① 岩石与单矿物铷-锶年龄测定
在计算年龄的(86.41)式中,锶同位素初始比值(87Sr/86Sr)i既是未知数又不能直接测定。为了解决这个问题,测定岩石和单矿物的铷-锶年龄有模式年龄和等时线年龄两种方法。模式年龄法是给试样假设一个初始比值,这个方法仅适用于一些年代较老、富铷贫锶的单矿物,如天河石、铯榴石、锂云母等,以及一些特殊情况。获得等时线年龄需要测定一组试样(5~6个以上),该组试样要求具有相同形成年龄和相同的锶同位素初始比,并且自岩石(或矿物)形成以来其Rb-Sr体系一直保持封闭状态。在满足这3个条件情况下,(86.40)式是一个直线方程,在87Sr/86Sr-87Rb/86Sr直角坐标图上该组试样将能联成一条直线,该直线称作Rb-Sr等时线,它在Y轴上的截距给出锶同位素的初始比值(87Sr/86Sr)i,它的斜率是b:
岩石矿物分析第四分册资源与环境调查分析技术
另外根据直线最佳拟合需要,构成一条等时线的试样点要求有合理的分布,即试样之间Rb/Sr比值应该有一定程度变化。一般来说,低Rb/Sr比试样比较容易获得,关键在挑选高Rb/Sr比试样,下面的公式可以帮助选择:
岩石矿物分析第四分册资源与环境调查分析技术
该公式依据当前Sr同位素的测定精度而定,Δ(Rb/Sr)表示试样间Rb/Sr比的最大差值,年龄t单位:Ma。
方法提要
按照等时线要求选择一组岩石或单矿物试样,氢氟酸+高氯酸溶样,在阳离子树脂交换柱上用不同浓度盐酸色层分离铷和锶,在热电离质谱计(TIMS)上用同位素稀释法测定铷、锶含量,得到87Rb/86Sr比值,同时计算出试样的87Sr/86Sr比值,最小二乘拟合计算等时线年龄,同时给出锶同位素初始比值,或仅计算单个试样模式年龄。除同位素比值测定精度等共性要求外,选择适应试样以及在稀释法测定中满足最佳稀释度要求是测定结果成败的关键。
本方法对测定精度要求:87Rb/86Sr比值相对误差1%~2%,87Sr/86Sr比值相对误差小于1×10-4,等时线年龄在100~1000Ma内,95%置信度,相对误差2%~5%。
仪器、设备与器皿
热电离质谱计MAT260、MAT261、MAT262、VG354、TRITON等相当类型。
点焊机质谱计的配套设备。
质谱计灯丝预热装置,质谱计的配套设备。
聚四氟乙烯烧杯10mL与30mL。
氟塑料(F46)试剂瓶500mL、1000mL与2000mL。
聚乙烯塑料洗瓶500~1000mL。
氟塑料(F46)滴瓶30mL。
氟塑料(F46)对口双瓶亚沸蒸馏器500mL。
石英试剂瓶2000mL。
石英亚沸蒸馏器。
石英减压亚沸蒸馏器。
石英交换柱内径6mm,高300mm,上部接内径20mm高110mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径6mm,高100mm,13或16支为一组。
氟塑料(PFA)密封溶样器15mL。
铂皿30mL,平底。
石英滴管。
石英量筒(杯)10mL、50mL。
硬脂玻璃量筒1000mL。
三角玻璃瓶250mL。
玻璃烧杯3000mL。
水纯化系统。
分析天平感量0.00001mg。
电热板(温度可控)。
超声波清洗器。
不锈钢恒温烘箱<300℃。
高速离心机。
聚乙烯或石英离心管。
微量取样器10μL与50μL。
器皿清洗
所有使用的氟塑料与石英器皿,用(1+1)优级纯盐酸和优级纯硝酸先后在电炉上于亚沸状态下各煮1h,去离子水冲洗后又用去离子水煮沸1h,再用超纯水逐只冲洗,超净工作柜中电热板上烤干。第一次使用的新器皿在用酸煮沸前,需先用洗涤剂擦洗。铂皿清洗设专用烧杯、专用(1+1)优级纯盐酸煮沸。
试剂与材料
去离子水 二次蒸馏水再经Milli-Q水纯化系统纯化。
超纯水 去离子水经石英蒸馏器蒸馏。
