导航:首页 > 耗材问题 > 不饱和聚酯树脂物性

不饱和聚酯树脂物性

发布时间:2023-03-05 08:01:01

A. 如何鉴别酯基

你说的应该是基酯吧
MFE乙烯基酯树脂的性能及其在防腐蚀领域的应用研究 华东理工大学 周润培 侯锐钢 王晓东 雷 浩 刘坐镇 一. 前言 乙烯基酯指的是分子二端含有乙烯基团,中间骨架为环氧树脂的那一类不饱和聚酯。它们是由不饱和有机一元羧酸(最常用的为丙烯酸和甲基丙烯酸)和环氧树脂进行开环酯化反应而得,故也可称为不饱和酸环氧酯 (1)。乙烯基酯是个外来词,其含义并不确切,比较确切的名称应该是环氧乙烯基酯。前苏联文献将这类化合物称为环氧丙烯酸酯、环氧甲基丙烯酸酯等。我国早期的文献曾将这类化合物称为甲基丙烯酸环氧酯、丙烯酸环氧酯等,或统称为不饱和酸环氧酯。 乙烯基酯树脂的开发研究起始于上世纪六十年代。1964年美国Shell化学公司首先开发了一种商品名为Epicryl的双酚A型环氧乙烯基酯树脂,以后美国Dow化学公司相继开发了多种牌号为Derakane的同类产品。日本随后也开发了一系列商品名为Ripoxy的乙烯基酯树脂(2)。我国对这类树脂的开发研究起始于上世纪七十年代初期,华东理工大学(原名华东化工学院)、四川晨光化工研究院、上海树脂厂和天津合成材料研究所等单位最早报道了这方面的工作并进行了应用研究。乙烯基酯树脂的应用领域是多方面的,其中最广泛也是最重要的是在防腐蚀领域。华东理工大学是国内耐腐蚀乙烯基酯树脂最早的研究单位之一,也是在防腐蚀工程中应用 乙烯基酯树脂最早的单位。早在1975年,由上海化工学院(即现在华东理工大学)研制的甲基丙烯酸环氧酯树脂(ME型乙烯基酯树脂)就已成功地应用于当时新建的上海石化总厂维尼纶厂的醛化浴(内含30%H2SO4和甲醛)防腐蚀工程(3)。 1980年和1981年第一个商品名为MFE-2的乙烯基酯树脂相继在我校协作厂和自办企业正式投产。二十多年来的开发和应用研究使华东理工大学华昌聚合物有限公司已成为国内主要的环氧乙烯基酯树脂科研生产基地,拥有系列化的MFE乙烯基酯树脂品牌,积累了丰富的工程应用和施工经验。环氧乙烯基酯树脂从面世以来已有近四十年的历史,期间出现了无数品牌商品、专利和文献。据笔者所知,目前国内外研究和生产的乙烯基酯树脂大致可分为以下几类: 由甲基丙烯酸(M)和双酚A环氧树脂(E)为主要原料的ME型乙烯基酯;由丙烯酸(A)和双酚A环氧树脂为主要原料的AE型乙烯基酯;由甲基丙烯酸和酚醛多环氧树脂(F)为主要原料的MF型;丙烯酸和酚醛多环氧树脂为主要原料的AF型;由甲基丙烯酸、富马酸(F)和双酚A环氧树脂为主要原料的MFE型以及由甲基丙烯酸和含溴双酚A环氧树脂为主要原料的MEX型等(表1)。此外尚有许多异氰酸酯、橡胶等改性剂改性的乙烯基酯树脂。即使是同样原料组成的乙烯基酯树脂,由于原料配比不同、生产工艺不同和固化条件不同等因素,其固化产品(浇铸体)也会具有不同的物理和化学性能。 表1 耐腐蚀环氧乙烯基酯树脂的分类(按化学组成) 乙烯基酯类型 主要原料 特点 不饱和酸 环氧树脂 ME 甲基丙烯酸(M) E型环氧 通用型 AE 丙烯酸(A) E型环氧 韧性 MF 甲基丙烯酸(M) F型环氧 耐高温 MFE 甲基丙烯酸(M)、富马酸(F) E型环氧 通用型 AF 丙烯酸(A) F型环氧 韧性、耐高温 AFE 丙烯酸(A)、 富马酸(F) E型环氧 韧性 MEX 甲基丙烯酸(M) EX型环氧 阻燃 从乙烯基酯的发展史来看,ME型乙烯基酯是较早开发成功的商品树脂,一些厂商把这类树脂称之为标准型乙烯基酯树脂,但却不见其典型配方。事实上ME型乙烯基酯树脂也是多品种的,笔者早期也集中在这一类型乙烯基酯树脂的合成和性能研究(4),究竟怎样配方的ME型树脂是标准?目前尚无公认的典型配方。在不饱和聚酯树脂大家庭里公认的标准树脂是聚邻苯二甲酸/反丁烯二酸丙二醇酯,其典型配方为邻苯二甲酸酐: 顺丁烯二酸酐:丙二醇=1:1:2.15(摩尔比)。标准树脂并不等于最好的树脂,当年最好的树脂并不等于永远是最好的,这已为不饱和聚酯树脂的发展史所证实。 总之,科学在发展,技术在进步,今后会有更多新的品种加入到乙烯基酯树脂的行列中,老的品种也会不断改进提升品质。 二. 分子结构及性能 1. 环氧乙烯基酯的分子结构 (1) ME和AE型环氧乙烯基酯分子的化学结构如下: (2) MFE和AFE型环氧乙烯基酯分子的化学结构如下: 由此可见,ME型和MFE型乙烯基酯的分子结构非常相近,只是由于扩链剂富马酸的存在使MFE型乙烯基酯的分子量比ME型的扩大了几乎1倍。华昌公司生产的MFE型乙烯基酯树脂的红外光谱与Dow化学公司生产的Derakane- 411树脂的红外光谱相雷同也证明了这一点(见图1)。一些作者指责MFE乙烯基酯不是真正意义上的乙烯基酯,我们不明白真正的乙烯基酯该是怎样的分子结构?红外光谱不能鉴别是否是乙烯基酯,难道真的只有用一些人发明的“凝胶前是否发生自发性冒泡”来分辨真假乙烯基酯吗? 2. 分子结构与耐化学腐蚀性 高分子物理学告诉我们:高分子化合物无论是线型的还是网状的,其分子结构都是多层次的,一次结构为分子的化学结构;二次结构为分子的形态结构;三次(或称高次)结构为分子的聚集态结构。本文不准备对此作详细的阐说,只想指出分子的化学组成既不能代替分子的化学结构,更不等同于分子结构,因此单凭化学组成不能决定高分子化合物的性能。举例来说,同样化学组成的聚丙烯,无规聚丙烯的力学性能很差,不能作为材料使用,只有用定向聚合法得到的聚丙烯才是有用的工程材料。 环氧乙烯基酯由于化学结构的特点:酯基密度小且都处于可交联双键的邻近,因此与疏水的苯乙烯发生共聚交联反应生成网状结构后具有高度的水解稳定性。影响环氧乙烯基酯树脂水解稳定性的因素有:酯基密度、酯基相邻基团的空间保护作用和交联剂苯乙烯的含量(5)。 (1) 酯基密度 环氧乙烯基酯和不饱和聚酯一样,可水解的基团为其分子结构中含有的酯基(—C=O—O—),因此酯基相对含量(以酯基密度mol/100g表示)的多少将直接影响它们的水解稳定性。 最简单的环氧乙烯基酯为甲基丙烯酸与双酚A环氧树脂按摩尔比2:1反应而得,其分子化学结构的示意式为: M—E—M 式中:M代表甲基丙烯酸 E代表E型环氧树脂 如果E取平均分子量为392的E-51,则上述分子结构的环氧乙烯基酯的平均分子量为564。由于分子中平均含有二个酯基,故其平均酯基当量为282,即平均每282g环氧乙烯基酯中含有1摩尔酯基,或换算成平均酯基密度为0.355mol/100g。 目前我国市场上最常见的环氧乙烯基酯为反丁烯二酸改性的甲基丙烯酸环氧酯,其分子结构示意式为: M—E—F—E—M 式中F代表反丁烯二酸,M和E的含义同上。 如果参与反应的环氧树脂也为E-51,则该MFE型环氧乙烯基酯的平均分子量为1072,由于该分子结构中含有四个酯基,故该环氧乙烯基酯的平均酯基当量为268,换算成平均酯基密度为0.373mol/100g,比上述最简单的ME型环氧乙烯基酯的酯基密度高出5%。 以此类推可以计算出由D-33与反丁烯二酸按摩尔比1:1合成的双酚A型不饱和聚酯的平均酯基密度为0.472mol/100g,由丙二醇、顺酐、苯酐按摩尔比2:1:1合成的邻苯型191树脂的平均酯基密度为1.105mol/100g。 由上述计算结果可见,MFE型环氧乙烯基酯树脂的酯基密度约为邻苯型191聚酯的1/3,但实验事实表明(6),MFE型环氧乙烯基酯树脂的水解稳定性优于邻苯型191树脂的远远超过3倍,这就告诉我们分子结构中的酯基密度不是影响水解稳定性的唯一因素,也不是主要因素。 (2) 酯基相邻基团的空间保护作用 有机化学告诉我们:酯基在酸或碱催化下可发生下列水解反应: ① 酸式水解: ② 碱式水解: 酯基的相邻基团R和R’都对酯基的水解速度产生影响,其中尤以R的影响更为明显。 据报道(7),乙酸乙酯在20℃水中的碱式水解速率常数k0=4.8l/mol?min,而与其同系的相差一个次甲基的丙酸乙酯在20℃水中的碱式水解速率常数k1=2.3l/mol?min,后者的水解速率常数约为前者的1/2。以此结果延伸到甲基丙烯酸环氧酯(ME型)与丙烯酸环氧酯(AE型)的水解稳定性对比上,无疑前者的水解稳定性要优于后者,但必须指出的是,无论ME型抑或AE型环氧乙烯基酯,它们在固化前的水解稳定性都是很差的,玻璃钢行业的同仁都有这样一个共识,只有当树脂(环氧乙烯基酯树脂也不例外)充分交联固化后,它们的优秀性能(包括物理性能、耐化学品性能)才显现出来。 因此笔者认为:环氧乙烯基酯分子结构中酯基相邻的可交联双键,在苯乙烯参与下固化形成三维交联网络,它对酯基形成的空间保护作用才是环氧乙烯基酯树脂获得高的水解稳定性的最主要原因(6)。如图2所示:固化后受空间网络大分子保护的基团。 (3) 交联剂苯乙烯的含量 与不饱和聚酯一样,环氧乙烯基酯最常用交联剂和稀释剂仍是苯乙烯,它的含量通常占环氧乙烯基酯树脂总量的40%左右。由于苯乙烯及其聚合物对水解作用的惰性,因此它的存在和含量最直接的作用是降低了环氧乙烯基酯树脂中的酯基密度。此外,当它以聚苯乙烯链段的形式参与环氧乙烯基酯树脂固化交联成三维网络后,对树脂浇铸体的耐热性、力学性能和耐水解稳定性都起到重要作用。 总之,环氧乙烯基酯树脂固化网络的水解稳定性不能单纯以组成网络的环氧乙烯基酯的化学组成来判断,必须同时考虑到由苯乙烯链段参与的固化网络的分子结构对耐水性的影响。 再来回顾一下历史,由最初开发成功的商品树脂,即以甲基丙烯酸与E型环氧树脂按摩尔比2:1合成的ME型环氧乙烯基酯树脂,至今已有三十余年。三十多年来商品树脂品种不断增加,各种改性树脂相继出现。反丁烯二酸改性的MFE型环氧乙烯基酯树脂和以丙烯酸代替甲基丙烯酸合成的AE型环氧乙烯基酯树脂3200#早在上世纪八十年代初期我国已开始商品化生产(8)。AE型环氧乙烯基酯树脂虽然在化学结构上缺少α-甲基对相邻酯基的空间保护作用,但只要苯乙烯用量得当,形成的网络结构合理,同样可以具有,甚至超过某些ME型环氧乙烯基酯树脂所具有的高度的水解稳定性,这一点已为多年来应用实践所证实。 华昌聚合物有限公司近期推出的高韧性、低收缩型MFE-5乙烯基酯树脂属AE型乙烯基酯树脂,但它却具有极佳的水解稳定性。试验结果表明,MFE-5乙烯基酯树脂浇铸体在80~100℃下浸泡于10%NaOH中历时2个月,其外观不变、透明度不变,仅轻微失重(9)。说明该树脂具有优良的耐碱性。 3. 分子结构与物理力学性能 乙烯基酯经固化交联后形成三维网状结构,影响网状结构韧性的因素为交联密度和交联点间分子链段的柔韧性。 交联密度与树脂分子的双键密度由直接关系,以ME型乙烯基酯树脂分子的双键密度为例,如果仍以参与分子组成的环氧树脂为E-51计算,由于每一分子中含有二个双键,即平均每564gME乙烯基酯含有2摩尔双键,故其分子的平均双键密度为0.355mol/100g。MFE型乙烯基酯树脂的每一分子含有三个双键,即平均每1072gMFE乙烯基酯含有3摩尔双键,可计算出其分子的平均双键密度为0.280mol/100g,比ME型乙烯基酯分子的平均双键密度降低了27%。由此可见MFE型乙烯基酯分子固化后形成三维网状结构并非如某些人所说的存在高交联密度,相反比ME型乙烯基酯交联密度低。 影响乙烯基酯树脂固化网络韧性的另一个重要因素为网络交联点间分子链段的柔韧性。众所周知丙烯酸及其酯在化工行业中被称为软单体,而甲基丙烯酸及其酯则被称为硬单体。这是由于丙烯酸酯聚合后主链可自由旋转,而甲基丙烯酸酯聚合后由于α-甲基的空间位阻,使分子主链的内旋转受到阻滞。 由此可见,AE型乙烯基酯树脂的浇铸体一般地较ME型乙烯基酯树脂具有更好的韧性,但也非绝对如此。与上节讨论水解稳定性时一样,毕竟乙烯基酯树脂的固化网络只是乙烯基酯分子的化学结构,不能完全决定乙烯基酯树脂浇铸体的物性。

