导航:首页 > 耗材问题 > 氢化双酚A型环氧树脂制备

氢化双酚A型环氧树脂制备

发布时间:2023-08-27 15:44:25

A. 树脂的结构式

酚醛树脂
活性位有3个,临位和对位。下图示为临位(当酚醛比为1:1时)缩聚
继续增大甲醛用量会使对位相接而使链段间交联,形成网状结构。
反应为缩聚(加聚没有脱去小分子)。

环氧树脂环氧树脂按化学结构可大致分为以下几类。
(1)缩水甘油醚类其中的双酚A缩水甘油醚树脂简称为双酚A型环氧树脂,是应用最广泛的环氧树脂,其化学结构式为:

双酚F型环氧树脂,其化学结构式为:

双酚S型环氧树脂,其化学结构式为:

氢化双酚A型环氧树脂,其化学结构式为:

酚醛型环氧树脂,其化学结构式为:

脂肪族缩水甘油醚树脂,其化学结构式为:

溴代环氧树脂,其化学结构式为:

(2)缩水甘油酯类邻苯二甲酸二缩水甘油酯等,其化学结构式为:

(3)缩水甘油胺类其通式为:

其中四缩水甘油二氨基二苯甲烷:

(4)脂环族环氧树脂其化学结构式为:

(5)环氧化烯烃类其化学结构式为:

(6)新型环氧树脂近年来出现了一些新型环氧树脂,如海因环氧树脂,其化学结构式
为:

酰亚胺环氧树脂,其化学结构式为:

B. 制备环氧树脂的时候加入氢氧化钠的作用是什么,如果氢氧化钠不够会有什麽问题

加入氢氧化钠是为了与-CHOH-CH2-Cl反应脱去-Cl形成环氧基-(CH-CH2)O。如果氢氧化钠不够,则-CHOH-CH2-Cl会反应不完全。

C. 水性环氧的生产工艺,以及配方,注意事项

环氧树脂具有优良的物理、机械、电绝缘性能及对各种材料的粘接性能,广泛应用于涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料等领域¨ 。随着工业的发展及社会的进步,人们的环保意识逐渐增强,不含挥发性有机化合物(VOC)或少含VOC、以及不含有害空气污染物(HAP)的体系已成为新型材料的研究方向 。近年来,以水为溶剂或分散介质的水性环氧树脂越来越受到重视。水性环氧树脂通常是指以微粒或液滴形式分散在以水为连续相的分散介质中而配制的稳定分散体系。一般可分为水乳型环氧树脂胶液(环氧树脂水乳液)以及水溶性环氧树脂胶液(环氧树脂水溶液)两类,既保持了溶剂型环氧树脂的优点,还具有合理的固化时间并
有着很高的交联度和很大的粘度可调范围,操作性能好,施工工具可直接用水清洗,可与其它水性聚合物体系混合使用,以及价廉、无气味、VOC含量低、不燃,储存、运输和使用过程中安全性高等特点 。
随着生产技术的不断成熟和发展,水性环氧树脂的应用前景良好。国内外已研究和开发了很多新的品种,并将其不断地推广到各个相关领域 l。
1 水性环氧树脂的制备
水性环氧树脂制备方法主要有以下几种:
1.1 直接乳化法
直接乳化法又称机械法、直接法,通过球磨机、胶体磨、超声波振荡、高速搅拌,均质机乳化等手段将环氧树脂磨碎,在乳化剂水溶液的作用下,再通过机械搅拌将粒子分散于水中;或将环氧树脂和乳化剂混合,加热到适当的温度,在激烈的搅拌下逐渐加入水而形成乳液。可采用的乳化剂有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自制活性乳化剂 】。
机械法制备水性环氧树脂乳液的优点是工艺简单,所需乳化剂的用量较少,但乳液中环氧树脂分散相微粒的尺寸较大,约50/tm左右,粒子形状不规则且粒度分布较宽,所配得的乳液稳定性差,时间一长乳液就会分层,并且乳液的成膜性能也不是很好。
1.2 相反转法
相反转原指多组分体系中的连续相在一定条件下相互转化的过程,如在油/水/乳化剂体系中,当连续相由水相向油相(或从油相向水相)转变时,在连续相转变区,体系的界面张力最低,因而分散相的尺寸最小。通过相反转法将高分子树脂乳化为乳液,其分散相的平均粒径一般为1~2 ILm。
相反转法是一种制备高分子树脂乳液较为有效的方法,几乎可将所有的高分子树脂借助于外加乳化剂的作用并通过物理乳化的方法制得相应的乳液。用相反转法制备水性环氧树脂乳液的具体过程是在高速剪切作用下先将乳化剂和环氧树脂混合均匀,随后在一定的剪切条件下缓慢地向体系中加入蒸馏水,随着加水量的增加,整个体系逐步由油包水向水包油转变,形成均匀稳定的水可稀释体系。在这一过程中,水性环氧树脂乳液的许多性质会发生突变,如体系的粘度、导电性和表面张力等,通过测定体系乳化过程中的电导率和粘度的变化就可判断相反转是否完全。该乳化过程可在室温环境下进行,对于固体环氧树脂,则需要借助于少量有机溶剂或进行加热来降低环氧树脂的本体粘度,然后再进行乳化 -8l。
有研究按一定比例将环氧树脂和表面活性剂通过加热及过硫酸钾溶液催化,制得反应型环氧树脂乳化剂溶液,大大改善了乳化剂与环氧树脂的相容性。然后将双酚A型环氧树脂的乙二醇单乙醚溶液和反应型环氧树脂乳化剂按一定比例搅拌混合均匀,滴加蒸馏水至体系的粘度突然下降,此时体系的连续相由环氧树脂溶液相转变为水相,发生了相反转,继续高速搅拌一段U?I司后加入适量蒸馏水稀释到一定的浓度,制得水性环氧树脂乳液 l。
1.3 自乳化法
自乳化法,又称化学法,或化学改性法。在环氧树脂中,环氧基的存在使其具有较好的反应活性,因为环氧环为三元环,张力大,C、0电负性的不同使该三元环具有极性,容易受到亲核试剂或亲电试剂进攻而发生开环反应;分子骨架上所悬挂的羟基虽然具有一定反应活性,但由于空间位阻,其反应程度较差 。。。因此可在环氧树脂分子骨架中引入一定量的强亲水性基团,如磺酸基、羧酸基等酸性基团;胺基等碱性基团,聚醚等非离子基团。这些亲水性基团能帮助环氧树脂在水中分散,使改性树脂具有亲水亲油的两亲性能,当这种改性聚合物加水进行乳化时,疏水性高聚物分子链就会聚集成微粒,离子基团或极性基团分布在这些微粒的表面,由于带有同种电荷而相互排斥,只要满足一定的动力学条件,就可形成稳定的水性环氧树脂乳液,从而使所得的改性环氧树脂不用外加乳化剂即可自分散于水中形成乳液。所需亲水基团的最低数量与亲水基团的极性大小,树脂的结构以及平均相对分子质量有关。树脂的相对分子质量小,相对分子质量分布宽时,其水溶性较好。因为高相对分子质量的分子在水中的扩散速度慢,且其溶液的粘度也大,增加了分子运动的阻力。而分子间的互溶效应则可使相对分子质量分布宽时的溶液的水溶性得到改善。
如用相对分子质量为4 000~20 000的双环氧端基乳化剂与环氧当量为190的双酚A环氧树脂和双酚A混合,以三苯基膦化氢为催化剂进行反应,可制得含亲水性聚氧乙烯、聚氧丙烯链段的环氧树脂,该树脂不用#F;bu-~L化剂便可溶于水,且耐水性强⋯ 。
根据反应类型的不同,可将自乳化法分为以下几类:
1.3.1 醚化反应型
由亲核试剂直接进攻环氧环上的C原子即为醚化反应型。可用的方法有:将环氧树脂和对位羟基苯甲酸甲酯反应,而后水解、中和;将环氧树脂与巯基乙酸反应,而后水解、中和;将对位氨基苯甲酸与环氧树脂反应,产物可稳定分散于合适的胺/水}昆合溶剂中[12l~
1.3.2 酯化反应型
酯化反应型与醚化反应型不同的是氢离子先将环氧环极化,酸根离子再进攻环氧环,使其开环。可行的方法有:用不饱和脂肪酸酯化环氧树脂,再将所得产物与马来酸酐反应,引入极性基;或者将不饱和脂肪酸先与马来酸酐反应,所得中间产物与环氧树脂发生酯化反应,然后中和产物上未反应的羧基。