超纯盐酸 用优级纯(1+1)盐酸经石英蒸馏器亚沸蒸馏,实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。
超纯硝酸 用优级纯(1+1)硝酸经石英蒸馏器亚沸蒸馏。实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。
超纯氢氟酸 用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。
超纯高氯酸 用优级纯高氯酸经石英蒸馏器减压亚沸蒸馏制备。
氢氧化钠标准溶液c(NaOH)≈0.3mol/L用分析纯固体氢氧化钠+去离子水配制,邻苯二甲酸氢钾标定;
丙酮 优级纯。
无水乙醇 分析纯。84Sr稀释剂 富集84Sr同位素的固体硝酸锶[Sr(NO3)2]。87Rb或85Rb稀释剂 富集87Rb或85Rb同位素的固体氯化铷(RbCl)。84Sr+87Rb(或85Rb)混合稀释剂溶液 溶液配制与浓度标定见附录86.2A。
固体硝酸锶[Sr(NO3)2]光谱纯,基准物质,保存在干燥器中。
固体氯化铷(RbCl)光谱纯,基准物质,保存在干燥器中。
NBS987碳酸锶(SrCO3) 国际同位素标准物质。
NBS607(或NBS70a)钾长石 国际标准物质。
GBW04411钾长石国家一级标准物质。
实验室专用薄膜(Parafilm)。
强酸性阳离子交换树脂 Bio RadAG50×8或Dowex50×8,或其他性能相似的或更好的树脂,200~400目。
阳离子树脂交换柱准备将约200g首次使用的200~400目AG50×8或Dowex50×8阳离子树脂置于石英烧杯中,用无水乙醇浸泡24h,倾出乙醇用去离子水漂洗,再用(1+1)优级纯盐酸浸泡24h,倾出盐酸后又用去离子水漂洗。最后转入已备好的石英柱中,使树脂床直径6mm,高100mm。待水淋干依次加30mL(1+1)优级纯盐酸和15mL超纯水淋洗,最后用10mL1.0mol/L超纯HCl平衡,待用。以后继续使用,同样用30mL(1+1)优级纯盐酸回洗,15mL超纯水淋洗,10mL1.0mol/L超纯HCl平衡。
铼带规格18mm×0.03mm×0.8mm。
试样准备
从同一火成岩岩体或同一火山岩层位中采集一组新鲜未蚀变的岩石试样,手标本大小,除去表层风化面或其他污染,粉碎至200目,按规则缩分至10g左右。采用一般化学分析方法(如原子吸收光谱)粗测Rb、Sr含量,根据(86.44)式或经验,从中挑选出5~6个Rb/Sr比值变化大的试样,待测年龄。
试样分解
称取30~50mg(精确至0.1mg)岩石或单矿物粉末试样,置于PFA氟塑料密封溶样器或铂皿中,按最佳稀释度要求加入84Sr+87Rb(或85Rb)混合稀释剂(精确至0.1mg),轻微摇晃令结成块的试样充分散开,加3mL超纯氢氟酸和几滴超纯高氯酸,在电热板上缓慢升温溶解(控制温度在120℃左右)。待试样完全分解后,蒸干,用少量6mol/L超纯盐酸冲洗器壁后再蒸干,温度升至180℃赶氟和多余高氯酸。用1mL1.0mol/LHCl溶解干涸物,将溶液倒入交换柱中。若发现试样溶液浑浊或存在明显残渣,表明试样分解不完全,则需要增加离心分离步骤。如果试样含铁量很高,也需要将试样溶液转入铂皿中放在电炉上于500℃下灼烧数分钟,冷却后用水溶解,离心分离提取清液上柱。
Rb-Sr分离:
试样溶液上柱后用1mL1.0mol/L超纯HCl清洗溶样器(或铂皿)器壁同样转入交换柱中,待溶液流干,加14mL1.0mol/L超纯HCl淋洗Li、Na、K、Fe等杂质元素,淋洗液弃去。加6mL1.0mol/L超纯HCl解析Rb,收集于10mL聚四氟乙烯烧杯中。然后用6mL2.5mol/L超纯HCl淋洗Mg、Ca、Al、Fe等,淋洗液弃去,继续用6mL2.5mol/L超纯HCl解析Sr,收集于10mL聚四氟乙烯烧杯中,蒸干。
