A. 苯如何去除
1、开窗通风,装修刚结束,污染肯定几倍、几十倍、甚至上百倍的超标,所以初期的一到两周,什么手段作用都不大,最好的办法就是开窗通风,尽快将室内主要污染物排放到室外。
2、经过第一步后,室内污染已经由几十倍、甚至上百倍的超标变成几倍,这时污染物散发进入缓慢的释放过程,无论你再怎么通风,也是不可能一下子去除的,可以采用如下一些方法:首先是花卉植物类,比如吊兰、仙人球、绿色植物等,这类植物都具有一定的吸味作用,可以消除空气中的有害物质。
3、可以选择一些光触媒,但要仔细考察,否则容易有二次污染。而且也要注意是否有毒副作用,是否会对家具等造成伤害(据说有些东西会导致家具变色),使用是否方便等。此阶段也要继续通风,换气。
(1)苯无水处理扩展阅读:
防治小知识
1、在进行室内装饰时一定要选择符合国家标准的油漆、涂料、胶黏剂和防水材料。
2、选择一些水性的木器漆,是防止和减少家庭室内装修苯污染的根本途径。
3、注意不要用油漆封墙底,这是严重污染室内环境的工艺,会造成长时间的苯污染问题。
4、由于在正常情况下,苯挥发比较快,装修后的居室不要立刻入住。
5、不使用那些用劣质的大芯板或密度板做的家具。它会长时间地大量释放甲醛或苯。
B. 苯进入污水处理厂后怎么办
污水复处理厂会根据苯的特性进行制处理,常用的处理材料为聚合氯化铝铁。
处理方法:
1、使用前,将本产品按一定浓度(10-30%)投入溶矾池,注入自来水搅拌使之充分水解,静置至呈红棕色液体,再兑水稀释到所需浓度投加混凝。水厂亦可配成2-5%直接投加,工业废水处理直接配成5-10%投加。
2、投加量的确定,根据原水性质可通过生产调试或烧杯实验视矾花形成适量而定,制水厂可以原用的其它药剂量作为参考,在同等条件下本产品与固体聚合氯化铝用量大体相当,是固体硫酸铝用量的1/3-1/4。如果原用的是液体产品,可根据相应药剂浓度计算酌定。大致按重量比1:3而定。
3、使用时,将上述配制好的药液,泵入计量槽,通过计量投加药液与原水混凝。
4、一般情况下当日配制当日使用,配药需要自来水,稍有沉淀物属正常现象
5、根据原生产用按:固体:清水=1/5左右,先混合溶解后,再加水稀释至含量2~3%的溶液即可。
6、生产用按:固体:清水=1/5左右,先混合溶解后,再加水稀释至含量2~3%的溶液即可。
C. 化学试验中各种“无水溶剂”的处理方法
常用有机溶剂无水处理
1丙酮:沸点56.2℃,折光率1.358 8,相对密度0.789 9。
普通丙酮常含有少量的水及甲醇、乙醛等还原性杂质。其纯化方法有: ⑴于250mL丙酮中加入2.5g高锰酸钾回流,若高锰酸钾紫色很快消失,再加入少量高锰酸钾继续回流,至紫色不褪为止。然后将丙酮蒸出,用无水碳酸钾或无水硫酸钙干燥,过滤后蒸馏,收集55~56.5℃的馏分。用此法纯化丙酮时,须注意丙酮中含还原性物质不能 太多,否则会过多消耗高锰酸钾和丙酮,使处理时间增长。
⑵将100mL丙酮装入分液漏斗中,先加入4mL10%硝酸银溶液,再加入
3.6mL1mol/L氢氧化钠溶液,振摇10min,分出丙酮层,再加入无水硫酸钾或无水硫酸钙进行干燥。最后蒸馏 收集55~56.5℃馏分。此法比方法⑴要快,但硝酸银较贵,只宜做小量纯化用。
2、苯:沸点80.1℃,折光率1.501 1,相对密度0.87865。
普通苯常含有少量水和噻吩,噻吩和沸点84℃,与苯接近,不能用蒸馏的方法除去。
噻吩的检验:取1mL苯加入2mL溶有2mg吲哚醌的浓硫酸,振荡片刻,若酸层号蓝绿色,即表示有噻吩存在。
