-7Ghz,前提是你得液氮散热,考虑到目前大多数风冷散热现实,限制主频2-4之间,也是对市场妥协。如果将来某一天,普及微型液氮散热器,说不定多核就没那么重要了

欢迎你的阅读
首先,要说的是现在手机也不是不提高主频了,只是提高的速度比以前更慢了。

欢迎关注作者,一起聊 科技 、数码。

不要光用频率衡量CPU的单核性能。举个例子,里程碑1代的555Mhz主频的德仪CPU,可以把HTC G7上面那颗1Ghz CPU从上到下秒一个遍。CPU单核心性能,可以用车辆的轮子计算。频率只是转速,代表转多块。影响的另外一个因素是单核能效,对应的是轮子的直径。轮子的直径大,并不需要转多快也能维持高度。但是直径小的,必须提高转速才能达到一样的速度,带来的结果就是功耗和发热的提高。

不要看核心频率来定量CPU性能,要看核心架构在看频率,一般同一架构频率越高性能越好,像3.2gHz的八核推土机性能还不如四核八线程的酷睿i5性能好。四核四线程奔腾N4200还没有双核四线程M5性能好。目前CPU领域性能最好的是酷睿了,像主机CPU美洲豹架构只能和打桩机差不多,和酷睿i差远了,有人推测八核美洲豹性能居然只有比双核酷睿i5好一点。

有个重物50kg,一个人搬不动,解决的办法有两种,一是锻炼身体,增加肌肉力量,半年苦练后基本就搬得动了;而是再喊一个帮忙抬一下,1分钟解决。[大笑]

CPU性能可以通过哪些参数来衡量,相信很多人最先想到的都是CPU频率,在架构工艺相同的情况下,CPU频率越高性能越强。记得在2003年之前,CPU的频率提升幅度都不算小,1981年的时候IBM电脑的CPU频率是4.77Mhz,到了1995年英特尔CPU频率达到了100Mhz,提升了20多倍。

2000年AMD的CPU频率领先Intel突破了1Ghz,这5年里面频率提升了10倍,随后2003年英特尔CPU频率达到了3.7Ghz,就3年的时间,频率又翻了几倍,而到了2021年,CPU单核最高也就5.3GHz了,相比过去那些年的CPU频率提升可以用缓慢来形容了。

为什么主频提不上去?
影响CPU频率的一个物理限制条件是,主频与信号在晶体管之间传输的延迟成反比,也就是说晶体管密度越大,时钟频率越高,而这也是在2003年以前CPU频率可以通过采用更先进的工艺来提升主频,而且提升的效果是特别明显的。

但是CPU的频率提升不是没有限制因素的,这个因素就是能耗发热问题,能耗过高会导致CPU发热过大,可能会导致CPU烧毁,而CPU的能耗和时钟频率三次方成近似正比关系,也就是说频率翻倍,能耗可能会达到之前的8倍。

之前对FX8350和FX9590的主频和功耗关系进行过相关计算,大致的验证一下能耗与频率提升的关系,因为FX9590就是FX8350的官方超频版本,同样的工艺架构,同样的核心数量,可以很好的观察频率和功率的关系,FX8350默认频率是4Ghz,FX9590默认频率是4.7Ghz。

FX9590的频率是FX8350频率的1.175倍,1.175的三次方是1.62,也就是说理论上来说FX9590能耗比FX8350要高62%,对二者的TDP进行对比,可以发现FX9590比FX8350要高76%(220除以125然后减去1),从这个结果来看,CPU的能耗和时钟频率的三次方成近似正比关系是成立的,总之可以肯定频率和能耗的提升关系不是线性的。

当然有人会说,既然能耗增加导致发热,那采用先进工艺不就可以缓解这个问题了,理论上来说是的,不过工艺越先进,热密度越来越高,更容易出现积热问题,就像7nm工艺虽然可以提供比14nm更低的能耗,但是7nm处理器的积热问题更严重,能耗虽然低不少,但是温度并不会比14nm的产品低,这也导致靠工艺提升来提升频率越来越困难。

