A. 滤膜孔径问题
切割分子量 1K 3K 5K 6K
对应孔径 0.001μ回m 0.002μm 0.003μm 0.004μm
切割分子量 10K 20K 30K 50K
对应孔径 0.005μm 0.006μm 0.007μm 0.008μm
切割分子量 100K 150K 300K 500K
对应孔径 0.01μm 0.05μm 0.12μm 0.2μm
这是专业膜公司答提供可靠关于切割分子量与膜孔大小的关系.
当然我觉得这个数据也不是绝对的,但基本相差不大
B. 分离22KD的蛋白质选择什么型号的超滤膜
如果是分离22kDa及分子量远小于它的小蛋白,推荐用millipore的超滤管,截留分子量10kDa,体积1-15ml都有。主要还是看你的目的蛋白是集中于浓缩液部分,还是滤液部分,从而选择合适的截留分子量
C. 选择分离60KDa 的蛋白选择什么种类的超滤膜想让蛋白留在浓缩液里
那就是浓缩,如果要提高回收率用10K的超滤膜
D. 做超滤实验时,超滤膜上标的10KD、30KD单位如何对应分子的大小是否单位越大,超滤得到的物质分子越小
超滤膜上标的10KD、30KD都是指截留率。单位越大,超滤得到的物质分子也越大。
E. 有《发酵脱脂大豆肽的清除和抗疲劳活性》英文文献的翻译吗
发酵脱脂大豆肽的清除和抗疲劳活性
摘 要:许多生物活性肽具有特定成分,使这些促进健康的食品存在潜在的生物学特性。越来越多的关注让我们集中研究来自大豆蛋白质的生理活性肽。在这项研究中,枯草芽孢杆菌SHZ发酵生产脱脂豆粕再用超滤和凝胶色谱进行纯化得到大豆肽。分别在体外和体内对自由基的清除和肽的抗疲劳作用进行了评价。20天的大豆肽给药后对小鼠游泳耐力进行了测试及对小鼠血乳酸和肝糖原进行了测定。结果表明,在10mg/ml的浓度显示了纯化肽(P<0.01)的超氧效力(62%)和羟基(96%)的清除作用。小鼠游泳(P <0.01)后经大豆肽给药可显着加速清除其体内的血乳酸。中,高剂量组的肝糖原储存明显增加 (P<0.05)。这表明,大豆肽发酵法生产可显着减轻老鼠的身体疲劳。
关键词:大豆肽;发酵;清除自由基;抗疲劳;脱脂大豆肽;枯草芽孢杆菌
大豆肽是一种由3-10个氨基酸残基与来自大豆蛋白水解物组成的短链肽。由于它的抗高血压和抗血栓性质等各种生物活性,它不仅被视为是一种营养物而且也作为一个人类健康的功能因子。
在不同类型的生物活性肽(免疫刺激,阿片类药物,抗微生物肽等),大豆肽与氧自由基的清除活动已被广泛研究,由脂质过氧化自由基链反应所造成的细胞或组织伤害目前被认为是各种疾病中一个最重要的诱因。疲劳是一种表明健康可能或已经受到伤害的症状。生理上,在生物胺水平疲劳能引起糖皮质激素的变化。众所周知,糖皮质激素是主要调解人应激反应和调节许多信号事件的免疫反应。因此,疲劳能引起有关生物调节,自主神经,内分泌和免疫系统各种疾病。这些疾病可导致运动强度的减少,甚至活动的中断。所以疲劳是值得现代通常在压力下的人们的关注。许多报告表明,肽在运动过程中能立即提供能量而且在广泛的运动中也是有益的。然而,没有任何有关大豆肽的抗疲劳作用的详细资料。由于大豆蛋白质具有许多不同的前体生物活性肽,有许多对商业酶制剂大豆蛋白水解大豆肽生产的研究。然而,由于它的高生产成本使它不能在发展中国家大规模的应用。很长一段时间,微生物被认为是一种好的酶原料,微生物发酵的食物蛋白质如牛奶和大豆已被证明是一种用纯化酶水解蛋白的较经济的替代方法。脱脂大豆粉富含蛋白质(40-50%),但通常在石油生产过程中被作为低价值的副产品,应作为大豆肽生产中一种良好的蛋白质来源。在本研究中,我们生产由脱脂豆粕发酵大豆肽。超滤和凝胶色谱纯化后,通过小鼠的游泳运动对大豆肽的自由基清除性能和抗疲劳的效果进行了研究。
脱脂豆粕发酵
取培养在斜面上的一圈草坪转移到含有100ml培养基(3g牛肉膏,10g蛋白胨和5g氯化钠加入1000ml的蒸馏水,PH=7.2)的250ml烧瓶中进行种子培养,在37。C下种子培养36h。发酵培养基由5%(w/ v)的脱脂豆粕组成。灭菌后,在500ml烧瓶中每100ml的发酵培养基接种10ml的种子液并在30。C下培养36h。 大豆蛋白水解物的制备
发酵后,发酵液在121。C消毒20min,以杀死微生物。发酵液中未水解的脱脂大豆粉
2