在较激烈反应条件下,环氧树脂可以和羧酸发生酯化反应,按化学计量加入二酸,可得到含一游离羧基的环氧酯,用有机胺中和即得稳定分散体:磷酸与环氧树脂反应生成环氧磷酸酯,由于溶液有利于放热反应进行,用环氧树脂溶液反应可得最好结果,磷酸最好与水和醇一起逐步加入溶液中,反应极易制得二酯,二酯在醇作用下易解离成单磷酯,用胺中和,可得不易水解的较稳定水分散体。环氧树脂与丙烯酸树脂发生酯基转移反应,或环氧树脂与丙烯酸单体溶液反应,丙烯酸通过酯键接枝于环氧树脂上,这两种改性方法所得的水乳体系,大量用作罐头内壁涂料。目前,环氧树脂磺化水性化的报道较少,低相对分子质量的含环氧基有机物,在亚硫酸氢钠作用下可以磺化,通过这种方法有可能将低相对分子质量的环氧树脂改性,使其水性化。
酯化法的缺点是酯化产物的酯键会随U?I司增加而水解,导致体系不稳定。为避免这一缺点,可将含羧基单体通过形成碳碳键接枝于高相对分子质量的环氧树脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸单体与环氧树脂在自由基引发剂(BPO)存在的条件下进行接枝聚合,将羧基引入环氧树脂骨架中,制得水性环氧树脂。并研究发现接枝位置为环氧分子链上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低于100% ,最后产物为未接枝的环氧树脂、接枝的环氧树脂和聚丙烯酸的混合物, 由于没有酯键,用碱中和,可得稳定的水乳液。引发剂用量至少为单体量的3%, 在自由基引发剂为单体量的3% ~15%范围内,接枝率与引发剂用量呈线性关系,但过多的引发剂导致单体的自聚,或为链终止所消耗,接枝率不能保持原来的增加趋势;用所得产物制得的乳液粒子的粒径随制备时引发剂用量的增加而变小。最后产物中未反应的环氧树脂比原来的环氧树脂平均相对分子质量要低,这是因为高相对分子质量的环氧树脂有更
佳的接枝率,在高相对分子质量的环氧树脂中(数均
相对分子质量约为10 000),大约有34个重复单元O H
l一(卜一CH厂CI{-_一CH厂0一, 则有34 x 5=170个氢原
子可被自由基离解而成为单体反应的起点,而如果使用的是低相对分子质量的环氧树脂,如数均相对分子质量为1 000左右, 则在环氧骨架上约有2个0H一0一CH厂Cl_卜CH厂一0一单元,那么只有1O个氢原子可作反应起点。由于这种接枝与通过酯键接枝于环氧骨架上不同,无需形成酯键,环氧官能基对其无影响,可用苯酚或苯甲酸将环氧官能基封端 。
1.3.4 开环接枝型
选羟基含量较高的环氧树脂作骨架材料,用不饱和脂肪酸进行酯化制成环氧酯,再以不饱和二元羧酸(酐)与环氧酯的脂肪酸上的双键进行自由基引发加成反应,以引进羧基。然后加碱中和,直接加水稀释即得水性环氧乳液。如可用亚麻油酸与环氧树脂制成环氧酯后,与马来酸酐进行自由基反应制备水性环氧树脂 。
这种方法制得的粒子较细,通常为纳米级,相反转法以及直接乳化法制得的粒子较大,通常为微米级。从此意义上讲,化学法虽然制备步骤多,不易操控,且成本高,但在某些方面仍具有实际意义。
1.4 固化剂乳化法
将多元胺固化剂进行扩链、接枝、成盐,使其成为具有亲环氧树脂分子结构的水分散型固化剂,同时它作为阳离子型乳化剂对环氧树脂进行乳化,两组分混合后可制成稳定的乳液。双酚A环氧树脂和过量的二乙烯三胺反应,形成胺封端的环氧树脂加成物,真空蒸馏除去多余的二乙烯三胺,再加入单环氧基化合物将氨基上的伯氢反应掉,最后加入乙酸中和,制成酸中和的环氧树脂固化剂。此固化剂可分散于水中,向其水溶液中直接加入环氧树脂或环氧树脂乳液,均可形成稳定的水乳化环氧一胺组合物,可配制水性常温固化清漆 。
2 水性环氧树脂体系的几个重要参数“
2.1 粒子大小及其分布
粒子大小及其分布对分散体系的性质及涂层的性质是非常关键的。涂层的干燥时间、涂层的透气性等参量随粒径增大而提高;涂层的光泽、耐水性、硬度、乳液与颜料的结合力、乳液的粘度及稳定性等参量随粒径增大而减小。而粒子大小及分布主要取决于制备方法、设备、乳化剂类型及用量等因素。粒子越小,膜的硬化过程越慢,膜的最终硬度越大;相反,较大粒子会加速涂层的硬化过程,但最终硬度较小。所以,若调节体系的粒子大小,使其具有一定分布,不仅可以保证膜快速硬化,又能保证膜的最终硬度。由水性化体系的固化过程可知:粒子大,其表面的固化剂浓度高,导致快速固化;然而,随着固化的进行,固化剂向微粒内部扩散的速度变慢,使粒子的内层来不及固化,导致固化不完全,降低了膜的最终硬度。相反,小粒子表面的固化剂浓度适中,固化速度慢,使固化剂有充分时间扩散到整个微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化剂浓度
乳化剂浓度对环氧树脂微粒化水基化体系性质的影响也是非常显著的,不仅影响粒子大小,而且也影响涂膜的性质,如膜的硬度。随着乳化剂浓度的增加,粒子平均尺寸变小,但当乳化剂浓度较大时(如15PHR),进一步增加乳化剂浓度,平均粒子尺寸减小得不明显。此外,乳化剂含量增加,涂层的硬度显著降低。因为乳液成膜是一个由O/W变为W/0的相反转过程,过多的乳化剂分散于涂膜中,导致膜的不均匀性;同时,乳化剂分散相起着增塑作用。
但可以想象,适量的乳化剂可以作为无机填料的表面处理剂,使无机填料与树脂具有良好的相容性,从而提高涂膜性质。
2.3 其它重要参数 ¨
水性环氧树脂乳液的稳定性也是一个重要参数。无论是外加乳化剂,还是自乳化环氧树Ji~?L液,都处于热力学不稳定状态,尤其是外加乳化剂型乳液(包括外加反应性乳化剂所得的自乳化乳液),仅有一定的贮存期。首先,环氧分子能被水解成a一二醇,它不与胺固化剂反应;其次,大多用非离子表面活性剂乳化环氧树脂,而由于非离子表面活性剂的浊点问题,一旦温度升高,聚醚和水的吸附量减少,即水化层厚度降低,液滴趋向于聚结成较大粒子,最终导致两相分离。通常环氧乳液在20℃时可贮存1年;而在40℃ ,3个月即发生相分离;6o℃时贮存,稳定期不到1个月。用固体或半固体状环氧树脂制
得的环氧乳液比用液体环氧树脂制得的乳液稳定性要好,这是因为固体环氧树脂可以制得粒径较小的乳液。对于自乳化环氧树脂乳液,温度上升,乳液也会沉淀,但一旦温度下降,经搅拌又可恢复原样,稳定性较好。确保乳液长期贮存稳定的最好方法是选择适宜的乳化剂(复合型乳化剂),避免极端温度(如低于0℃ ,或高于40℃)。乳液液滴的粒径和分布对乳液的稳定性也极为重要,小粒径和窄分布会大大增加乳液的稳定性。
此外,乳液流变特性的研究有助于指导施工过程。比较水基体系与有机溶剂体系的粘度与固含量的关系可见:水基体系的粘度更大,尤其是在高固含量时更是如此。这是因为水基体系中微粒表层的乳化剂与水形成强相互作用,导致体系的粘弹性增加所致。