B. 塑料的成份,类别和区别

塑料由许多材料配制而成的。其中高分子聚合物(或称合成树脂)是塑料的主要成分,此外,为了改进塑料的性能,还要在高分子化合物中添加各种辅助材料,如填料、增塑剂、润滑剂、稳定剂、着色剂、抗静电剂等,才能成为性能良好的塑料。

通过观察塑料的外观,可初步鉴别出塑料制品所属大类:热塑性塑料,热固性塑料或弹性体。

一般热塑性塑料有结晶和无定形两类。结晶性塑料外观呈半透明,乳浊状或不透明,只有在薄膜状态呈透明状,硬度从柔软到角质。无定形一般为无色,在不加添加剂时为全透明,硬度从硬于角质橡胶状(此时常加有增塑剂等添加剂)。

热固性塑料通常含有填料且不透明,如不含填料时为透明。弹性体具橡胶状手感,有一定的拉伸率。

(2)不饱和聚酯树脂物性扩展阅读

塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。加工方法(通常称为塑料的一次加工)包括压塑(模压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。

塑料包装材料具有重量轻、强度大、抗冲击性好、透明、防潮、美观、化学性能稳定、韧性好且防腐蚀等优点,在包装领域广泛取代了金属、木材、纸张、玻璃、皮革等,因此,塑料包装对减轻我国的资源、能源压力起到了不可替代的作用。