噻吩和水的除去:将苯装入分液漏斗中,加入相当于苯体积七分之一的浓硫酸,振摇使噻吩磺化,弃去酸液,再加入新的浓硫酸,重复操作几次,直到酸层呈现无色或淡黄色并检验无噻吩为止。
将上述无噻吩的苯依次用10%碳酸钠溶液和水洗至中性,再用氯化钙干燥,进行蒸馏,收集80℃的馏分,最后用金属钠脱去微量的水得无水苯。 氯仿
沸点61.7℃,折光率1.445 9,相对密度1.483 2。
氯仿在日光下易氧化成氯气、氯化氢和光气(剧毒),故氯仿应贮于棕色瓶中。市场上供应的氯仿多用1%酒精做稳定剂,以消除产生的光气。氯仿中乙醇的检验可用碘仿反应;游离氯化氢的检验可用硝酸银的醇溶液。
除去乙醇可将氯仿用其二分之一体积的水振摇数次分离下层的氯仿,用氯化
钙干燥24h,然后蒸馏。
另一种纯化方法:将氯仿与少量浓硫酸一起振动两三次。每200mL氯仿用10mL浓硫酸,分去酸层以后的氯仿用水洗涤,干燥,然后蒸馏。
除去乙醇后的无水氯仿应保存在棕色瓶中并避光存放,以免光化作用产生光气。 二氯甲烷
沸点40℃,折光率1.424 2,相对密度1.326 6。
使用二氯甲烷比氯仿安全,因此常常用它来代替氯仿作为比水重的萃取剂。普通的二氯甲烷一般都能直接做萃取剂用。如需纯化,可用5%碳酸钠溶液洗涤,再用水洗涤,然后用无水氯化钙干燥,蒸馏收集40~41℃的馏分,保存在棕色瓶中。
3、二氧六环:沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。
二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。
然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏 ,压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。 二硫化碳
沸点46.25℃,折光率1.631 9,相对密度1.2632。
二硫化碳为有毒化合物,能使血液神经组织中毒。具有高度的挥发性和易燃性,因此,用时应避免与其蒸气接触。
对二硫化碳纯度要求不高的实验,在二硫化碳中加入少量无水氯化钙干燥几小时,在水浴55℃~65℃下加热蒸馏、收集。如需要制备较纯的二硫化碳,在试剂级的二硫化碳中加入0.5%高锰酸钾水溶液洗涤三次。除去硫化氢再用汞不断振荡以除去硫。最后用2.5%硫酸汞溶液洗涤,除去所有的硫化氢(洗至没有恶臭为止),再经氯化钙干燥,蒸馏收集 。 DMFN,N-二甲基甲酰胺 沸点149~156℃,折光率1.430 5,相对密度0.948 7。无色液体,与多数有机溶剂和水可任意混合,对有机和无机化合物的溶解性能较好。 N,N-二甲基甲酰胺含有少量水分。常压蒸馏时有些分解,产生二甲胺和一氧化碳。在有酸或碱存在时,分解加快。所以加入固体氢氧化钾(钠)在室温放置数小时后,即有部分分解。因此,最常用硫酸钙、硫酸镁、氧化钡、硅胶或分子筛干燥,然后减压蒸馏,收集76℃/4800Pa(36mmHg)的馏分。其中如含水较多时,可加入其1/10体积的苯,在常压及80℃以下蒸去水和苯,然后再用无水硫酸镁或氧化钡干燥,最后进行减压蒸馏。纯化后的N,N-二甲基甲酰胺要避光贮存。
N,N-二甲基甲酰胺中如有游离胺存在,可用2,4二硝基氟苯产生颜色来检查。
DMSO(结构简式:(CH3)2-S-O) 二甲基亚砜
沸点189℃,熔点18.5℃,折光率1.4783,相对密度1.100。二甲基亚砜能与水混合,可用分子筛长期放置加以干燥。然后减压蒸馏,收集