渣经5000r离心30min除去。上清收集,通过0.45um的过滤膜过滤除去杂质,收集得到大豆蛋白水解物(SPH)。 大豆肽的超滤和SPH凝胶色谱制备
三氯乙酸(TCA,0.4M)溶液中加入等体积的SPH。在室温下半个小时后不溶性蛋白经10000r离心10min除去。收集上清并用0.4M的NaOH调pH至7.0。由此产生的上清液经分馏成3种有不同的截留分子量范围(10,3,1 kDa)的超滤膜,小碎片分别通过3 kDa的膜渗透,但冻干的大豆肽不能经1 kDa的膜渗透。为进一步净化,冻干大豆肽分别溶解于去离子水(10mg/ml),装上Sephadex G-25 凝胶过滤柱(2.6*100 cm)。分离获得的去离子水在流率0.5ml/min,在220 nm处测量后洗脱组分(5ml)汇集。该柱子用蓝葡聚糖2000MW(2000 kDa)、胰蛋白酶(233kDa)、简化谷胱甘肽(GSH)(307Da)和甘氨酸(75Da)校准。该部分展示了纯化大豆肽和经体内实验冻干收集的自由基的超强的清除作用。
动物及实验饲料
96只昆明种小鼠(3周龄,20 ± 2g,雄雌数相等)由中国南京实验动物繁育中心供应。这些动物被关在一个温度控制在22±2。C,光暗循环1212h的房间里。这些动物根据南京农业大学动物科学与技术学院的动物中心的道德指引对待。该实验协议是经南京农业大学动物科学与技术学院的批准。小鼠随机分为四组,每组包括12只雌性小鼠和12只雄性小鼠。这些动物经过3d适应环境和标准的饮食后维持了20d按以下规定的饮食。
所有的动物在实验过程中被允许自由食用标准实验室颗粒饲料(由600g/kg淀粉、150g/kg酪蛋白、100g/kg蔗糖、50g/kg豆油、50k/kg纤维素、35k/kg的矿物、10k/kg维生素组成)和水。除了自由食用标准的饮食和水,第一组被指定为每天用5ml蒸馏水灌胃给药的控制剂量组(CD),第二组被指定为每天用大豆肽100mg/ml体重给药的低剂量组(LD),第三组被指定为每天用200mg/kg体重给药的中剂量组(MD),第四组被指定为每天用400mg/kg体重给药的高剂量组(HD)。每组所用的大豆肽溶解在指定浓度的蒸馏水中,然后每5ml的蒸馏水每天对小鼠灌胃。
游泳耐力实验
从各组中取出八只小鼠来,经不同剂量大豆肽给药20d后进行游泳试验,雄性小鼠和雌性小鼠数相等。每个小鼠尾巴负载着其体重5%的镀锌铁丝,然后分别把它们放到充满了水(温度:25 ± 0.5。C、深度:30cm的不同游泳箱中(90 *60 *60 cm),对小鼠的游泳耐力进行观察。耐力时间被定义为小鼠一直保持游泳活动直到小鼠陷入游泳箱底部,并停止至少10s的移动的游泳时间。每个组小鼠的平均时间以及不同群体的数据进行T-检验。
血乳酸分析
不同剂量大豆肽给药20d后,从每个小组选出四只雌性与四只雄性小鼠进行血乳酸分析。最后大豆肽给药后从小鼠的尾静脉收集20ul血液。小鼠游泳10min后立即采集另20ul血液样本。小鼠休息20min后采集第三批血样。
大豆肽对小鼠肝糖原的影响
3
要确定小鼠的肝糖原,在最终大豆肽给药后从每组取出四只雌性和四只雄性小鼠在30。C的水中强迫游泳30min。游泳90min后,每只小鼠用高浓度丙烯酸塑料防盗乙醚麻醉致死并尽快收集其肝脏。利用蒽酮化比色法分析的方法,对不同组中小鼠的肝糖原一个接一个的直接测定。
大豆肽对小鼠体重的影响
为了进一步了解大豆肽对体重的影响,每天给小鼠称重并仔细观察它们的增长速度。小鼠经不同剂量的大豆肽给药20d后,不同组中小鼠体重的增加以T-试验进行分析。
数据分析
统计分析采用的是版本8.02的Windows SAS系统。配对的T -检验被用于所有的比较。结果表示的平均值和平均值的标准误差, 被认为是显著P<0.05。
结果与讨论
大豆肽纯化及自由基的清除活性
大豆蛋白水解物制备如上所述是用来净化和清除在每个纯化步骤中测试的自由基的活性。凝胶过滤后,根据分子的大小分离成三个峰。随着进一步的净化,部分自由基清除活性增加,第二部分池,其中三组分的结果具有最高的自由基清除活性。该纯化肽在羟基浓度为10mg/ml时显著展出清除超氧效力,超氧自由基和羟自由基清除活性大约是众所周知的自由基清除剂——生育酚的1.5倍。如超氧阴离子自由基和羟自由基的自由基在正常的新陈代谢下因缺氧而生成的连续减少。超充足的自由基引起的氧化压力,这会导致细胞损伤和组织损伤。此外,氧化应力的产生可能在许多病理条件病因中起着重要的作用。自由基清除剂是一种预防性抗氧化剂其清除活性可以作为预防增加氧化压力和疲劳恢复的征兆。在这里,我们验证了大豆肽具有超氧阴离子和羟自由基清除活性,所以肽用于在小鼠体内实验中可估计其抗疲劳的属性。 大豆肽对小鼠体重和游泳时间的影响