但是,塑料包装材料有一个致命的弱点,即其自然降解时间长,有的长达100年以上。塑料的不易降解性,导致其废弃物长期存在下去。

C. 各种塑料的密度及收缩比例越详细越好

低密度聚乙烯,0.910~0.9259/cm3
中密度聚乙烯MDPE0.926~0.9409/cm3
甚低密度聚乙烯VLDPE在0.910g/cm3 以下
密度/(g/cm3) 材料 密度/(g/cm3) 材料
0.80 硅橡腔(可用二氧化硅填充到1。25) 1.19~1.35 增塑聚氯乙烯(大约含有40%增塑剂)
0.83 聚甲基戊烯 1.20~1.22 聚碳酸酯(双酚A型)
0.85~0.91 聚丙烯 1.20~1.26 交联聚氨酯
0.89~0.93 高压(低密度)聚乙烯 1.26~1.28 苯酚甲醛树脂(未填充)
0.91~0.92 1-聚丁烯 1.26~1.31 聚乙烯醇
0.9~0.93 聚异丁烯 1.25~1.35 乙酸纤维素
0.92~1.00 天然橡胶 1.30~1.41 苯酚甲醛树脂(填充有机材料:纸,织物)
0.92~0.98 低压(高密度)聚乙烯 1.30~1.40 聚氟乙烯
1.01~1.04 尼龙12 1.34~1.40 赛璐珞
1.03~1.05 尼龙11 1.38~1.41 聚对苯二甲酸乙二醇酯
1.04~1.06 丙烯腈-丁二烯-苯乙烯共聚物(ABS) 1.38~1.50 硬质PVC
1.04~1.08 聚苯乙烯 1.41~1.43 聚氧化甲烯(聚甲醛)
1.05~1.07 聚苯醚 1.47~1.52 脲-三聚氰胺树脂(加有有机填料)
1.06~1.10 苯乙烯-丙烯腈共聚物 1.47~1.55 氯化聚氯乙烯
1.07~1.09 尼龙610 1.50~2.00 酚醛塑料和氨基塑料(加有无机填料)
1.12~1.15 尼龙6 1.70~1.80 聚偏二氟乙烯
1.13~1.16 尼龙66 1.80~2.30 聚酯和环氧树脂(加有玻璃纤维)
1.10~1.40 环氧树脂,不饱和聚酯树脂 1.86~1.88 聚偏二氯乙烯
1.14~1.17 聚丙烯腈 2.10~2.20 聚三氟-氯乙烯
1.15~1.25 乙酰丁酸纤维素 2.10~2.30 聚四氟乙烯
1.161.20 聚甲基丙烯酸甲酯
1.17~1.20 聚乙酸乙烯酯
1.18~1.24 丙酸纤维素
ABS苯乙烯-丁二烯-丙烯酯塑料1.05克/立方厘米
PE塑料(聚乙烯)0.94-0.96克/立方厘米
PP塑料(聚丙烯)0.9-0.91克/立方厘米
PMMA聚甲基丙烯甲酯1.17~1.20克/立方厘米
PC聚碳酸酯1.2克/立方厘米
CR39烯丙基二甘碳酸酯1.32克/立方厘米
AS苯乙烯-丙烯腈共聚物1.075~1.1克/立方厘米

D. 请问VINYL是什么意思是什么材料

VINYL是乙烯基意思。

英语音标:[ˈvaɪnl],美语音标:[ˈvaɪnl]

n.乙烯基

用作名词 (n.)

A heat resistant vinyl ester resin was studied. 研究了一种耐高温乙烯基酯树脂。

乙烯基树脂结构稳定,可以用于制作耐腐蚀FRP制品,如玻璃钢槽罐、管道、塔器以及耐腐蚀格栅等。乙烯基树脂有较好的可改良的工艺特性,它被大量的应用于各种重防腐玻璃鳞片涂料,鳞片胶泥等。

(4)不饱和聚酯树脂物性扩展阅读

乙烯基布料用途

环氧丙烯酸类乙烯基树脂是一种高性能的树脂。

热固性液体树脂,兼具环氧树脂的优异机械特性与不饱和聚酯树脂的易加工、快速固化性,且它在耐化性上的表现远。

优于环氧树脂与一般不饱和聚酯树脂,更因它的高比强度及耐疲劳特性,使得环氧丙烯酸类乙烯基酯树脂广泛用于防蚀、地板、管件、汽车、船舶、军事、运动器材等领域。

E. 我要一份全面介绍环氧树脂的资料

先给你些基本介绍入门,再需要什么资料再找我,把需要的资料名写上,再留下邮箱。

环氧树脂的性能及应用特点       

环氧树脂、酚醛树脂及不饱和聚酯树脂被称为三大通用型热固性树脂。它们是热固性树脂中用量最大、应用最广的品种。环氧树脂中含有独特的环氧基,以及轻基、醚键等活性基团和极性基团,因而具有许多优异的性能。与其他热固性树脂相比较,环氧树脂的种类和牌号最多,性能各异。环氧树脂固化剂的种类更多,再加上众多的促进剂、改性剂、添加剂等,可以进行多种多样的组合和组配。从而能获得各种各样性能优异的、各具特色的环氧固化体系和固化物。几乎能适应和满足各种不同使用性能和工艺性能的要求。这是其他热固性树脂所无法相比的。
    1、环氧树脂及其固化物的性能特点    (1)力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。    (2)粘接性能优异。环氧树脂固化体系中活性极大的环氧基、羟基以及醚键、胺键、酯键等极性集团赋予环氧固化物以极高的粘接强度。再加上它有很高的内聚强度等力学性能,因此它的粘接性能特别强,可用作结构胶。    (3)固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以其产品尺寸稳定,内应力小,不易开裂。    (4)工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。配方设计的灵活性很大,可设计出适合各种工艺性要求的配方。    (5)电性能好。是热固性树脂中介电性能最好的品种之一。    (6)稳定性好。不合碱、盐等杂质的环氧树脂不易变质。只要贮存得当(密封、不受潮、不遇高温),其贮存期为1年。超期后若检验合格仍可使用。环氧固化物具有优良的化学稳定性。其耐碱、酸、盐等多种介质腐蚀的性能优于不饱和聚酯树脂、酚醛树脂等热固性树脂。    (7)环氧固化物的耐热性一般为80~100℃。环氧树脂的耐热品种可达200℃或更高。    (8)在热卧性树脂中,环氧树脂及其固化物的综合性能最好。
    2、环氧树脂的应用特点    (1)具有极大的配方设计灵活性和多样性。能按不同的使用性能和工艺性能要求,设计出针对性很强的最佳配方。这是环氧树脂应用中的一大特点和优点。但是每个最佳配方都有一定的适用范围(条件),不是在任何工艺条件和任意使用条件下都宜采用。也就是说没有“万能”的最佳配方。必须根据不同的条件,设计出不同的最佳配方。由于不同配方的环氧树脂固化体系的固化原理不完全相同,所以环氧树脂的固化历程,即固化工艺条件对环氧固化物的结构和性能影响极大。相同的配方在不同的固化工艺条件下所得产品的性能会有非常的大的差别。所以正确地作出最佳材料配方设计和工艺设计是环氧树脂应用技术的关键,也是技术机密所在。要能生产和开发出自己所需性能的环氧材料,就必须设计出相应的专用配方及其成型工艺条件。因此,就必须深入了解和掌握环氧树脂及其固化剂、改性剂等的结构与性能、它们之间的反应机理以及对环氧固化物结构及性能的影响。这样才能在材料配方设计和工艺设计中得心应手,运用自如,取得最佳方案,生产和开发出性能最佳、成本最低的环氧材料和制品。    (2)不同的环氧树脂固化体系分别能在低温、室温、中温或高温固化,能在潮湿表面甚至在水中固化,能快速固化、也能缓慢固化,所以它对施工和制造工艺要求的适应性很强。环氧树脂可低压成型或接触压成型,因此可降低对成型设备和模具的要求,减少投资,降低成本。    (3)在三大通用型热固性树脂中,环氧树脂的价格偏高,从而在应用上受到一定的影响。但是,由于它的性能优异,所以主要用于对使用性能要求高的场合,尤其是对综合性能要求高的领域。