76℃/1600Pa(12mmHg)馏分。蒸馏时,温度不可高于90℃,否则会发生歧化反应生成二甲砜和二甲硫醚。也可用氧化钙、氢化钙、氧化钡或无水硫酸钡来干燥,然后减压蒸馏。也可用部分结晶的方法纯化。
二甲基亚砜与某些物质混合时可能发生爆炸,例如氢化钠、高碘酸或高氯酸镁等应予注意。 乙醇
沸点78.5℃,折光率1.361 6,相对密度0.789 3。
制备无水乙醇的方法很多,根据对无水乙醇质量的要求不同而选择不同的方法。
若要求98%~99%的乙醇,可采用下列方法:
⑴利用苯、水和乙醇形成低共沸混合物的性质,将苯加入乙醇中,进行分馏,在64.9℃时蒸出苯、水、乙醇的三元恒沸混合物,多余的苯在68.3与乙醇形成二元恒沸混合物被蒸出,最后蒸出乙醇。工业多采用此法。
⑵用生石灰脱水。于100mL95%乙醇中加入新鲜的块状生石灰20g,回流3~5h,然后进行蒸馏。
若要99%以上的乙醇,可采用下列方法:
⑴在100mL99%乙醇中,加入7g金属钠,待反应完毕,再加入27.5g邻苯二甲二乙酯或25g草酸二乙酯,回流2~3h,然后进行蒸馏。
金属钠虽能与乙醇中的水作用,产生氢手和氢氧化钠,但所生成的氢氧化钠又与乙醇发生平衡反应,因此单独使用金属钠不能完全除去乙醇中的水,须加入过量的高沸点酯,如邻苯二甲酸二乙酯与生成的氢氧化钠作用,抑制上述反应,从而达到进一步脱水的目的。
⑵在60mL99%乙醇中,加入5g镁和0.5g碘,待镁溶解生成醇镁后,再加入900mL99%乙醇,回流5h后,蒸馏,可得到99.9%乙醇。
由于乙醇具有非常强的吸湿性,所以在操作时,动作要迅速,尽量减少转移次数以防止空气中的水分进入,同时所用仪器必须事前干燥好。 乙醚
沸点34.51℃,折光率1.352 6,相对密度0.713 78。普通乙醚常含有2%乙醇和0.5%水。久藏的乙醚常含有少量过氧化物
过氧化物的检验和除去:在干净和试管中放入2~3滴浓硫酸,1mL2%碘化钾溶液(若碘化钾溶液已被空气氧化,可用稀亚硫酸钠溶液滴到黄色消失)和1~2滴淀粉溶液,混合均匀后加入乙醚,出现蓝色即表示有过氧化物存在。除去过氧化物可用新配制的硫酸亚铁稀溶液(配制方法是FeSO4?H2O60g,100mL水和6mL浓硫酸)。将100mL乙醚和10mL新配制的硫酸亚铁溶液放在分液漏斗中洗数次,至无过氧化物为止。
醇和水的检验和除去:乙醚中放入少许高锰酸钾粉末和一粒氢氧化钠。放置后,氢氧化钠表面附有棕色树脂,即证明有醇存在。水的存在用无水硫酸铜检验。先用无水氯化钙除去大部分水,再经金属钠干燥。其方法是:将100mL乙醚放在干燥锥形瓶中,加入20~ 25g无水氯化钙,瓶口用软木塞塞紧,放置一天以上,并间断摇动,然后蒸馏,收集33~ 37℃的馏分。用压钠机将1g金属钠直接压成钠丝放于盛乙醚的瓶中,用带有氯化钙干燥管的软木塞塞住。或在木塞中插一末端拉成毛细管的玻璃管,这样,既可防止潮气浸入 ,又可使产生的气体逸出。放置至无气泡发生即可使用;放置后,若钠丝表面已变黄变粗时,须再蒸一次,然后再压入钠丝。 乙酸乙酯
沸点77.06℃,折光率1.372 3,相对密度0.900 3。
乙酸乙酯一般含量为95%~98%, 含有少量水、乙醇和乙酸。可用下法纯化:于1000mL乙酸
乙酯中加入100mL乙酸酐,10滴浓硫酸,加热回流4h,除去乙醇和水等杂质,然后进行蒸
馏。馏液用20~30g无水碳酸钾振荡,再蒸馏。产物沸点为77℃,纯度可达以99%。 甲醇
