1、离子交换树脂颗粒尺寸:
离子交换树脂一般呈颗粒状,树脂颗粒的尺寸是非常重要的,如果树脂颗粒尺寸大的话,反应速度就比较慢一些,而树脂颗粒尺寸小,反应速度较快,但是液体通过的阻力也比较大,需要较高的工作压力,所以树脂颗粒的大小一般是经过严格筛选才能够确定,大多数的树脂的尺寸的有效粒径在0.4~0.6mm左右。
2、离子交换树脂的密度:
离子交换树脂的密度有两种,一种是树脂干燥时的密度,被称为真密度,另外一种是树脂湿润时的密度,被称为视密度。树脂的密度和树脂的交联度是息息相关的,交联度高的树脂密度一般也较高,而强酸性或强碱性的树脂要比弱酸性或弱碱性树脂的密度高一些。
3、离子交换树脂的溶解性:
离子交换树脂一般情况下是不溶性物质,不过树脂在合成的过程中,可能会加入一些聚合度较低的物质,就会导致树脂在工作时将这些物质溶解出来,根据统计交联度较低和含活性基团多的树脂,溶解倾向较大,我们在选择树脂时也要考虑到树脂溶解性能不能符合自己的要求。
4、离子交换树脂的耐用性:
离子交换树脂在运输、储存、使用时,树脂可能会发生摩擦、膨胀或者收缩等变化,长期使用后,还可以会发生树脂破损等现象,所以在选择树脂时,树脂的机械强度和耐磨性也是非常重要的一点,一般交联度低的树脂,耐磨性也较低。
5、离子交换树脂的膨胀度:
离子交换树脂体内本身就含有一定的水分,还有其他的亲水基团,使用树脂在与水接触时,就会发生树脂膨胀的现象,树脂在转型时,也会发生膨胀,比如树脂由氢型转为钠型时,树脂就会发生膨胀,一般情况下,树脂的交联度越低,膨胀度就越大,所以在树脂在装填时需要根据树脂膨胀的大小,确认树脂装填的高度。
6、离子交换树脂的水分:
一定离子型态的树脂其颗粒内所含的平衡水量是该树脂的固有特性。同种树脂,不同的离子型态,其含水量也是不同的。为此,国家标准也规定了各种树脂在特定的离子型态下的含水量。树脂在使用的过程中,随着各种因素对树脂的损害,其含水量也会发生变化。因此,树脂含水量的变化大小,也是判断树脂受损性程度的依据之一。
详情点击:网页链接
㈡ 大孔树脂的影响因素
吸附树脂对有机物的去除效果与树脂本身的结构性质、吸附质的结构以及吸附版处理过程中的操作条件有着权密切的关系。 大孔吸附树脂是多孔性物质,其孔径特性可用比表面积(S) 、孔体积
(V) 和计算所得的平均半径 (r) 来表征。假定孔道为圆柱形,则三者关系r=2V/S,V可由压汞仪测得,S可由比表面积测定仪测得。被分离成分通过树脂的孔道而扩散到树脂的内表面而被吸附。大孔吸附树脂孔径的大小,直接影响不同大小的分子自由进入,从而使树脂具有选择性。因此,只有当孔径对于被分离成分足够大时,比表面积才能充分发挥作用,即大孔吸附树脂比表面积越高,而平均孔径小。其吸附速度越慢,解吸越不够集中,杂质的分离效果也就越差。 当溶液中存在二种以上溶质时,往往会引起一种溶质易吸附而使另一种溶质的吸附量降低,一般来讲,对混合溶质的吸附较纯溶质的吸附效果差。
㈢ 生活污水处理过程中如何选择离子交换树脂
离子交换树脂是一种高分子化合物,多数用于水处理过程中.
离子交换树脂的选择内性
水中的各容种离子在和离子交换树脂进行交换时所表现出来的能力是不一样的,很容易被置换下来的离子却有可能难以被树脂吸附,然而很难被置换下来的离子却又有可能很容易的被树脂吸附,这种性能即被称作为离子交换树脂的选择性.