F. 塑胶原料物性大全的塑料、树脂缩写代号

英文简称英文全称中文全称
ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物
ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物
AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物
AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物
ARP Aromatic polyester 聚芳香酯
AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂
ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物
CA Cellulose acetate 醋酸纤维塑料
CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料
CAP Cellulose acetate propionate 醋酸-丙酸纤维素
CE Cellulose plastics, general 通用纤维素塑料
CF Cresol-formaldehyde 甲酚-甲醛树脂
CMC Carboxymethyl cellulose 羧甲基纤维素
CN Cellulose nitrate 硝酸纤维素
CP Cellulose propionate 丙酸纤维素
CPE Chlorinated polyethylene 氯化聚乙烯
CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯
CS Casein 酪蛋白
CTA Cellulose triacetate 三醋酸纤维素
EC Ethyl cellulose 乙烷纤维素
EEA Ethylene/ethyl acrylate 乙烯/丙烯酸乙酯共聚物
EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物
EP Epoxy, epoxide 环氧树脂
EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物
EPM Ethylene-propylene polymer 乙烯-丙烯共聚物
EPS Expanded polystyrene 发泡聚苯乙烯
ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物
EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物
EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物
FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料
FF Furan formaldehyde 呋喃甲醛
HDPE High-density polyethylene plastics 高密度聚乙烯塑料
HIPS High impact polystyrene 高冲聚苯乙烯
IPS Impact-resistant polystyre ne 耐冲击聚苯乙烯
LCP Liquid crystal polymer 液晶聚合物
LDPE Low-density polyethylene plastics 低密度聚乙烯塑料
LLDPE Linear low-density polyethylene 线性低密聚乙烯
LMDPE Linear medium-density polyethylene 线性中密聚乙烯
MBS Methacrylate-butadiene-styrene 甲基丙烯酸-丁二烯-苯乙烯共聚物
MC Methyl cellulose 甲基纤维素
MDPE Medium-density polyethylene 中密聚乙烯
MF Melamine-formaldehyde resin 密胺-甲醛树脂
MPF Melamine/phenol-formaldehyde 密胺/酚醛树脂
PA Polyamide (nylon) 聚酰胺(尼龙)
PAA Poly(acrylic acid) 聚丙烯酸
PADC Poly(allyl diglycol carbonate) 碳酸-二乙二醇酯? 烯丙醇酯树脂
PAE Polyarylether 聚芳醚
PAEK Polyaryletherketone 聚芳醚酮
PAI Polyamide-imide 聚酰胺-酰亚胺
PAK Polyester alkyd 聚酯树脂
PAN Polyacrylonitrile 聚丙烯腈
PARA Polyaryl amide 聚芳酰胺
PASU Polyarylsulfone 聚芳砜
PAT Polyarylate 聚芳酯
PAUR Poly(ester urethane) 聚酯型聚氨酯
PB Polybutene-1 聚丁烯-[1]
PBA Poly(butyl acrylate) 聚丙烯酸丁酯
PBAN Polybutadiene-acrylonitrile 聚丁二烯-丙烯腈
PBS Polybutadiene-styrene 聚丁二烯-苯乙烯
PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯
PC Polycarbonate 聚碳酸酯
PCTFE Polychlorotrifluoroethylene 聚氯三氟乙烯
PDAP Poly(diallyl phthalate) 聚对苯二甲酸二烯丙酯
PE Polyethylene 聚乙烯
PEBA Polyether block amide 聚醚嵌段酰胺
PEBA Thermoplastic elastomer polyether 聚酯热塑弹性体
PEEK Polyetheretherketone 聚醚醚酮
PEI Poly(etherimide) 聚醚酰亚胺
PEK Polyether ketone 聚醚酮
PEO Poly(ethylene oxide) 聚环氧乙烷
PES Poly(ether sulfone) 聚醚砜
PET Poly(ethylene terephthalate) 聚对苯二甲酸乙二酯
PETG Poly(ethylene terephthalate) glycol 二醇类改性PET
PEUR Poly(ether urethane) 聚醚型聚氨酯
PF Phenol-formaldehyde resin 酚醛树脂
PFA Perfluoro(alkoxy alkane) 全氟烷氧基树脂
PFF Phenol-furfural resin 酚呋喃树脂
PI Polyimide 聚酰亚胺