沸点64.96℃,折光率1.328 8,相对密度0.791 4。
普通未精制的甲醇含有0.02%丙酮和0.1%水。而工业甲醇中这些杂质的含量达0.5%~1%。
为了制得纯度达99.9%以上的甲醇,可将甲醇用分馏柱分馏。收集64℃的馏分,再用镁去水(与制备无水乙醇相同)。甲醇有毒,处理时应防止吸入其蒸气。 石油醚
石油醚为轻质石油产品,是低相对分子质量烷烃类的混合物。其沸程为30~150℃,收集的温度区间一般为30℃左右。有30~60℃,60~90℃,90~120℃等沸程规格的石油醚。其中含有少量不饱和烃,沸点与烷烃相近,用蒸馏法无法分离。
石油醚的精制通常将石油醚用其体积的浓硫酸洗涤2~3次,再用10%硫酸加入高锰酸钾配成的饱和溶液洗涤,直至水层中的紫色不再消失为止。然后再用水洗,经无水氯化钙干燥后蒸馏。若需绝对干燥的石油醚,可加入钠丝(与纯化无水乙醚相同)。 吡啶
沸点115.5℃,折光率1.509 5,相对密度0.981 9。
分析纯的吡啶含有少量水分,可供一般实验用。如要制得无水吡啶,可将吡啶与粒氢氧化钾(钠)一同回流,然后隔绝潮气蒸出备用。干燥的吡啶吸水性很强,保存时应将容器口用石蜡封好。
二氧六环
沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。
二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏 ,压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。
D. 废水中的苯环如何破除
如何破解高浓废水?用高效催化氧化处理工艺
:一、高浓度废水背景概述
高浓度难降解废水越来越多,与此同时随着生活水平的提高,环保意识增强,人们对难降解的有机物在环境中的迁移、变化越来越关注,然而高浓度难降解有机污染物的处理,是废水处理的一个难点,难以用常规工艺(如混凝、生化法)处理,这是因为?
一、是此类废水浓度高,CODcr一般为数万mg/L,高的甚至达到十多万mg/L以上;
二、是其中所含是污染物主要是芳烃化合物,BOD/COD很低,一般在0.1以下,难以生物降解;
三、是污染物毒性大,许多物质被列入环境污染物黑名单,如苯胺、硝基苯类等;
四、是无机盐含量高,达数万甚至十多万以上。因此开发高浓度难降解有机废水的有效处理技术迫在眉睫。常温常压下的新型高效催化氧化技术就是在这种背景下应运而生的。
二、高效催化氧化原理
新型高效催化氧化的原理就是在表面催化剂存在的条件下,利用强氧化剂——二氧化氯在常温常压下催化氧化废水中的有机污染物,或直接氧化有机污染物,或将大分子有机污染物氧化成小分子有机污染物,提高废水的可生化性,较好地去除有机污染物。在降解COD的过程中,打断有机物分子中的双键发色团,如偶氮基、硝基、硫化羟基、碳亚氨基等,达到脱色的目的,同时有效地提高BOD/COD值,使之易于生化降解。这样,二氧化氯催化氧化反应在高浓度、高毒性、高含盐量废水中充当常规物化预处理和生化处理之间的桥梁。高效表面催化剂(多种稀有金属类)以活性炭为载体,多重浸渍并经高温处理。
ClO2在常温下是黄绿色的类氯性气体,溶于水中后随浓度的提高颜色由黄绿色变为橙红色。其分子中具有19个价电子,有一个未成对的价电子。这个价电子可以在氯与两个氧原子之间跳来跳去,因此它本身就像一个游离基,这种特殊的分子结构决定了ClO2具有强氧化性。ClO2在水中发生了下列反应:
ClO2 +H2O→HClO3+HCl