影响离子交换树脂选择性的三大因素
一.离子被离子交换树脂吸附的容易与否,取决于离子所带电荷的多少.离子带的电荷越少,越不容易被吸附.举例来说,一价离子和二价离子相比较,一价电子不易被吸附,而二价离子则相对容易被吸附.
二.当离子所带电荷量相同时,比较容易被吸附的是原子序较大的离子,而原子序较小的离子则相对不容易被吸附.
三.溶液的稀释情况一样可以影响树脂的吸附.浓溶液同稀溶液相比较而言,浓溶液则使得原本不易被吸附的低价离子相对的容易被树脂所吸附.
离子交换树脂的选择性,对于分析和判断化学水处理过程是很重要的.罗门哈斯公司是专业生产树脂的知名企业,在树脂产品领域具有非常领先的科技.
㈣ 大孔树脂吸附原理
大孔树脂吸附原理:
大孔树脂吸附作用是依靠它和被吸附的分子(吸附质) 之间的范德华引力,通过它巨大的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。
大孔吸附树脂为吸附性和筛选性原理相结合的分离材料。大孔吸附树脂的吸附实质为一种物体高度分散或表面分子受作用力不均等而产生的表面吸附现象,这种吸附性能是由于范德华引力或生成氢键的结果。
同时由于大孔吸附树脂的多孔性结构使其对分子大小不同的物质具有筛选作用。通过上述这种吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而达到分离的目的。
(4)影响树脂颗粒大小的因素有哪些扩展阅读:
大孔树脂吸附的用途:
大孔吸附树脂吸附技术最早用于废水处理、医药工业、化学工业、分析化学、临床检定和治疗等领域,近年来在我国已广泛用于中草药有效成分的提取、分离、纯化工作中。
与中药制剂传统工艺比较,应用大孔吸附树脂技术所得提取物体积小、不吸潮、易制成外型美观的各种剂型,特别适用于颗粒剂、胶囊剂和片剂,改变了传统中药制剂的粗、黑、大现象,有利于中药制剂剂型的升级换代,促进了中药现代化研究的发展。
国家中医药管理局等单位联合发布的2002~2010《医药科学技术政策》明确提出:研制开发中药动态逆流提取、超临界萃取、中药饮片浸润、大孔树脂分离等技术。
㈤ 离子交换树脂的物理性质
离子交换树脂的颗粒尺寸和有关的物理性质对它的工作和性能有很大影响。
离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。
树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。多数通用的树脂产品的有效粒径在0.4~0.6mm之间。
树脂颗粒是否均匀以均匀系数表示。它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。如一种树脂(IR-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。
树脂颗粒使用时有转移、摩擦、膨胀和收缩等变化,长期使用后会有少量损耗和破碎,故树脂要有较高的机械强度和耐磨性。通常,交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生。
㈥ 什么叫离子交换树脂的选择性有什么规律
离子交换树脂的颗粒尺寸和有关的物理性质对它的工作和性能有很大影响。离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。多数通用的树脂产品的有效粒径在0.4~0.6mm之间。树脂颗粒是否均匀以均匀系数表示。它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。如一种树脂(ir-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。树脂在干燥时的密度称为真密度。湿树脂每单位体积(连颗粒间空隙)的重量称为视密度。树脂的密度与它的交联度和交换基团的性质有关。