用1mL1.0mol/LHCl将已蒸干的Rb、Sr分样重新溶解,分别倒入经过再生和用1mL1.0mol/LHCl平衡处理后的阳离子树脂柱中,按上述程序将Rb与Sr进一步纯化。蒸干解析液薄膜封盖,待质谱分析。
Rb、Sr同位素分析:
1)装样。Rb、Sr同位素分析采用双带源热电离质谱计,下面的操作以MAT261为例,其他型号质谱计类同。
灯丝铼带预处理将铼带用无水乙醇清洗,点焊机将铼带点焊在灯丝支架上,将已点好铼带的支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流强度1800℃温度下,每组带预烧15min,以除去铼带上杂质。
将离子源转盘上已烧好的铼带初步整形,依次取下电离带。一滴超纯水将纯化后的试样溶解,用微量取样器将溶液点滴在蒸发带中央,给蒸发带通电流,强度1A左右,使试样缓慢蒸干,以后逐步加大电流至带上白烟散尽,进一步升温至铼带显暗红后迅速将电流调至零,转到加下一个样。当试样全部装好后按原位置插上电离带,进一步给铼带整形,要求蒸法带与电离带两者彼此平行靠近,但又绝不能连到一起,两带间距离以0.7mm为宜。装上屏蔽罩,送入质谱计离子源中,抽真空。
2)Rb、Sr同位素测定。测定对象为金属离子流Sr+和Rb+。当离子源真空达到5×10-6Pa时打开分析室隔离阀,分别给电离带与蒸发带灯丝通电流缓慢升温,注意在加大电流过程中试样排气和真空下降情况,避免真空下降过快。在真空达到2×10-6Pa,电离带电流达到2A以上,蒸发带电流在1.5A左右,灯丝温度达到1000~1200℃时,将测量系统处于手动状态,在质量数88~84范围内寻找锶离子流,小心调节蒸发带电流使锶离子流达到足够强度(10-13~10-11A)并保持稳定。根据质谱计型号不同,分析采用多接收极同时接收或单接收极峰跳扫描依次接收锶同位素离子流。启动自动测量程序,系统采集锶同位素比值84Sr/86Sr、87Sr/86Sr、88Sr/86Sr数据,并以85Rb/86Sr比值监测铷的分离情况,当该比值大于10-4时,说明87Rb对87Sr/86Sr比值存在明显干扰,此时应适当降低带温度,在较低温度下停留一个时间,令电离温度稍低的铷蒸发殆尽,然后再升高温度继续测量锶同位素比值。每个试样采集4~6组(block)数据,每组数据由8~10次扫描组成,分别计算在加有稀释剂的试样中锶同位素的平均值和标准偏差。
铷的同位素分析与锶类似,但采集85Rb/87Rb数据时的温度较低,在1000℃左右(电离带电流1.5A以上,蒸发带电流越低越好。
3)Sr同位素比值直接测定。年轻海相碳酸盐的年龄测定仅需测定锶同位素比值,其他年轻岩浆岩在仅用于地球化学研究时也只需测定锶同位素比值,不需要测定铷、锶浓度。此种情况下,粗略称取相同量级的试样,不加稀释剂,采用相同化学分离程序分离和纯化锶,同样方法进行同位素分析,经质量分馏效应校正后直接得出试样的87Sr/86Sr比值。
② 阴离子交换柱装柱柱效提高方法
所谓的离子交换柱,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。离子交换柱技术在水处理领域中有广泛的应用。如水质软化、除盐、高纯水制取、工业废水处理、重金属及贵重金属回收等等。水质软化过程在锅炉等方面的广泛的应用。
离子交换柱的原理
采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:
1、阳离子交换树脂:R—H+Na+→R-Na+H+
2、阴离子交换树脂:R—OH+CL-→R-CL+OH+
阳、阴离子交换树脂总的反应式即可写成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。