PIB Polyisobutylene 聚异丁烯
PISU Polyimidesulfone 聚酰亚胺砜
PMCA Poly(methyl-alpha-chloroacrylate) 聚α-氯代丙烯酸甲酯
PMMA Poly(methyl methacrylate) 聚甲基丙烯酸甲酯
PMP Poly(4-methylpentene-1) 聚4-甲基戊烯-1
PMS Poly(alpha-methylstyrene) 聚α-甲基苯乙烯
POM Polyoxymethylene, polyacetal 聚甲醛
PP Polypropylene 聚丙烯
PPA Polyphthalamide 聚邻苯二甲酰胺
PPE Poly(phenylene ether) 聚苯醚
PPO Poly(phenylene oxide) deprecated 聚苯醚
PPOX Poly(propylene oxide) 聚环氧(丙)烷
PPS Poly(phenylene sulfide) 聚苯硫醚
PPSU Poly(phenylene sulfone) 聚苯砜
PS Polystyrene 聚苯乙烯
PSU Polysulfone 聚砜
PTFE Polytetrafluoroethylene 聚四氟乙烯
PUR Polyurethane 聚氨酯
PVAC Poly(vinyl acetate) 聚醋酸乙烯
PVAL Poly(vinyl alcohol) 聚乙烯醇
PVB Poly(vinyl butyral) 聚乙烯醇缩丁醛
PVC Poly(vinyl chloride) 聚氯乙烯
PVCA Poly(vinyl chloride-acetate) 聚氯乙烯醋酸乙烯酯
PVCC chlorinated poly(vinyl chloride)(*CPVC) 氯化聚氯乙烯
PVI poly(vinyl isobutyl ether) 聚(乙烯基异丁基醚)
PVM poly(vinyl chloride vinyl methyl ether) 聚(氯乙烯-甲基乙烯基醚)
RAM restricted area molding 窄面模塑
RF resorcinol-formaldehyde resin 甲苯二酚-甲醛树脂
RIM reaction injection molding 反应注射模塑
RP reinforced plastics 增强塑料
RRIM reinforced reaction injection molding 增强反应注射模塑
RTP reinforced thermoplastics 增强热塑性塑料
S/AN styrene-acryonitrile copolymer 苯乙烯-丙烯腈共聚物
SBS styrene-butadiene block copolymer 苯乙烯-丁二烯嵌段共聚物
SI silicone 聚硅氧烷
SMC sheet molding compound 片状模塑料
S/MS styrene-α-methylstyrene copolymer 苯乙烯-α-甲基苯乙烯共聚物
TMC thick molding compound 厚片模塑料
TPE thermoplastic elastomer 热塑性弹性体
TPS toughened polystyrene 韧性聚苯乙烯
TPU thermoplastic urethanes 热塑性聚氨酯
TPX ploymethylpentene 聚-4-甲基-1戊烯
VG/E vinylchloride-ethylene copolymer 聚乙烯-乙烯共聚物
VC/E/MA vinylchloride-ethylene-methylacrylate copolymer 聚乙烯-乙烯-丙烯酸甲酯共聚物
VC/E/VCA vinylchloride-ethylene-vinylacetate copolymer 氯乙烯-乙烯-醋酸乙烯酯共聚物
PVDC Poly(vinylidene chloride) 聚(偏二氯乙烯)
PVDF Poly(vinylidene fluoride) 聚(偏二氟乙烯)
PVF Poly(vinyl fluoride) 聚氟乙烯
PVFM Poly(vinyl formal) 聚乙烯醇缩甲醛
PVK Polyvinylcarbazole 聚乙烯咔唑
PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮
S/MA Styrene-maleic anhydride plastic 苯乙烯-马来酐塑料
SAN Styrene-acrylonitrile plastic 苯乙烯-丙烯腈塑料
SB Styrene-butadiene plastic 苯乙烯-丁二烯塑料
Si Silicone plastics 有机硅塑料
SMS Styrene/alpha-methylstyrene plastic 苯乙烯-α-甲基苯乙烯塑料
SP Saturated polyester plastic 饱和聚酯塑料
SRP Styrene-rubber plastics 聚苯乙烯橡胶改性塑料
TEEE Thermoplastic Elastomer,Ether-Ester 醚酯型热塑弹性体
TEO Thermoplastic Elastomer, Olefinic 聚烯烃热塑弹性体
TES Thermoplastic Elastomer, Styrenic 苯乙烯热塑性弹性体
TPEL Thermoplastic elastomer 热塑(性)弹性体
TPES Thermoplastic polyester 热塑性聚酯
TPUR Thermoplastic polyurethane 热塑性聚氨酯
TSUR Thermoset polyurethane 热固聚氨酯
UF Urea-formaldehyde resin 脲甲醛树脂
UHMWPE Ultra-high molecular weight PE 超高分子量聚乙烯
UP Unsaturated polyester 不饱和聚酯
VCE Vinyl chloride-ethylene resin 氯乙烯/乙烯树脂
VCEV Vinyl chloride-ethylene-vinyl 氯乙烯/乙烯/醋酸乙烯共聚物
VCMA Vinyl chloride-methyl acrylate 氯乙烯/丙烯酸甲酯共聚物
VCMMA Vinyl chloride-methylmethacrylate 氯乙烯/甲基丙烯酸甲酯共聚物
VCOA Vinyl chloride-octyl acrylate resin 氯乙烯/丙烯酸辛酯树脂
VCVAC Vinyl chloride-vinyl acetate resin 氯乙烯/醋酸乙烯树脂
VCVDC Vinyl chloride-vinylidene chloride 氯乙烯/偏氯乙烯共聚物