ClO2→ClO2 +O2
ClO2+ .HO→HCl+HClO
HClO→O2 +H2O
HClO2+ Cl2 +H2O→HClO3+HCl
氯酸和亚氯酸在酸性较强的溶液里是不稳定的,有很强的氧化性,将进一步分解出氧,最终产物是氯化物。在酸性较强的条件下,二氧化氯回分解并生成氯酸,放出氧,从而氧化、降解废水中的带色基团与其他的有机污染物;而在弱酸性条件下,二氧化氯不易分解污染物而是直接和废水中污染物发生作用并破坏有机物的结构。因此,pH值能影响处理效果。
从上式可以看出,二氧化氯遇水迅速分解,生成多种强氧化剂——HClO3、HClO2、Cl2、H2O2等,并能产生多种氧化能力极强的活性基团(即自由基),这些自由基能激发有机物分子中活泼氢,通过脱氢反应生成R*自由基,成为进一步氧化的诱发剂;还能通过羟基取代反应将芳烃上的——SO3H、——NO2等基团取代下来,生成不稳定的羟基取代中间体,此羟基取代中间体易于发生开环裂解,直至完全分解为无机物;此外ClO2还能将还原性物质如S2—等氧化。二氧化氯的分解产物对色素中的某些基团有取代作用,对色素分子结构中的双键有加成作用。因此,二氧化氯可以很好的氧化分解水中的酚、氯酚、硫醇、仲胺、叔胺等难降解有机物和硫化物、铁、锰等无机物。
二氧化氯作催化剂的催化氧化过程对含有苯环的废水有相当好的降解作用,COD的去除率也相当高。但在有机物质的降解过程中,有一些中间产物产生,主要有:草酸、顺丁烯二酸、对苯酚和对苯醌等,这就造成了COD的去除率相对较低,但其B/C比即可生化性大大提高。
三、氧化剂制备
二氧化氯采用现场制备的方法,在塔式喷淋反应器内,用氯酸钠与盐酸在催化剂存在的条件下反应,生成二氧化氯,反应方程式如下:
NaClO3+HCl → NaCl +ClO2+Cl2
反应过程是在射流作用下使反应器形成负压,使原料经转子流量计自动吸入反应器,反应生成二氧化氯,最终被射流带入水体中。负压条件可使操作过程比较安全,而且二氧化氯不会外泄,操作环境无异味。在本反应中,可利用催化剂作用,减少氯气的产生,提高二氧化氯的产率。
四、设计与应用
(一)催化氧化的处理工艺
一般催化氧化的处理工艺为:废水→物化前处理→催化氧化→配水→生化
工艺说明如下:
⑴前处理采用混凝、沉淀、气浮、微电解、中和、预曝气等物化处理方法。经过这些物化处理,去除悬浮物,降低了废水的COD,调节了pH值,使废水能更适合进行催化氧化;
⑵催化氧化过程中降低了一部分COD,提高了B/C,使之能更好地进行生化处理,在物化与生化处理之间充当桥梁作用;
(3)催化氧化塔出水进行配水是为了降低含盐量,使之能更好地进行生化处理;
(4)生化处理的主要目的是进一步降低COD,最大限度地去除有机污染。
(二)催化氧化的处理效果
COD去除率≥70% ;色度去除率≥95 ;挥发酚去除率≥99% ;苯氨类去除率≥95%;硝基苯类去除率≥95% ;氰化物去除率≥99%。
五、铁碳微电解工艺介绍:
微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法。它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。当系统通水后,设备内会形成无数的微电池系统,在其作用空间构成一个电场。在处理过程中产生的新生态[H] 、Fe2+ 等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3+ ,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的吸附能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子。