1 水性环氧树脂乳液的制备
众所周知,环氧树脂的亲水亲油平衡值(HI B)在3左右,是一种不溶于水也难于乳化的亲油性聚合物。为使其乳
化形成稳定乳液,目前国内外最常用的方法可归结为外加乳化剂法及自乳化法。
1 1 外加乳化剂法
这是一种藉外加乳化剂使环氧树脂乳化而形成水包油型(O/W)乳液的方法。其最主要的实施方法包括直接乳化
法及相反转法。
(1)直接乳化法Ⅲ 又称机械法 可用球磨机、胶体磨或均
化器等先将环氧树脂磨碎成粉末,然后加入乳化剂水溶液,继而再通过强烈机械搅拌将树脂粒子分散于水中而成。也可将环氧树脂和乳化剂混合后加热到适当温度,在施以激烈机械搅拌后逐渐加入水而形成乳液。乳化剂通常采用较多的有聚氧化乙烯烷基醚(HI B值为10.8-16.5)及聚氧化乙烯烷基酯(HLB值为9.0-16.5)。目前国内外陆续有许多新的乳化剂被开拓应用,如利用双酚A环氧树脂在路易斯酸催化下与聚乙二醇的反应产物,环氧树脂,聚乙二醇与多元胺作用的加成产物等。直接乳化法最大特点就是工艺简单,乳化剂用量也较少,但所得乳液中作为分散相的环氧树脂微粒粒径较大(约50 m)且粒径分布较宽,形状也不规则,乳液稳定性及成膜性相对较差。影响这~ 方法的因素颇多,除乳化剂的选择外,高效搅拌及分散时温度控制都是十分重要的。
(2)相反转法 这是一种有效制备高聚物水乳液的方法,包括从油包水(W/O)到水包油(O/W )的相转变过程,
在此过程中乳液的黏度、导电性及表面张力等诸多性质均会发生突变。在室温高速剪切作用下先将液态环氧树脂与乳化剂均匀混合,然后继续在一定剪切作用下缓慢地逐步向其中加入蒸馏水,增加到一定水量后,即出现整个体系逐步由油包水型向水包油型的转变,而形成均匀稳定并可由水稀释的乳液。若选用高分子质量固体环氧树脂,则需要加少量有机溶剂并加热以降低其本黏度,继而再行转换和乳化。这一方法的影响因素也较多,除必须有高效的高速剪切分散的设备外,乳化剂的类型、分子质量大小、使用浓度及操作温度等,实际上都对相反转过程、粒径控制及分散乳化效果有着直接影响。近来有人 对其相反转过程流变行为及相态发展进行了研究,在相反转点附近,体系油水相的界面张力最
小,此时产生的乳液具有最小分散相尺寸。
1.2 自乳化法
又称化学修饰法,这是利用环氧树脂活性基团的反应活
性将亲水性基团或链段引入到环氧树脂分子上而进行化学修饰改性的方法。这种具有疏水及亲水两性的环氧树脂,有着良好的表面活性,无需添加乳化剂而具有自乳化作用,自行分散于水中形成稳定乳液。亲水性基团及链段的引入主要是充分利用了环氧树脂分子中活性环氧基及活泼的次甲基上氢原子进行的。当然对高分子质量环氧树脂而言,还有仲羟基,但其反应活性相对要低得多。
(1)与环氧基的反应_8 因环氧基有较大张力及极性,很易与亲核试剂及亲电试剂作用而开环,方便地引入亲
水性基团及链段。例如选用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物与环氧树脂反应,则氨基使环氧基开环得到相应含羧基、磺酸基的环氧树脂,再经与氨水等碱性化合行分散于水中,也可用此产物使纯环氧
树脂进行乳化。也有用羟基苯甲酸甲酯、巯基乙酸酯等小分子化合与环氧基反应,然后再进行酯基水解和中和而引入亲水基团的。有人将丙烯酸齐聚物与环氧树脂作用,藉羧基使环氧基开环而引入含多羧基基团的环氧树脂再继而用氨水中和成盐,分散于水中形成稳定乳液。这类反应因使环氧基消失,一般需加入三聚氰胺或氮基树脂等以利固化成膜。也有人选用端环氧基聚氧化乙烯或端环氧基聚氧化丙烯乳化剂及双酚A与双酚A环氧树脂在三苯基膦化氢催化下反应.巧妙得到分别含亲水性聚氧化乙烯及聚氧化丙烯链段并含有环氧基的改性环氧树脂,不仅具有很好水分散性,且成膜后具有良好耐水性。也有以端羟基聚氧化乙烯或端羟基聚氧化丙烯代替上述双环氧乳化剂与之反应的报道。
(2)与次甲基上氢的反应 ” 有人将环氧树脂溶于溶剂,加入引发剂及亲水性单体如丙烯酸或甲基丙烯酸,加