通常,交联度高的树脂的密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性者,而大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1.26g/ml,视密度为0.85g/ml;而丙烯酸系凝胶型弱酸阳离子树脂的真密度为1.19g/ml,视密度为0.75g/ml。(3)树脂的溶解性离子交换树脂应为不溶性物质。但树脂在合成过程中夹杂的聚合度较低的物质,及树脂分解生成的物质,会在工作运行时溶解出来。交联度较低和含活性基团多的树脂,溶解倾向较大。高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:Fe3+>Al3+>Ra2+>Pb2+>Sr2+>Ca2+>Ni2+>Cd2+>Cu2+>Co2+>Zn2+>Mg2+>Ba2+>K+>NH4+>Na+>Li+对强酸性阳树脂,H+的选择性介于Na+和Li+之间。但对弱酸性阳树脂,H+的选择性最强。
㈦ 离子交换树脂的选择原则是什么
离子交换树脂的吸附交换原理:
离子交换树脂本身的离子一般是低价离子,所以离子交换树脂在与水接触时,根据树脂的吸附选择性,会将水中的高价离子吸附,将低价离子释放,而这些被释放的低价离子会与水中的其他离子结合,成为无害的物质,而在实际使用的过程中,经常都是将树脂转化为其他的离子形式进行使用,比如一般阳离子交换树脂会转化为钠型树脂再进行使用,从而达到软化水的目的。
离子交换树脂的吸附顺序:
1.离子交换树脂对阳离子的吸附顺序:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
2.强碱性阴离子交换树脂对阴离子的吸附顺序:
SO42- > NO3- > Cl- > HCO3- > OH-
3.弱碱性阴离子交换树脂对阴离子的吸附顺序:
OH- > 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
详情点击:离子交换树脂的选择性
㈧ 求pvb树脂的高手帮我解答问题 谢谢!pvb树脂的颗粒大小以及杂志的决定因素是什么还有其粘度
对PVB不太熟悉。
建议:
1,搜索PVB的网页和物性表;
2,到新华书店找树脂材料物性表;
㈨ 影响离子交换树脂的因素
1.悬浮物和油脂 水中的悬浮物会堵塞树脂孔隙,油脂会包住树脂颗粒,它们都会使交换能力下降。
2.有机物 废水中某些高分子有机物与树脂活性基团的固定离子结合力很强,一旦结合就很难再生,结果降低树脂的再生率和交换能力,例如高分子有机酸与强碱性季胺基团的结合力就很大,难于洗脱。
3.高价金属离子 废水中Fc3+、AL3+、Cr3+等高价金属离广可能导致树脂中毒。当树脂受铁离子中毒时,会使树脂的颜色变深。高价金属离子易为树脂吸附,再生时难于把它洗脱下来,结果会降低树脂的交换能力。为了恢复树脂的交换能力可用高浓度酸液长时间浸泡。
4.pH值 离子交换树脂是由网状结构的高分子固体与附在母体上许多活性基团构成的不溶性高分子电解质。强酸和强碱树脂的活性基团的电离能力很强,交换能力基本上与pH值无关,但弱酸性树脂在低pH值时不电离或部分电离,因此在碱性条件下,才能得到较大地交换能力。弱碱性树脂在强酸性条件下才能有较大地交换能力。
5.水温 水温高虽可加速离子地交换扩散,但各种离子交换树脂都有一定的允许使用温度范围。水温超过允许温度时,合使树脂交换基团被分解破坏,从而降低树脂的交换能力,所以温度太高时,应进行降温处理。
6.氧化剂 废水中如果含有氧化剂(如Cl2,O2,H2Cr2O7)时,会使树脂氧化分解。强碱阴树脂容易被氧化剂氧化,使交换基团变成非碱性物质,可能完全丧失交换能力。氧化作用也会影响交换树脂的母体,使树脂加速老化,结果使交换能力下降。为了减轻氧化剂对树脂的影响,可选用交联度大的树脂或加入适当的还原剂。
㈩ 离子交换树脂的指标所代表具体含义是什么
(东营市禾成化学科技有限公司的离子交换树脂 )
离子交换树脂是高分子化合物,所以它们的结构和性能因制造工艺的不同而不同,为此,对于商品离子交换树脂的性能,必须用一系列指标加以说明。