实验期间小鼠体重的增加。小鼠经不同剂量的大豆肽给药20d后,测量他们的体重。结果表明,实验组体重的增加与CD(P > 0.05)组相比无显着差异,因此,大豆肽对体重没有显着影响。治疗组小鼠的装载重量游泳的平均时间均显著比对照组延长。低剂量组,中剂量组和高剂量组游泳的平均时间分别增加了20.91%,45.45%和70%。这些结果表明在实验中大豆肽对小鼠的耐力具有显着影响。 大豆肽对小鼠血乳酸的影响
在游泳前、游泳后和休息20min后对小鼠的血乳酸浓度进行不同处理再测量。发现各组的血乳酸浓度在游泳前没有显著差异(P> 0.05)。然而,在游泳后,低剂量组,中剂量组和高剂量组的血乳酸浓度的比例增加均低于CD组(0.70) (P < 0.05 或 0.01)。低剂量组,中剂量组和高剂量组的比例减少分别为0.30,0.32和0.33。
在厌氧条件下血乳酸是糖酵解的碳水化合物产品,在很短的时间内糖酵解是激烈运动的主要能量来源。因此,血乳酸是衡量疲劳程度的重要指标。血乳酸比例的增加是在游泳
4
后的血乳酸增加的百分比,而游泳前,可作为疲劳程度的指标。血乳酸减少比例反映了休息20min后血乳酸的减少,代表着的疲劳程度的恢复指标。在这项研究中,数据显示,游泳后大豆肽的膳食补充剂可以有效地延缓,降低血乳酸产生和推迟疲劳的出现和加快从疲劳中恢复过来。
结论
我们的研究首次报告了脱脂豆粕发酵的生物活性肽的生产。经超滤和凝胶层析纯化后的大豆肽显示出强的清除活性,可以延长小鼠的游泳时间,有效延缓乳酸在血液中的增加 ,并增加肝糖原的储存 。因此,发酵脱脂大豆肽可以认定为是一种获取生物活性肽的潜在方法。
望采纳啊!!!!!
F. 注射剂的热源污染
1,去除热源是注射剂工艺很重要也很麻烦的一个问题,很多药厂因此而返工甚至废料。所以用什么方法,什么设备十分重要。
2,用微滤(0.22um)除热源不适宜,但是有在微滤的膜上带上正电荷,能够去除4~5个LOG的大肠杆菌内毒素.但是该方法使用时要注意, 您的主药成分不能是和热源一样,在该PH条件下带负电,否则您就含量不合格了. 相应的产品有相应的FDA认可的验证文件(4~5个LOG).它目前用在纯水制备的最后一道工序,紫外线消毒后同时去除细菌和热源,效果很好.国外和国内均有不少应用.
3, 目前世界上唯一经FDA认可的具有相应验证文件的产品是日本旭化成生产的6K的中空纤维膜柱,从实验室但Pilot到生产规模全有产品.但是使用该产品的前提条件是你的产品API不能是大分子物质,比如蛋白,如果分子量小于2K,最好是1000道尔顿以下最好,所以他适合于中药注射剂或者化学药注射剂的去除热源.目前国内有厂家应用.
4,用超滤膜包去除热源,需要试验.因为您的样品污染热源的主要分子量分布和您的产品是有关系的,到底主要分布在多少分子量范围,而且是强致热的成分?您需要实验,然后选择合适的切割分子量的膜包也是可以的,要是您的热源分子量分布和您的目标物质分子量近似,那是您的不幸!您就不能选择这样的方法.国内用的比较多的是小分子物质去除热源,比如用10K的膜包去除胸腺肽的热源.我还遇到过用1000K去除热源的生产例子.
5, 比较有效的方法还有层析法,上文Chromatography已经有介绍.该方法如果选择好的话,应该非常有效.唯一遗憾的是价格可能高一点,但是还是可以接受的.
6, 活性炭当然是除热源的方法之一,但是有2个问题:a,在低温下的去除热源是很不靠谱的.你需要验证,不能仅凭一次结果断定.活性炭的吸附热力学是与温度很有关系的.我个人认为低温下是很难有效的.b,它吸附热源的时候同时吸附API或者目标物质,你的损失会很大.要是您的API不值钱,那也罢了,就象大输液那样,谁也不在意Glucosi的被吸附.
G. 做超滤实验时,超滤膜上标的10KD、30KD单位如何对应分子的大小是否单位越大,超滤得到的物质分子越小
首先与超滤膜的材质有关,比如聚醚砜的和再生纤维的,同样是10KD的,截流能力专是不相同的属,一般要求在截流分析量的2倍-5倍以上方可实现良好的分离,同时不同公司的超滤膜本身应该有自己的说明的,参照说明要求即可。