一个CPU中含有数十亿个晶体管,比如英特尔的主流CPU拥有20亿个晶体管,在某些高端产品中晶体管数量高达60亿个。晶体管在做模拟信号的相互转换时会根据CPU主频的高低产生动态功耗,因而CPU的主频越高,发热量就越大。

当然芯片的制造工艺一直是在不断发展,根据摩尔定律,集成电路上可容纳的元器件的数目,约每隔一年半会增加一倍,性能也将提升一倍。

2000年的奔腾4处理器,制作工艺是180nm;

2010年的酷睿i7-980X,制作工艺32nm;

2013年的酷睿i7 4960X,制作工艺是22nm;

现如今酷睿i7 9700k的制造工艺更是达到了10nm级别。晶体管做得越小,导通电压更低,就可以补偿了CPU主频升高带来功耗的增加。

但是,CPU的制造工艺是不会无休止地提升,越往后技术难度越大, 因而制造工艺是限制目前CPU主频提升的最大障碍 。 而且晶体管尺寸是减小了,但数量的增加会使晶体管之间的积热问题凸显出来,因此总的发热量并不会有太多减少。

况且主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。CPU的性能参数还有二级缓存、三级缓存、指令集、前端总线等方面。一味地升高CPU的主频,会使CPU的发热量成倍增加,最后为了给CPU降温就要在散热装置上花费极大的功夫,这样做是得不偿失的。

所以为了增加CPU的速度,半导体的工程师们就给CPU设计多个核心,能够达到相同的效果。就好比有100道算术题要计算,单核CPU就是让一位速算高手来完成,而多核CPU就是请了四位速算能力一般的人,但最后还是四个人完成100道题所用的时间短,毕竟人多力量大嘛。

Ⅱ CPU多少多少纳米到底是什么意思

就是通常我们所说的CPU的“制作工艺”,是指在生产CPU过程中,集成电路的精细度,也就是说精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,精细度就越高,CPU的功耗也就越小。

芯片制造工艺从1971年开始,经历了10微米、6微米、3微米、1.5微米、1微米、800纳米、600纳米、350纳米、250纳米、180纳米、130纳米、90纳米、65纳米、45纳米、32纳米、22纳米、14纳米、10纳米,一直发展到目前(2019年)最新的7纳米,而5纳米将是下一代CPU的发展目标。

(2)处理器频率提升的障碍扩展阅读

计算公式

以当前处理器的制程工艺乘以0.714即可得出下一代CPU的制程工艺,如10*0.714=7.14,即7.14纳米。

提高处理器的制造工艺具有重大的意义,因为更先进的制造工艺会在CPU内部集成更多的晶体管,使处理器实现更多的功能和更高的性能;更先进的制造工艺会使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU产品,直接降低了CPU的产品成本,从而最终会降低CPU的销售价格使广大消费者得利。

更先进的制造工艺还会减少处理器的功耗,从而减少其发热量,解决处理器性能提升的障碍,处理器自身的发展历史也充分的说明了这一点,先进的制造工艺使CPU的性能和功能一直增强,而价格则一直下滑,也使得电脑从以前大多数人可望而不可及的奢侈品变成了现在所有人的日常消费品和生活必需品。

总体来说,更先进的制成工艺需要更久的研制时间和更高的研制技术,但是更先进的制成工艺可以更好的提高中央处理器的性能,并降低处理器的功耗,另外还可以节省处理器的生产成本,以便降低售价。

参考资料来源:网络-制造工艺

参考资料来源:网络-制程工艺

Ⅲ CPU的频率最高能到多少呢最大的卖点有哪些

理论上讲,CPU的主频是没有上限的。但是现实是,随着CPU的频率增加,其功耗与发热的增加,却不是线性增加的,目前主流产品的频率一般小于4GHz。所以,CPU的频率有极限,但是这个极限,说不好是多少,因为技术在发展。最重要的一点是,现在发展方向,是朝着多核发展,而不是高频发展,所以,频率极限不好确定。