热使引发剂分解产生初级游离基,并进攻环氧树脂次甲基使其活化而产生碳游离基成为新的活性中心,它引发单体进行聚合而使环氧树脂成为含多羧基基团亲水链的产物,用氨水中和得到了良好分散于水的稳定乳液。在游离基反应中一般对环氧基影响不大,但也有人将环氧基先用苯酚或苯甲酸或磷酸等予以保护,反应完后再予以还原。当然保护基的选择应符合易于引入,形成的中间结构能经受所处后继反应条件,并能在反应结束后不损及分子其他结构的条件下除去。
研究表明,这类接枝环氧树脂中丙烯酸链段含量对乳液稳定性影响很大。
(3)与羟基的反应 对于分子质量较大的环氧树脂中的仲羟基,虽然反应活性不及前者,但仍可以通过其反应而引入亲水基团或链段。如有人使用磷酸与其反应形成单、双或三磷酸酯环氧,用氨水中和成盐而具亲水性。也有酸酐与之反应形脂肪酸环氧,也有将不饱和脂肪酸与之反应形成不饱和脂肪酸环氧酯,再通过双键作用与顺丁烯二酸酐反应而制成水性脂肪酸环氧的报道。
1 3 改性固化剂乳化法[. ]
除上述方法外还可采用改性固化剂乳化法,它不需要先
将环氧树脂改性和乳化,而在配制使用前与改性固化剂混合乳化,这种固化剂一般由多元胺固化剂进行加成扩链、接枝、成盐而制得,非极性及具有表面活性的基团和链段的引入,不仅改善了与其环氧树脂的相容性,而且对低分子质量液体树脂有良好乳化作用,因而同时兼有乳化及交联固化功能。
如将多乙烯多胺与单环氧或多环氧化物加成使大部分伯胺氢封闭,再用双酚A环氧树脂与之加成,达适当亲水亲油平衡值后与甲醛作用使伯胺氢羟甲基化。或将过量的多烯多胺与环氧树脂加成后,用脂肪族或芳香族单环氧化合物封闭其伯胺氢,以水(或水溶性有机溶剂)稀释后,以醋酸中和部分伯胺氢。封端的作用主要在于制约伯胺基上的氢的活性。
制备中控制好HLB值可保证其良好水分散性。
2 水性环氧树脂的固化机理[18,1 9j 1 、 、
水性环氧树脂乳液在配制时根据组成及成膜后性质的
不同要求,需调节环氧与固化剂 的摩尔比,当使用分子质量较大的固体环氧时,尚需加入乙二醇醚一类的成膜助剂。颜填料则可分别添加在环氧及固化剂内,最好质量相近。由于这是一种以溶有固化剂的水为连续相,环氧树脂为分散相的多相体系,涂装后水分在适当蒸汽压条件下会逐渐挥发。有人认为随水分大部分挥发,环氧颗粒相互接触形成球体紧密堆积而聚结,而含固化剂的剩余水分则填充于其间,继而固化剂不断扩散人环氧,二者相互作用而交联固化成膜,残余水分及其他添加助剂则扩散到膜表面挥发。但随着交联固化的进行,环氧颗粒内质量增大,黏度及玻璃化转变温度升高,会大大影响固化剂向内部扩散的速度,但速度过快并不利于成膜过程的进行,透射电镜测试也显示了其相应的两相
结构,初步成膜后其固化反应实际上继续进行,到完全固化需要持续一定时间。
由水的挥发,颗粒聚结,固化剂。扩散及交联固化成膜的反应机制充分说明,水分的挥发及固化剂扩散速度是极重要的技术关键,环氧分散相的粒径愈小,固化剂与环氧的相容性愈好,少量成膜助剂的使用及合适的水蒸发的控制手段都将直接影响成膜的过程及性质。陈声锐指出 水分的蒸发分2个阶段,先是流体状态时其蒸发速率恒定,二是成膜后水分需从内部扩散到表面蒸发速率较慢,并指出固化成膜时的温度、膜厚度及环境相对湿度皆制约着水分的蒸发。
3 有待改善的问题
以水性环氧树脂为基础的水性涂料具有环境污染小,对
许多基材包括潮湿基材都有良好附着力 可与水 泥砂浆或水性聚合物配合使用,操作方便,有很好的应用前景,但实践中还是有不少问题需要予以改善。
(1)由于水的蒸汽压及蒸发潜热皆比有机溶剂高,作为
涂料涂装后水的蒸发较慢,在低温及潮湿环境下更甚,微量水分的残留常造成涂膜表干时间延长,涂膜起泡或凹陷。
(2)由于水的冰点低,作为水性涂料,其冻融稳定性较溶
剂型为差。
(3)由于水的表面张力较大,作为水性涂料大大影响了
其对基材及添加的颜填料的润湿及附着。
(4)由于水的电导率高及乳化剂存在,易使涂装金属受
到一定腐蚀。