工作原理:基于电化学、氧化- 还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理。该法具有适用范围广、处理效果好、成本低廉、操作维护方便,不需消耗电力资源等优点。铁碳微电解填料用于难降解高浓度废水的处理可大幅度地降低COD和色度,提高废水的可生化性,同时可对氨氮的脱除具有很好的效果
铁碳-芬顿反应器可通过催化氧化方式提高污水的可生化性。
1894年,法国人H,J,HFenton发现采用Fe2++H2O2体系能氧化多种有机物。后人为纪念他将亚铁盐和过氧化氢的组合称为Fenton试剂,它能有效氧化去除传统废水处理技术无法去除的难降解有机物,其实质是H2O2在Fe2+的催化作用下生成具有高反应活性的羟基自由(•OH) •OH可与大多数有机物作用使其降解。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(•OH)处理有机物的技术。近年来,越来越多的研究者把Fenton试剂同别的处理方法结合起来,如生物处理法、超声波法、混凝法、沉淀法,活性炭法等。
工作原理及主要特点
芬顿试剂为常用的催化试剂,它是由亚铁盐和过氧化物组成,当PH值足够低时,在亚铁离子的催化作用下,过氧化氢会分解产生OH˙,从而引发一系列的链反应。芬顿试剂在水处理中的作用主要包括对有机物的氧化和混凝两种作用。
氧化作用:芬顿试剂之所以具有非常高的氧化能力,是因为在Fe2+离子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能够分解产生羟基自基OH•。同其它一些氧化剂相比,羟基自由基具有更高的氧化电极电位,因而具有很强的氧化性能。芬顿试剂处理难降解有机废水的影响因素根据上述芬顿试剂反应的机理可知,OH•是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH]决定了OH•的产量,因而决定了与有机物反应的程度。
电化学作用:铁碳和电解质溶液接触时,形成以铁碳为两极的原电池。其中碳极的电位高,为阴极,而铁极的电位低,为阳极。在废水中,电化学腐蚀作用可以自动进行。由于Fe2+的不断生成能有效克服阳极的极化作用,从而促进整个体系的电化学反应,使大量的Fe进入溶液,具有较高化学还原活性。电极反应所产生的新生态,能与溶液中许多组分发生氧化还原反应。同时铁是活泼金属,它的还原能力可使某些组分还原为还原态。
过滤吸附及共沉淀作用:由铁屑和碳粒共同构成的内电解反应柱具有良好的过滤作用,反应生成的胶体不但可以强化过滤吸附作用,而且产生新的胶粒。其中心胶核是许多Fe(OH)聚合而成的有巨大比表面积的不溶性粒子。易于裹挟大量的有害物质,并可和多种金属发生共沉淀作用,达到去除的目的。
电泳作用:在微原电池周围电场的作用下,废水中以胶体状态存在的污染物可在很短的时问内完成电泳沉积作用。即带电的胶粒在静电引力和表面能的作用下,向带有相反电荷的电极移动,附集并沉积在电极上而得以去除。
E. 苯试剂无水处理的方法
加氯化钙干燥过夜,滤除氯化钙,蒸馏,收集80度馏分。若要绝对干燥再加入钠丝,干燥过夜。
F. 苯用什么可以消除
苯的消除方法:
1、植物消除法(吊兰、芦荟)
吊兰、芦荟、虎尾兰能大量吸收室内甲醛等污染物质,消除并防止室内空气污染;1,经常保持良好的通风以加强挥发。室内多摆点花卉植物(芦荟,吊兰,常春藤,仙人掌等等)及活性炭(包括家具里面)等等以吸收毒气。
2,经常保持良好的通风以加强挥发。
3,吸附法(活性炭),常用的固体吸附剂有焦炭和活性炭等,其中应用最为广泛的是活性炭。活性炭对对苯、甲苯、二甲苯、乙醇、乙醚、煤油、汽油、苯乙烯、氯乙烯等物质都有吸附功能。
吸附是一种固体表面现象。它是利用多孔性固体吸附剂处理气态污染物,使其中的一种或几种组分,在固体吸附剂表面,在分子引力或化学键力的作用下,被吸附在固体表面,从而达到分离的目的。
笨的消除方法,点此到达链接地址:
G. 甲苯如何无水处理
加入无水氯化钙,静置过夜。滤除氯化钙后用彻底干燥的蒸馏装置蒸馏,收集110~111度馏分。若要绝对干燥,可再加入钠屑,用带氯化钙干燥管的塞子塞住后静置24小时。
H. 如何处理含苯的废水
看论文里面有铁碳-微电解的方法除含苯环类有机物的论文,不知道实例可行性怎么样,你可以去查询下相关文章
I. 氯苯除水的方法
前言随着经济的发展,社会的进步以及人民生活水平不断提高,人们对环境污染日益重视,因此,对环境要求也愈益提高.在环境污染中,工业废水的污染影响最大.水污染会对环境的生态系统造成很大危害,并使经济严重受损.我国水污染状况十分严重,水污染已成为我国经济与社会发展的制约因素.据专家预测,我国每年由于水污染造成的直接经济损失约150亿元,在19852000年问水污染造成的损失将达2735亿元.我国化工污染治理水平与发达国家相比差距很大.废水治理率在1990年仅为25.7,达标率为6,而发达国家在70年代末治理事已达95,达标率&;95.在技术方面我国化工污染治理主要停留在末端治理上,对难生物降解的有机废水缺乏有效可行的治理技术,节能型的治理技术开发更少,而发达国家污染治理技术已日臻完善,采取预防为主的技术路线,开发多种节能型治理技术并应用到工业生产中.我们应当从中得到借鉴,努力提高污染治理水平,以改善我们的生活环境.氯苯是一种重要的化工原料和有机中间体,因此在许多化工产品生产中都可能产生含氯苯废水.氯苯的毒性比苯还大,对环境的危害很大.它对人能引起急性或慢性神经障碍,会造成头晕,贫血,消化不总等症状.它已被美国,德国,荷兰等发达国家列入了有毒品优先监测物的名单中,我国也将之列为优先监测物.因此除了在氯苯生产及使用中要对其进行回收,循环使用外,还要在其排放前采用合适的方法进行处理,使废水中氯苯等有毒物质含量尽可能降至最低水平.本文根据文献调研资料,介绍了有关氯苯废水处理的一些方法,以供有关方面参考.二,氯苯废水的处理方法常见的氯苯废水处理方法包括吹脱,吸附,化学处理,生物处理以及膜法等方法.不同方法的处理程度不同,所需费用也不同,有时需要两者或两者以上相结合才能取得最佳效果.氯苯废水处理方法的选择或组合,取决于下列因素;(1)废水中氯苯的浓度(2)出水水质排放要求,也应考虑排放标准提高的因素一(3)氯苯废水处理的费用和可利用的土地面积.用某一种方法或多种组台的处理方法都可以产生所希望的出水,但其中只有一种是最经薪的,因此在最后选定工艺设计之前,应作详细的经济分析.下面分别介绍各种治理方法:1,吹脱法从水里把挥发性有机物()转移到空气中的物理过程叫作解吸或空气吹脱.吹脱是一种通用的节能,经济的处理方法.氯苯是易挥发性物质.当压缩空气不断吹人污水中使气液相充分接触,污水中的氯苯就不断地从液相逸出而进人气相.