但是,最主要的是买点就是这个技术依然在不断发展,各种技术手段的发明使得该行业的发展跟上了摩尔定律的步伐。在90纳米时,应变硅发明了;45纳米时,增加每个晶体管电容的分层堆积在硅上的新材料发明了;22纳米时,三栅极晶体管的出现保证了缩小的步伐。那么相应的,CPU的频率是可以提升的,因为工艺的提升,极大的降低了CPU的发热量。拿去年手机界的CPU高通810来说,由于CPU架构与制作工艺不相配,810的发热量使得它“名噪一时”,大部分810产品比较失败,今年820采用了更为先进的14nm工艺,发热量明显下降。

Ⅳ 制造工艺是什么

制造工艺指制造CPU或GPU的制程,或指晶体管门电路的尺寸,单位为纳米(nm)。目前主流的CPU制程已经达到了7-14纳米(AMD三代锐龙已全面采用7nm工艺,intel第9代全面采用14nm),更高的在研发制程甚至已经达到了4nm或更高,目前已经正式商用的高通855已采用7nm制程。
更先进的制造工艺可以使CPU与GPU内部集成更多的晶体管,使处理器具有更多的功能以及更高的性能;更先进的制造工艺会减少处理器的散热设计功耗(TDP),从而解决处理器频率提升的障碍;更先进的制造工艺还可以使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU与GPU产品,直接降低了CPU与GPU的产品成本,从而最终会降低CPU与GPU的销售价格使广大消费者得利.....处理器自身的发展历史也充分的说明了这一点,先进的制造工艺不仅让CPU的性能和功能逐步提升,也使成本得到了有效的控制。

Ⅳ CPU频率的提升到底会产生哪些影响呢

CPU频率提升并不是很快,有人预言不会超过5GHz,确实在很长一段时间内,CPU频率没有超过5GHz,超过4GHz就被认为性能很好了。INTEL发布了一款8系列处理器旗舰产品intel i7 8086k,在6核12线程下达到了最大5GHZ睿频,是intel有史以来发布频率最高的处理器。那么,CPU频率的提升到底会产生哪些影响呢?


高频CPU一定有高频的好处,也一定会带来性能和效率的提升。

Ⅵ cpu中的纳米什么意思

CPU作为电脑的核心组成部份,它的好坏直接影响到电脑的性能。下面是我带来的关于 cpu 中的纳米什么意思的内容,欢迎阅读!

cpu中的纳米什么意思:

是指CPU的制程(制造工艺)是22纳米,单位面积晶体管数目更多,发热更低,同等功耗下性能更强。制造工艺指制造CPU或GPU的制程,或指晶体管门电路的尺寸,单位为纳米(nm)。目前主流的CPU制程已经达到了14-32纳米(英特尔第五代i7处理器以及三星Exynos 7420处理器均采用最新的14nm制造工艺),更高的在研发制程甚至已经达到了7nm或更高。

更先进的制造工艺可以使CPU与GPU内部集成更多的晶体管,使处理器具有更多的功能以及更高的性能;更先进的制造工艺会减少处理器的散热设计功耗(TDP),从而解决处理器频率提升的障碍;更先进的制造工艺还可以使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU与GPU产品,直接降低了CPU与GPU的产品成本,从而最终会降低CPU与GPU的销售价格使广大消费者得利.....处理器自身的发展历史也充分的说明了这一点,先进的制造工艺不仅让CPU的性能和功能逐步提升,也使成本得到了有效的控制。

相关 阅读推荐 :

多核心多核心,也指单芯片多处理器(Chip Multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。这种依靠多个CPU同时并行地运行程序是实现超高速计算的一个重要方向,称为并行处理。

与CMP比较,SMP处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。IBM 的Power 4芯片和Sun的MAJC5200芯片都采用了CMP结构。

多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。但这并不是说明,核心越多,性能越高,比如说16核的CPU就没有8核的CPU运算速度快,因为核心太多,而不能合理进行分配,所以导致运算速度减慢。在买电脑时请酌情选择。2005年下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。