D. 光固化打印树脂比例

1.一种3D打印光固化树脂,其特征在于:包括质量百分含量为50-80%环氧树脂,质量百分含量为5-20%丙烯酸酯预聚体,质量百分含量为10-40%活性稀释剂,质量百分含量为
1-6%光引发剂,质量百分含量为2-15%填料,填料为刚性聚硅氧烷,其结构为:
刚性聚硅氧烷笼型结构作为骨架或支撑,其侧基有丙烯酸基团;
所述的丙烯酸酯预聚体为脂肪族丙烯酸酯、芳香族丙烯酸酯及超支化丙烯酸酯中的两种或三种的任意比例的组合物。
2.根据权利要求1所述的一种3D打印光固化树脂,其特征在于:所述的环氧树脂为芳香族环氧树脂、脂环族环氧树脂或者是它们的任意比例的混合物。
3.根据权利要求1所述的一种3D打印光固化树脂,其特征在于:所述的活性稀释剂为3-羟甲基-1-氧杂环丁烷、2-羟甲基氧杂环丁烷或者它们二种的任意比例的组合物。
4.根据权利要求1所述的一种3D打印光固化树脂,其特征在于:所述的光引发剂为安息香双甲醚、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮或三芳基六氟锑酸硫鎓盐、二芳基六氟磷酸碘鎓盐、三芳基六氟磷酸硫鎓盐或二芳基六氟锑酸碘鎓盐。
说明书全文
一种3D打印光固化树脂
技术领域
[0001] 本发明涉及光固化树脂技术领域,具体涉及一种3D打印光固化树脂。技术背景
[0002] 3D打印技术又称为增材制造技术,是根据所设计的3D模型,通过3D打印设备逐层增加材料来制造三维产品的技术。3D打印综合了数字建模技术、机电控制技术、信息技术、材料科学与化学等诸多领域的前沿技术,是快速成型技术的一种,被誉为“第三次工业革命”的核心技术。由于光固化树脂在固化过程中内部分子结构发生变化,产生了固化收缩,从而导致零件发生变形,影响精度。因此,开发一种树脂其固化过程收缩低,对降低零件的变形和提高成型精度具有很大的意义。
发明内容
[0003] 为了克服上述现有技术的缺点,本发明的目的在于提供一种3D打印光固化树脂,具有低收缩率,提高零件的成型精度。
[0004] 为了达到上述目的,本发明采用的技术方案为:
[0005] 一种3D打印光固化树脂,包括质量百分含量为50-80%环氧树脂,质量百分含量为5-20%丙烯酸酯预聚体,质量百分含量为10-40%活性稀释剂,质量百分含量为1-6%光引发剂,质量百分含量为2-15%填料,填料为刚性聚硅氧烷,其结构为:
[0006]
[0007] 刚性聚硅氧烷笼型结构作为骨架或支撑,从而降低材料的体积收缩率,并且由于其侧基有丙烯酸基团,能均匀分散在主体树脂中,并且与树脂相容性好,提高力学性能,而不会像普通无机填料那样虽然会降低收缩,但由于无机和有机相容性差导致力学性能降低。
[0008] 所述的环氧树脂为芳香族环氧树脂、脂环族环氧树脂或者是它们的任意比例的混合物。
[0009] 所述的丙烯酸酯预聚体为脂肪族丙烯酸酯、芳香族丙烯酸酯及超支化丙烯酸酯中的两种或三种的任意比例的组合物。
[0010] 所述的活性稀释剂为3-甲基-3-羟甲基氧杂环、3-羟甲基-1-氧杂环丁烷、2-羟甲基氧杂环丁烷或者它们中的二种或三种的任意比例的组合物。
[0011] 所述的光引发剂为安息香双甲醚、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮或三芳基六氟锑酸硫鎓盐、二芳基六氟磷酸碘鎓盐、三芳基六氟磷酸硫鎓盐或二芳基六氟锑酸碘鎓盐。
[0012] 本发明的有益效果:
[0013] 本发明采用刚性聚硅氧烷作为填料,能有效降低光固化树脂固化过程中的收缩,使得收缩率在原有配方基础上降低5倍左右,可解决现有光固化树脂在3D打印过程中由收缩而引起的零件的翘曲变形问题,提高力学性能,同时提高了零件的成型精度。
具体实施方式
[0014] 下面结合具体实施例对本发明做详细描述。
[0015] 实施例1
[0016] 一种3D打印光固化树脂,其中各组分质量百分比分别为:30%双酚A型E-51环氧树脂,20%脂环族环氧树脂,5%1,6-己二醇二丙烯酸酯,5%三羟甲基丙烷三丙烯酸酯,20%3-羟甲基-1-氧杂环丁烷,10%2-羟甲基氧杂环丁烷,5%安息香双甲醚,5%刚性聚硅氧烷。
[0017] 实施例2
[0018] 一种3D打印光固化树脂,其中各组分质量百分比分别为:30%双酚A型E-51环氧树脂,30%脂环族环氧树脂,10%1,6-己二醇二丙烯酸酯,5%三羟甲基丙烷三丙烯酸酯,6%3-羟甲基-1-氧杂环丁烷,6%2-羟甲基氧杂环丁烷,5%安息香双甲醚,8%刚性聚硅氧烷。
[0019] 实施例3
[0020] 一种3D打印光固化树脂,其中各组分质量百分比分别为:40%双酚A型E-51环氧树脂,30%脂环族环氧树脂,5%1,6-己二醇二丙烯酸酯,5%三羟甲基丙烷三丙烯酸酯,5%3-羟甲基-1-氧杂环丁烷,5%2-羟甲基氧杂环丁烷,5%安息香双甲醚,5%刚性聚硅氧烷。
[0021] 实施例4
[0022] 一种3D打印光固化树脂,其中各组分质量百分比分别为:30%双酚A型E-51环氧树脂,30%脂环族环氧树脂,20%氢化双酚A型环氧树脂,5%1,6-己二醇二丙烯酸酯,8%3-羟甲基-1-氧杂环丁烷,5%安息香双甲醚,2%刚性聚硅氧烷。
[0023] 实施例5
[0024] 一种3D打印光固化树脂,其中各组分质量百分比分别为:20%双酚A型E-51环氧树脂,20%脂环族环氧树脂,20%氢化双酚A型环氧树脂,10%1,6-己二醇二丙烯酸酯,5%3-羟甲基-1-氧杂环丁烷,5%2-羟甲基氧杂环丁烷,5%安息香双甲醚,15%刚性聚硅氧烷。
[0025] 对比例
[0026] 一种3D打印光固化树脂,其中各组分质量百分比分别为:30%双酚A型E-51环氧树脂,30%脂环族环氧树脂,10%1,6-己二醇二丙烯酸酯,5%三羟甲基丙烷三丙烯酸酯,10%3-羟甲基-1-氧杂环丁烷、10%2-羟甲基氧杂环丁烷,5%安息香双甲醚。
[0027] 将以上对比例和实施例得到的光固化树脂在光固化快速成型机中制作边长为100mm、厚度为2mm的正方体工件,然后根据测量值和实际值差值与实际值的比值作为收缩率,收缩率数据如下表所示:
[0028]
[0029] 从上表中可以看出没有加刚性聚硅氧烷填料的光固化树脂收缩率为0.75%,而加了刚性聚硅氧烷的树脂体系的收缩率均有下降,并且当聚硅氧烷含量在15%时,收缩率为0.14%,较未加填料的体系收缩率下降了5倍。