3、混合离子交换柱(混床):混床是装阳、阴树脂按一定比例(一般为1:2,以便阳、阴树脂同时达到交换终点而同时再生)装入混合柱而成,实际上它组合成了水中的H+和OH-立即生成电离度很小的水分子(H2O),几乎不存在阳床或阴床交换时产生的逆交换现象,故可以使交换反应进行得十分彻底,因而混合床的出水水质优于阳、阴床串联组成的复床所能达到的水质,能制取纯度相当高的成品水。
③ 树脂柱是什么,用来干什么
离子交换柱主要是利用离子交换树脂中的离子与原水(液)中的某些离子进行交换而将其除去,使水(液)得到净化的方法。
1.树脂的选择和处理
在化学分析中应用最多的为强酸性阳离子交换树脂和强碱性阴离子交换树脂。使用时应当先过筛以除去太大和太小的颗拉,也可以用水泡胀后用筛在水中选取大小一定的颗粒备用。
一般商品树脂含有一定杂质,使用前必须进行净化处理。强碱性和强酸性阴阳离子交换树脂,通常用4mol/LHCl溶液浸泡1-2天,以溶解各种杂质,然后用蒸馏水洗涤至中性。如果需要钠型阳离子交换树脂,则用NaCl处理氢型阳离子交换树脂。
2.装柱
进行离子交换通常在离子交换柱中进行。离子交换柱一般用玻璃制成,装置交换柱时,先在交换柱的下端铺上一层玻璃丝,灌入少量水,然后倾入带水的树脂,为防止加试液时树脂被冲起,在柱的上端亦应铺一层玻璃纤维。交换枝装好后,再用蒸馏水洗涤,关上活塞,以备使用。应当注意不能使树脂露出水面,因为树脂露于空气中,当加入溶液时,树脂间隙中会产生气泡,而使交换不完全。
交换柱也可以用滴定管代替。
3.交换
将试液加到交换柱上,用活塞控制一定的流速进行交换。
4.洗脱
当交换完毕之后,一般用蒸馏水洗去残存溶液,然后用适当的洗脱液进行洗脱。在洗脱过程中、上层被交换的离子先被洗脱下来,经过下层未被交换的树脂时,又可以再度被交换。
阳离子交换树脂常采用HCl溶液作为洗脱液;阴离子交换树脂常采用NaCl或NaOH溶液作为洗脱液。洗脱之后的树脂已得到再生,用蒸馏水洗涤干净即可再次使用。
④ 树脂过高或过低对离子交换柱结果有何影响
影响树脂装填规整。
保持液面下是防止表层树脂干燥,没有交换效果还有水对树脂的冲击,造成树脂浮游,还有会带人空气,造成气穴,影响树脂装填规整,影响交换效果。
控制水的流量是保证水与树脂能有充分的接触时间完成交换,否则流量太快可能有部分水分子没有充分作用,达不到交换效果。
⑤ 离子交换柱的性能
国外糖厂离子交换柱的有效容积(装载树脂量)一般为3~10m3,直径2.3~3.3m,高3.3~4m,树脂床的高度0.6~2m。树脂柱为立式圆筒形结构,两端密封,能承受一定的工作压力。它通常用钢板焊接制成,内壁整体衬上耐酸、碱的橡胶层,小型树脂柱可全用不锈钢制造。 树脂柱总高度约为树脂层的两倍,以备树脂工作时体积膨胀和防止反洗时树脂被冲走。如果树脂的粒度较大,对通过液体的阻力较小,树脂层可较高,并相应缩小柱体的直径。但如树脂粒度较细,对液体的阻力较大,则树脂层不宜高,以免影响液体的通过,降低它的生产能力。有些装载细颗粒树脂的柱,树脂层的高度只约0.8m,但它的工作周期时间亦较短。
⑥ 植物提取物中 树脂柱在是做什么的
从植物中提取的数值可以用来化学分析中的色谱柱,他们能够对不同的容积表现出不同的吸附速度,最终得到我们想要的产品。
⑦ 阴阳离子交换树脂的阴阳离子交换树脂运行
阴阳离子交换树脂用于软化处理时运行效率由以下几个参数决定:
a) 所用再生剂的浓度和量;
b) 被处理水的总硬度和含量;
c)进水流经床层时的流速。
在自来水的软化中要求低再生水平和较高的除硬度的效果,因为能被接受的水质是通过喷淋蒸汽系统运行而得到的(在该系统内,原水与被完全软化的蒸汽掺混然后生产出自来水)。在酿造行业或食品加工用水制备中,出水水质要求硬度小于5ppm,这可以用每升树脂用70-80g的盐来获得。