看了cpu中的纳米什么意思 文章 内容的人还看:

1. cpu几纳米什么意思

2. cpu纳米是什么意思

3. 什么是cpu制程16nm

4. CPU内部是如何运行的

5. cpu型号后面的字母什么意思

6. cpu架构是什么

7. cpu线程多有什么好处

8. CPU的处理技术有哪些

Ⅶ 为什么近几年cpu的ghz提升不高

MIT 研究人员最近在实验室利用Graphene(石墨烯)制造出了新型的信号倍增器。 这种信号倍增器能够利用很少的能量产生很纯净的信号,未来几年可以应用于CPU制造,有望将CPU频率从现在的几GHz 提高到 500 - 1000GHz。

Graphene(石墨烯) 是一种2004年发现的新型材料,是一种“单层石墨”组成的具有等角六边形状的完美的二维结构晶体(是目前已知的唯一一种能在绝对零度以上克服热力学涨落而存在的完美单原子层二维结构). 它具有很多奇特的性质,成为近几年来材料科学上的研究热点。此前,在2008年,美国Rice大学曾利用该材料在实验室制造出了新型的内存原型,可以用于制造<10nm的立体式超大容量内存(TB级), 同时 比传统的内存省电100万倍; MIT此次的研究成果有着巨大的潜在应用价值,特别是可以替代传统的半导体器件,用于制造超高效能的芯片上的应用令人十分期待。

不过目前最大的阻碍是石墨烯的造价,它是目前地球上最昂贵的材料之一,一块可以放在一根头发尖端的石墨烯样品就高达1000美元 (Scientific America, 2008.4)。 相信未来几年随着更廉价的制造工艺的应用, 石墨烯的价格将会大大下降,到时这种神奇的材料将发挥巨大的威力。

Ⅷ intel的cpu14nm制程是什么意思

制程14nm指CPU晶体管门电路为14纳米。

CPU nm指的是制造CPU或GPU的制程,或指晶体管门电路的尺寸,单位为纳米(nm)。目前主流的CPU制程已经达到了14-32纳米,更高的在研发制程甚至已经达到了7nm或更高。

越小的nm表示更先进的制造工艺,更先进的制造工艺可以使CPU与GPU内部集成更多的晶体管,使处理器具有更多的功能以及更高的性能。

更先进的制造工艺会减少处理器的散热设计功耗(TDP),从而解决处理器频率提升的障碍。

(8)处理器频率提升的障碍扩展阅读:

英特尔45纳米高K技术能将晶体管间的切换功耗降低近30%,将晶体管切换速度提高20%,而减少栅极漏电10倍以上,源极向漏极漏电5倍以上。这就为芯片带来更低的功耗和更持久的电池使用时间,并拥有更多的晶体管数目以及更小尺寸。

2007年,英特尔发布第一款基于45纳米的四核英特尔至强处理器以及英特尔酷睿2至尊四核处理器,带领世界跨入45纳米全新时代。

阅读全文

与处理器频率提升的障碍相关的资料

热点内容
怎么拆掉机油滤芯 浏览:842
海尔净水器更换ro膜 浏览:879
污水管子漏水怎么办 浏览:169
水处理运行加药浓度的计算 浏览:680
怎么检查反渗透 浏览:386
最受欢迎的超滤机 浏览:621
净水机进水管长什么样 浏览:888
智能饮水机怎么控制时间 浏览:837
安吉尔超滤膜滤芯的安装 浏览:504
汉兰达6at变速箱滤芯是哪里代工的 浏览:289
某城市污水处理厂工艺流程 浏览:561
豪沃重汽尿素滤芯在哪里图 浏览:745
杨子802空气净化器怎么样 浏览:374
插管式柴油滤芯怎么拆 浏览:430
废水是怎么生产的 浏览:476
即热饮水机的工作原理是什么 浏览:683
油烟净化器怎么维修 浏览:36
空气净化器和香薰怎么平衡 浏览:961
RO反渗透净水器怎么买 浏览:744
补的树脂牙黄 浏览:568