E. 环氧树脂涂料的组成,各组分的用途和使用方法及原理

环氧树脂涂料的成膜物质主要由环氧树脂和环氧树脂的固化剂所组成,另外,有时候为了改善漆膜的性能和施工性能,常在含环氧树脂的组成中加入欢迎树脂活性稀释剂,这样的稀释剂成分中含一个或者两个以上的环氧基,可直接参与环氧树脂的固化反应,从而成为环氧树脂固化交联网络结构的一部分了。
一般可以分为两个类别;
a缩水甘油类,大多用环氧氯丙烷反应制的,缩水甘油类一般又分为缩水甘油醚,缩水甘油酯,缩水甘油胺三个大类。
b非缩水甘油类,用过醋酸等氯化剂与环烯或者聚丁二烯等碳,碳双键反应制的,产量少,主要用于辐射固化涂料。
绝大多数装饰性环氧树脂粉末涂料都是双酚A型环氧树脂,环氧当量为680~750,所用固化剂有多种,如胺、酰胺、酚、有机酸(酐)、有机酸盐及其加成物。最常用的固化剂是双氰胺(DIC、甲苯基二胍(OTB),加速双酚A,双酚A环氧加成物和有机酸盐(用于低光粉末)。
如果采用EEW超出680~750范围的双酚A环氧树脂,则树脂/固化剂比应当作适当调整。有时采用EEW低于650的双酚A环氧树脂制备低温固化的粉末涂料 (固化温度低于250°F,121℃),但这种树脂的玻璃化温度Tg很低(可能低于100°F,38℃),影响了体系的贮存稳定性(熔结稳定性。
有时采用EEW900~1000和EEWl600~1800)的双酚A环氧树脂制备特殊效果的粉末涂料,如花纹粉末涂料,它们可以单独使用.但更多的是与EEW680~750的双酚A环氧树脂配合使用,EEW越高意味着固化涂膜的交联密度越低,因此涂膜的耐化学品性、尤其是耐溶剂性比较差。双酚A环氧树脂的官能度为2,也就是说在分子链端只有2个反应性环氧基,线性酚醛树脂、甲阶酚醛树脂与双酚F环氧树脂的反应活性要更强一些,这些树脂分子中的反应性基团大于2个,固化时的交联密度更高,因此涂膜的耐化学品性更高。据中国环氧树脂行业协会专家介绍,通常多官能度环氧树脂要比双酚A环氧树脂贵,因此为了降低成本,有时采用双酚A和线性酚醛环氧树脂配伍,使涂料体系的总体性能良好,同时原材料成本比较合理。双酚A、线性酚醛环氧树脂和双酚F环氧树脂都不耐UV光照射,因此均不能用于配制户外耐久性粉末涂料,当然,氢化双酚A
环氧树脂除外。
希望对你有所帮助。

F. 水性环氧涂料的水性环氧树脂的制备

根据制备方法的不同,水性环氧树脂的制备方法主要有机械法、相反转法、固化剂乳化法和化学改性法。
1. 机械法也称直接乳化法,通常是将环氧树脂用球磨机、胶体磨、均质器等磨碎,然后加入乳化剂水溶液,再通过超声振荡、高速搅拌将粒子分散于水中,或将环氧树脂与乳化剂混合,加热到一定温度,在激烈搅拌下逐渐加入水而形成环氧树脂乳液。机械法制备水性环氧树脂乳液的优点是工艺简单、成本低廉、所需乳化剂的用量较少。但是,此方法制备的乳液中环氧树脂分散相微粒的尺寸较大,约10μm左右,粒子形状不规则,粒度分布较宽,所配得的乳液稳定性一般较差,并且乳液的成膜性能也不太好,而且由于非离子表面活性剂的存在,会影响涂膜的外观和一些性能。
2. 相反转法即通过改变水相的体积,将聚合物从油包水(w/o)状态转变成水包油(O/W)状态,是一种制备高分子树脂乳液较为有效的方法,几乎可将所有的高分子树脂借助于外加乳化剂的作用通过物理乳化的方法制得相应的乳液。相反转原指多组分体系中的连续相在一定条件下相互转化的过程,如在油/水/乳化剂体系中,当连续相从油相向水相(或从水相向油相)转变时,在连续相转变区,体系的界面张力最小,因而此时的分散相的尺寸最小。通过相反转法将高分子树脂乳化为乳液,制得的乳液粒径比机械法小,稳定性也比机械法好,其分散相的平均粒径一般为l~2μm。
3. 固化剂乳化法是不外加乳化剂,而是利用具有乳化效果的固化剂来乳化环氧树脂。这种具有乳化性质的固化剂一般是改性的环氧树脂固化剂,它既具有固化,又具有乳化低相对分子质量液体环氧树脂的功能。乳化型固化剂一般是环氧树脂-多元胺加成物。在普通多元胺固化剂中引入环氧树脂分子链段,并采用成盐的方法来改善其亲水亲油平衡值,使其成为具有与低相对分子质量液体环氧树脂相似链段的水可分散性固化剂。由于固化剂乳化法中使用的乳化剂同时又是环氧树脂的固化剂,因此固化所得漆膜的性能比需外加乳化剂的机械法和相反转化法要好。
4. 化学改性法又称自乳化法,是水性环氧树脂的主要制备方法。化学改性法是通过打开环氧树脂分子中的部分环氧键,引入极性基团,或者通过自由基引发接枝反应,将极性基团引入环氧树脂分子骨架中,这些亲水性基团或者具有表面活性作用的链段能帮助环氧树脂在水中分散。由于化学改性法是将亲水性的基团通过共价键直接引入到环氧树脂的分子中,因此制得的乳液稳定,粒子尺寸小,多为纳米级。化学改性法引入的亲水性基团可是以阴离子、阳离子或非离子的亲水链段。
非离子型水性环氧树脂:非离子型水性环氧树脂可分为乳化剂乳化的非离子型水性环氧树脂体系、自乳化非离子型水性环氧树脂体系和非离子型水性环氧固化剂体系。用化学改性法制备的非离子型自乳化水性环氧树脂乳液由于只含亲水性聚氧乙烯链段,不含阴/阳离子基团,因此乳液对pH的变化适应性强,同时涂膜的柔韧性及耐水性也有较大的提升。故改性非离子型水性环氧树脂体系的开发将成为水性环氧涂料领域新的研究热点。