G. 树脂怎么选择

不饱和树脂的参数一般看其酸价,一般酸价低的树脂质量较好;二是黏度,黏度越大,说明分子含量高。三固化时间,可以反映树脂的活性。四、固体含量,五、放热峰值;

H. 如何加速使液体树脂快速凝固且不变形无气泡

配方工艺调整下,固化用量很关键

不饱和聚酯树脂中阻聚剂及其他添加剂的影响
为了不饱和聚酯树脂的稳定,常在其中加入阻聚剂或缓聚剂。这是一种能与链自由基反应形成非自由基或不能再引发的低活性自由基,使交联固化速率降低为零的物质。因此,低反应活性的树脂有可能因为其中加入的阻聚剂量很少而显得反应活性很高,而高反应活性的树脂也可能因其中加入了过量的阻聚剂而变得不甚活泼。另外其他添加剂例如:阻燃剂、色浆、低收缩剂、各种填料的加入,引入了磷、卤、金属离子或其他因素,都会影响树脂交链反应活性。
(6)固化剂、阻聚剂用量的影响
用JX-196树脂作固化实验,不同固化剂、阻聚剂用量的影响如下:
组号 BPO TBC HQ N-Cu 凝胶时间min 放热峰温度℃ 固化时间min
1 0.3 0 0 0 3.7 178 1.7
2 0.3 0.02 0.07 0.07 12.9 143 3.05
3 0.3 0.02 0.07 0.02 12.3 167 2.7
4 0.3 0.04 0.04 0.04 11.3 164 2.6
5 0.6 0.02 0.07 0.07 8.3 181 1.7
6 0.6 0.02 0.07 0.02 6.4 184 1.5
7 0.6 0.04 0.04 0.04 7.6 185 1.3
8 0.9 0.04 0.04 0.04 4.2 191 1.2

从上述实验可以看出:三组不同固化剂用量固化结果形成三个阶梯,用量越大,固化越快,放热峰越高。不同的阻聚剂和不同的用量固化效果也为不相同。因此在树脂制造和使用过程中,掌握好阻聚剂、固化剂的合理匹配十分重要。
2 不饱和聚酯树脂固化网络结构分析
2.1不饱和聚酯树脂交联网络结构
不饱和聚酯中的双键与交联剂中的双键聚合形成不溶不熔的交联网络结构,网络中含有两种聚合物分子链结构。网络主体由不饱和聚酯分子链的无规线团组成,苯乙烯共聚分子链穿插其中,将不饱和聚酯分子链连接和固定起来,形成一个巨大的网。在网中不饱和聚酯分子链平均分子量为1000-3000。连接在不饱和聚酯分子链间苯乙烯分子链的长度为1-3个,而从某个引发点开始,聚酯分子 → 苯乙烯 链 → 聚酯分子 → 苯乙烯链 → 这样的连续重复,最多也只有7-8个交替,这样苯乙烯共聚物分子链平均分子量可达8000-14000。整个网络结构平均分子量为10000-30000。如果网络分子量小于10000会直接影响制品的力学性能 ,如强度、弹性和韧性等。
2.2 不饱和聚酯树脂交联网络的长寿命自由基
不饱和聚酯树脂交联网络在固化过程中,不饱和聚酯和苯乙烯各自双键的聚合进程及残留率的变化具有一定的特色。实验表明不管聚酯树脂交联网络完善与否,都会产生一些自由基无法终止的空间位阻的死点,形成长寿命自由基。这些长寿命自由基又只会存在于不饱和聚酯链上,而不会出现在只有两个官能度的小分子的交联剂上。由于长寿命自由基的存在,不饱和聚酯树脂固化后交联反应仍能进行。温度的升高,特别是接近树脂玻璃化温度时,分子的可动性大大增加,长寿命自由基得以活动,可以和残余的交联剂单体继续进行交联反应,这就是树脂后固化可以提高固化度的原因。
2.3 聚酯树脂网络结构中的微相分离现象
实验分析表明,在交联良好的不饱和聚酯树脂中也存在着一种微相分离结构。这种微相分离很可能是在聚合过程中,由于不同分子链的相互排斥作用,聚酯链和交联剂以某种方式分别敛集在一起而产生了分相。固化初期的放热峰使两相相互溶合在一起,这是不饱和聚酯树脂形成均匀网络的重要条件。但放热峰后相分离的过程又在随着时间的延续不断进行和发展。低温的处理可加速该微相分离的发展,相反,热处理可以消除这种微相分离。当温度升高时首先可以使敛集较松的分相区破坏,温度再升高又可使敛集较紧的分相区破坏,最后,玻璃化温度以上的高温就可使所有分相区消除。相区一经破坏,再重新聚集分相就不象聚合时单体运动、排列自如,而要受到网络的限制。而在两相玻璃化温度以上的高温处理导致在网络均匀状态下进一步的聚合和交联,可从根本上消除这种微相分离。
微相分离现象的存在对材料的性能有相当大的影响。实验表明,同一条件下聚酯浇铸体样品,25℃室温固化30天,固化度达到90.2%,其巴柯硬度为38.5。而经高温处理后,虽然固化度提高不大为92.6%,但由于消除了相分离的影响,巴柯硬度竟达到44.4。可见微相分离对树脂的硬度影响很大。同时也可以理解高温后处理试样刚度大大超过室温固化试样的原因所在。因此,我们要十分强调不饱和树脂玻璃钢制品,尤其是防腐蚀、食品用等玻璃钢设备,一定要经过高温后处理,消除微相分离现象再投入使用。
2.4交联剂对网络结构的影响