在常规操作条件下,硬度泄漏值通常低于进水总硬度的1%,而工作交换容量也不受影响,除非进水中Na+(或其之一价离子)离子含量过高,大于可交换阳离子总数的25%。压降与颗粒分布、床层深度、交换柱空隙率、流速及流体粘度有关。任何影响这些参数的因素都将影响压降。
⑧ 2吨的反渗透膜用多大的树脂柱
2吨的反渗透膜用大概800的树脂柱
树脂柱,也叫树脂交换柱,也叫树脂交换器。树脂在化工工业中作为一种交换剂被广泛应用,其种类繁多,因此作用也很多。RO反渗透膜是由芳香族聚酰胺(脱盐层)、聚砜(疏松支撑层)、聚酯无纺布(基层)三个部分组合而成。渗透是正常的一种物理现象,含盐量比较少的这边的水分会往含盐量高的那边渗透,如果在含盐量高的那边给它施加压力,水分就会往相反方向流动,所以叫反渗透。RO膜的作用是去除水中的钙、镁离子、细菌、病毒、有机物(农药、激素)、无机物、重金属离子和放射性物质。一般在净水设备的第三级位置,起到处理污染物的作用。
⑨ 水的软化中交换柱的水流速度如果太快,对实验结果有什么样的影响
化水设备的软化流程
软化水技术广泛应用于我国的工农业生产和生活等各个领域,仅工业锅炉一项,我国就有近50万台,从近年来有关部门的可靠统计中却发现一个令人心痛的结果:由于水质不良造成锅炉的事故率达50%且呈上升趋势。经过全面综合分析表明,其中一个原因就是操作人员水平低,使软化水设备长期处于不正确或不经济的运行状态。提高操作人员的素质的努力又常常是事半功倍,耗时耗力难以解决根本问题。因而,最根本的解决办法在于寻求一种简便易用的软化水设备。
一、软化水设备的工作原理
软化水设备是专门清除水中的钙镁离子,有效率高达99%,同时也可以去除水中的藻类、固体悬浮物,使之处理后的水软化、清澈。
当含有硬度离子的原水通过软水器内树脂层时,水中的钙、镁离子被树脂交换吸附,同时等无知量释放出的钠离子。从软水器内流出的水就是去掉了硬度离子的软化水。
交换过程如下:
2RNa + Ca2+ = R2Ca + 2Na+
2RNa + Mg2+ = R2Mg + 2Na+
即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+。
当钠离子交换树脂实效之后,为恢复其交换能力,就要进行再生处理。再生剂为价廉货广的食盐溶液。
再生过程如下:
R2Ca + 2NaC1 = 2RNa + CaC12
R2Mg + 2NaC1 = 2RNa + MgC12
经上述处理,再生过程就是用盐箱中的食盐水冲洗树脂层,把树脂上的硬度离子再置换出来,随再生废液排出罐外,树脂就有恢复了软化交换的能力。
当水流过树脂层的时候,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变成了软水,这是软化水设备的工作过程。
当树脂上大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠同业流过树脂,此时溶液中的钠离子含量高,功能基团会释放出该买栗子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫做“再生”。
二、软化水设备的工作流程
由于实际工作的需要,软化水设备的标准工作流程主要包括:产水、反洗、吸盐、正洗、盐箱注水五个过程。
1、反洗:主要有两个作用,一是松动树脂层,使盐液与树脂层充分接触,使转换反应更彻底,二是冲洗掉被树脂拦截的悬浮物,这个过程一般需要5-15分钟左右。
2、吸盐:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要60分钟左右,实际时间受用盐量的影响。
3、正洗:为了将残留的盐彻底冲洗干净,要求用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为:5-15分钟。