G. 什么是环氧粘接树脂,环氧粘接树脂用普通的塑料(比如线性PE)加什么助剂可以制成

飞秒检测发现环氧类胶粘剂主要由环氧树脂和固化剂两大部分组成。为改善某些性能,满足不同用途还可以加入增韧剂、稀释剂、促进剂、偶联剂等辅助材料。由于环氧胶粘剂的粘接强度高、通用性强,曾有“万能胶”、“大力胶”之称,在航空、航天、汽车、机械、建筑、化工、轻工、电子、电器以及日常生活等领域得到广泛的应用。其中的助剂可以通过飞秒检测精确测定其组成和含量。
环氧树脂胶粘剂由环氧树脂、固化剂、增塑剂、促进剂、稀释剂、填充剂、偶联剂、阻燃剂、稳定剂等组成。其中环氧树脂、固化剂、增韧剂是不可缺少的组分,其他则根据需要决定加否。
1、环氧树脂环氧树脂是分子中含有两个或两个以上环氧基团而相对分子质量较低的高分子化合物一、分类环氧树脂的品种、牌号很多,但双酚A缩水甘油醚环氧树脂通常称为双酚A环氧树脂是最重要的一类。它占环氧树脂总产量的90%。分子结构非常的长在这里就不说了!如果要知道的话可以点击环氧树脂将会有详细的说明!在这里只作简述:1、双酚A型环氧树脂又称通用型环氧树脂和标准型环氧树脂,中国定名为E型环氧树脂,由双酚(BPA或DPP)与环氧氯丙烷(ECH)在氢氧化钠下缩聚而得。
根据原料配比、反应条件和采用的方法不同,可制得不同聚合度的低相对分子质量的粘稠液体和高相对分子质量、高软化点固体。平均相对分子质量300~7000。外观为近乎无色或淡黄色透明粘稠液体或片状脆性固体。环氧树脂本身是热塑性线型聚合物,受热时液体树脂粘度变低,固体树脂软化或熔融。溶于丙酮、甲乙酮、环已酮、醋酸乙酯、苯、甲苯、二甲苯、无水乙醇、乙二醇等有机溶剂。
2、氢化双酚A型环氧树脂氢化双酚A型环氧树脂化学名称为氢化双酚A二缩水甘油醚,是由双酚A加氢得到的六氢双酚A与环氧氯丙烷在氢氧化钠催化下缩聚而得。是一种粘度非常低、凝胶时间长、耐候性相当好的环氧树脂。
3、双酚F型环氧树脂双酚F型环氧树脂化学名称为双酚F二缩水甘油醚,简称DGEBF或BPF,是由苯酚与甲醛在酸性催化剂下反应生成双酚F,再与环氧氯丙烷在氢氧化钠催化下进行缩聚反应制得的无色或淡黄色透明粘稠液体
4、双酚S型环氧树脂双酚S型环氧树脂化学名称为双酚S二缩水甘油醚,简称为BPS或KGEBS,是由双酚S与环氧甩丙烷在氢氧化钠催化下制得的,双酚S型环氧树脂耐热性高,热变形温度比双酚A环氧树脂高60~700C固化物寸稳定,耐溶剂性良好。
5、双酚P型环氧树脂双酚P型环氧树脂是由以3-氯丙烯和苯酚为主要原料合成双酚P,再与环氧氯丙烷在氢氧化钠在催化下缩聚制得。双酚P型环氧树脂环氧值为0.45eq/100g,有机氯含量1.38*10-3eq/100g,无机氯含量1.84*10-4eq/100g双酚P型环氧树脂分子链柔性大,低温下流动性好,粘度低于双酚A环氧树脂,压缩强度和冲击强度高于双酚A环氧树脂。

阅读全文

与氢化双酚A型环氧树脂制备相关的资料

热点内容
饮水机没空气进去怎么出水 浏览:464
废水处理主要针对哪些企业 浏览:635
城市污水流到处理厂怎么办 浏览:56
船舶生活污水处理装置要求 浏览:205
污水管和清水管交叉怎么施工 浏览:738
史密斯净水器龙头小眼为什么滴水 浏览:488
离心式污水泥浆泵怎么换水封 浏览:417
富硒水富氢水和纯净水哪个好 浏览:827
净水机膜通量什么意思 浏览:723
运城水处理变频改造 浏览:319
电厂污水处理设备技术 浏览:482
污水处理厂监控岗位职责 浏览:230
熟料污水井怎么开孔 浏览:830
如何去废水中的氨氮 浏览:730
储水水垢 浏览:475
石油蒸馏步骤 浏览:228
志俊内空调滤芯怎么拆装图 浏览:384
天津pe材质污水提升器 浏览:733
花冠怎么换空气滤芯 浏览:362
建一个酸污水处理设备多少钱 浏览:131