控制吹脱过程可以使污水中氯苯含量达到要求为止.同时,由于温度升高有助予氯苯挥发,所以在污水处理过程中应将污球加热到一定温度.吹脱一42—后的废水需要送往生化处理.此方法影响氯苯去除因素有:接触面积,氧苯溶解度,氯苯在水和空气中的扩鼓力以及承温等.所有这些因素除扩散力和温度之外.都受空气和水流量的影响.氯苯从水向空气中的转移效率取决于享剥定律常数.氯苯被空气吹脱去除的能力可以从享利定律常数算出.享和系敦越大涪解度越小,越容易用吹脱法除去.氯苯在20]时享利常数约为4.0×10?/.享利常数一般随温度的升高而增大.吹脱可采用将水喷洒于空气中的系统,如淋水塔和填料塔,或用扩散曝气或机械曝气将空气注入水中的系统.典型的填料塔如图所示,填料为结构粗糙ⅱ匿2气提系统工艺流程圈欧脱迭出的氯苯太部分冷凝回收,少量未冷凝的氧苯用活性炭吸跗回收,或将其热解或催化氧化.下面介绍几种催化氧化的方法据日本一公司研究,气体的氯化苯在400450℃条件下,在一种无钙的羟基磷灰石()上进行氧化反应可分解成和.其中是通过沉淀作用生成.氯苯中的在反应中以一的形式被捕获到中.而如果是由磷酸三钙水解制成时,那么它对氯化苯的分解不起作用.这是因为这两种的结晶度不同.另据德国专利介绍,将氯苯与60~10℃水蒸汽反应,催化剂为含2099.9(重量)的和8~0.1(重量)的的铝酸钙.氯苯与水比率为1,0.5~:4.主要产物为烯烃,:,.和.催化荆中可掺人,,,,,,.2,吸咐法一43一]一龚一收:~广..医当吸附剂固体表面与溶液接触时,由于表面张力不平衡,就会在固体表面聚积一层溶质分子.吸附分为物理吸附与化学吸附,在本过程中主要是物理吸附.物理吸附是由于固体表面张力引起的分子凝聚.一般说分子量最大的物质最容易被吸附.影响吸附速率因素有:吸附剂颗粒直径,溶液浓度,温度,值以及溶质分子结构,溶解度等.活性炭是最常用的吸附嗣.许多材料都可以做成活性炭.如术材,术质素,烟煤,褐煤以及石油残渣等.用挥发烟煤或褐煤制成的粒状活性炭在工业废水处理中得到了广泛的应用.用过的废活性炭还可以再生.再生的方法有加热,蒸汽汽提,溶弼萃取,酸或碱葶取以及化学氧化.一般氧苯废水采用加热再生.再生后炭置会损耗一部分.另外,再生中可能有孔径的变化和由于残留物质的沉积而丧失一部分孔因此再生后吸附能力也有变化.除了活性炭吸附外,还可采用树脯吸附.该法在70年代首先在欧美国家得到应用,并日益受到各国重视.人们对氯苯的树脂吸附进行了研究.美国的克莱因?乔纳森等人介绍,用苯乙烯一二乙烯苯之类的树脂对溶液中氯苯进行吸附.结果显示至少可回收9~95的氯苯.另外,在该树脂吸附与再生过程中,其吸附能力不变.树脂吸附后常用稀酸,稀碱,有机溶剂作脱附剂,脱附率通常在95以上,不产生二次污染.它具有比活性炭更高的选择性,并且适用范围很宽.废水中有机物浓度从数/至上万,均可用此法进行处理.有机废水经树脂吸附后,一般可达标,吸附率通常大于99,而且树脂的性能稳定,使用寿命长.该法操怍简便,能耗较低.随着新型吸附树脂的研究.应用会逐渐广泛.3,化学处理法用化学处理法可以把污染物处理成较易降解成较易吸附除去的终产物或中同产物.化学处理有以下几种方法:.(1)臭氧氧化.臭氧氧化可用于除去水中的氯化苯以及其它一些难降解的有机物.臭氧氧化能力很强.在水中分解产生原子氧和氧气,还可产生自由基?.?程活泼几乎可以和所有化学物质进行反应.臭氧对氯苯的氧化产物为有机酸和氯化物.用紫外线()照射配合,