上面已经说到,两种单体交联固化时,竞聚率在影响不饱和聚酯树交联网络的均匀性方面起着关键性的作用。因此在选择交联剂时必须注意竞聚率,使交联剂与不饱和聚酯能很好的交替共聚,形成均匀的网络结构。此外交联剂分子量要小一点,官能度要低,与聚酯要有优良的相容*联剂用量的选择上,一般说来交联剂用量过少,不饱和聚酯的双键不能完全反应,用量过多又必然形成大量的塑性链,这两种情况都不能使树脂形成均匀紧密地网络。实验表明,交联剂苯乙烯的用量通常为35%左右,即与聚酯双键之比在1:1.6-2.4之间。
2.5不饱和聚酯分子量对交联网络的影响
聚酯分子量越大,分子链越长,分子量越小,分子链越短。实验表明,随着聚酯分子量的增加,形成完整网络的概率也越大,分子量小,形成完整网络就较困难。随着分子量增加,网络中端基减少,节点增加,耐热性越好。因此分子量大的树脂耐热性能较高。
2.6 不饱和聚酯分子结构对网络性能的影响
不饱和聚酯交联点间分子结构对网络热性能有直接的影响。不饱和聚酯分子结构单元由双键、酯键、醚键、亚甲撑、芳环类等集团组成。一般情况下,双键之间的链节越短,树脂的热变性温度就越高。双键间链节延长会使热变性温度降低。
弯曲强度是材料拉伸强度和抗压强度的综合体现,是材料性能重要的指标。树脂的交联密度越高,承受负荷的分子链越多,弯曲强度也应越高。但有时实际上却非如此。这是因为树脂网络是极不均匀的,而且均匀*联密度的增加而下降。因此在外力的作用下,各分子链的受力也不均匀。再有,高交联密度树脂其分子张紧而难以运动,变性量很小,在外力作用下宁折不弯。可见高交联树脂由于均匀性差,分子链难以松弛双重原因会造成他们弯曲强度不高。一个有高温使用价值的树脂,其理想的分子结构应该是在双键间主链中引入一连串非对称的芳杂环结构,最好能带有少量的极性键。
2.7 引发剂及固化条件对树脂网络结构的影响
(1)引发剂种类不同 ,树脂交联固化性能也不同。以过氧化环己酮(HCH)/环烷酸钴(CoN)和过氧化苯甲酰(BPO)/二甲基苯胺(DMA)两种氧化-还原体系为例进行固化实验可以看到:以BPO/DMA体系引发以苯乙烯为交联剂的树脂,固化达80h的过程中用丙酮萃取的百分率缓慢下降至24.9%,而以HCH/CoN体系引发同样以苯乙烯为交联剂的树脂固化至4.5h后即下降至24.5%,可见以HCH/CoN体系引发固化不饱和聚酯树脂要比BPO/DMA体系引发更为有效。同时发现,以HCH/CoN引发体系固化的树脂网络中长寿命自由基的数量10个月后仍然不低于固化80天后的数量。相比之下,以BPO/DMA引发体系固化的树脂网络中长寿命自由基的数量却很快消失殆尽了,充分说明该体系对树脂网络的形成有很大影响。尤其固化后期要达到较高的固化程度比较困难。
(2)固化条件不同树脂固化网络的性能也将有很大差异。以天津巨星公司JX-196树脂为例:取JX-196树脂,加入HCH/CoN引发体系后分成两份,分别置于25℃恒温水浴和25℃空气浴中,记录下每一试样在固化过程中温度的变化情况。可以看到,在固化前期树脂的温度情况水浴与

空气浴基本一致,但是在凝胶以后,在空气浴中固化样品放热峰较高,而在水浴中固化样品放热峰温度比前者要低20-30℃。再将两种样品进行后固化处理以后测定,在空气浴中固化的试样各种性能参数都明显优于在水浴中固化的试样。这说明同一树脂在经历不同固化条件时,起始的固化度有明显差别。虽然只要有足够的引发剂存在并经高温后处理,最终固化度将趋于一致,可是固化性能却有显著差别。这就是说,初始的固化条件奠定了交联网络结构基础,因而也就在相当大的程度上确定了材料的物性。所以在固化工艺中有一种所谓成夹生饭无法再煮熟之说。树脂固化以后分子就难以穿插运动了,因此影响网络结构的关键时刻是凝胶时刻的一段时间,在这段时间,为了保证树脂网络结构的均匀性和连续性,要求交联剂继续渗透和溶胀,而此时出现的放热峰起到了这种作用,虽然交联产物最终固化度未见得更高,但性能却要比无放热峰者为好。
JX-196树脂在空气浴与水浴中固化性能比较
凝胶时间min 放热峰温度℃ 巴柯硬度 弯曲强度KPa
空气浴℃ 9.7 184 43 211
水浴℃ 11.6 163 30 188

阅读全文

与不饱和聚酯树脂物性相关的资料

热点内容
印染废水中cod排放量是多少 浏览:245
冷干机的滤芯如何拆下来 浏览:552
海尔净水器出水管接口怎么拆 浏览:13
河北水垢漏斗 浏览:689
白云区农村ppp污水项目 浏览:498
安吉尔水壶滤芯怎么拆 浏览:318
电厂化学废水调整及注意事项 浏览:892
什么叫纳米微晶技术净化器 浏览:43
百佳境界净水器如何 浏览:695
甲醇蒸馏塔再沸器的原理 浏览:268
ro膜氯化 浏览:984
洁厕灵能除垢 浏览:459
油烟机净化器的价格多少钱一台 浏览:334
净化器电源怎么测量 浏览:332
wq污水提升泵 浏览:415
污水处理50户需多少立方池 浏览:656
树脂是不是ab胶 浏览:694
减压蒸馏怎么拆 浏览:544
饮水机为什么加热一会就保温 浏览:287
电解法处理污水基于什么原理 浏览:229