同一类型的离子交换树脂,其交联剂加入量的多少,对产品的物理化学性能有很大的影响,一般加交联剂多(即交联度大)的树脂,由于许多苯乙烯链都被交联成网状,所以其产品有网孔小、机械强度大和稳定性较好等特点,其特点是交换容量较小。
一、物理性能
1、外观
⑴ 颜色。离子交换树脂是一种透明或半透明的物质,依其组成的不同,呈现的颜色也各异,苯乙烯系均呈黄色,其他也有黑色及赤褐色的。树脂的颜色稍深。树脂在使用中,由于可交换离子的转换或受杂质的污染等原因,其颜色会发生变化,但这种变化不能确切表明它发生了什么改变,所以只可以作为参考。
⑵ 形状。离子交换树脂一般均呈球形。树脂呈球状颗粒数占颗粒总数的百分率,称为圆球率。对于交换柱水处理工艺来说,圆球率愈大愈好,它一般应达90%以上。
树脂圆球率的测定方法,是先将树脂在60℃烘干、称重,然后慢慢倒在倾斜10°的玻璃上端,让树脂分散地向下自由滚动,将滚动下来的树脂再称重,后者与前者比值的百分数即为圆球率。
2、粒度
树脂颗粒的大小对水处理的工艺过程有较大的影响。颗粒大,交换速度就慢;颗粒小,水通过树脂层的压力损失就大。如果各个颗粒的大小相差很大,则对水处理的工艺过程是不利的。这首先是因为小颗粒堵塞了大颗粒间的孔隙,水流不匀和阻力增大;其次,在反洗时流速过大会冲走小颗粒树脂,而流速过小,又不能松动大颗粒。用于水处理的树脂颗粒粒径一般为0.3~1.2mm。树脂粒度的表示法和过滤介质的粒度一样,可以用有效粒径和不匀系数表示。
3、密度
离子交换树脂的密度是水处理工艺中的实用数据。例如在估算设备中树脂的装载量,需要知道它的密度。离子交换树脂的密度有以下几种表示法。
(1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干真密度 = g/mL
此值一般为1.6左右,在实用意义不大,常用在研究树脂性能方面。
(2)湿真密度。湿真密度是指树脂在水中经过充分膨胀后,树脂颗粒的密度:
湿真密度 = g/mL
(3)湿视密度.湿视密度是指树脂在水中充分膨胀后的堆积密度:
湿视密度 = g/mL
湿视密度用来计算交换器中装载树脂时所需湿树脂的质量,此值一般在0.60~0.85之间。阴树脂较轻,偏于下限;阳树脂较重,偏于上限。
4、含水率
离子交换树脂的含水率是指它在潮湿空气中所保持的水量,它可以反映交联度和网眼中的孔隙率。树脂的含水率愈大,表示它的孔隙率愈大,并联度愈小。
5、溶胀性
当将干的离子交换树脂浸入水中时,其体积常常要变大,这种现象称为溶胀。
影响溶胀率大小的因素有以下几种:
(1)溶剂。树脂在极性溶剂中的溶胀性,通常比在非极性溶剂中强。
(2)交联度。高交联度树脂的溶胀能力较低。
(3)活性基团。此基团愈易电离,树脂的溶胀性愈强。
(4)交换容量。高交换容量离子交换树脂的溶胀性要比低交换容量的强。
(5)溶液深度。溶液中电解质浓度愈大,由于树脂内外溶液的渗透压差减小,树脂的溶胀率愈小。
(6)可交换离子的本质。可交换的水合离子半径愈大,其溶胀率愈大,故对于强酸和强碱性离子交换树脂,溶胀率大小的次序为:
H+>Na+>NH4+>K+>Ag+
OH->HCO3≈CO32->SO42->Cl-
一般,强酸性阳离子交换树脂由Na转变成H型,强碱性阴离子交换树脂由Cl型转变成OH型,其体积均增加约5%。
由于离子交换树脂具有这样的性能,因而在其交换和再生的过程中会发生胀缩现象,多次的胀缩就容易促使树脂颗粒碎裂。
6、耐磨性
交换树脂颗粒在运行中,由于相互磨轧和胀缩作用,会发生碎裂现象,所以其耐磨性是一个影响其实用性能的指标。一般,其机械强度应能保证每年的树脂耗损量不超过3%~7%。
7、 溶解性
离子交换树脂是一种不溶于水的高分子化合物,但在产品中免不了会含有少量低聚物。因这些低聚物较易溶解,所以其应用的最初阶段。这些物质会逐渐溶解。
离子交换树脂在使用中,有时也会发生转变成胶体渐渐溶入水中的现象,即所谓胶溶。促使胶溶的因素有:树脂的交联度小、电离能力大、离子的水合半径大,有时还有受高温或被氧化的影响。特别是强碱性阴树脂,它会因化学降解而产生胶溶现象。
所以在运行中要密切注意其运行条件:如离子交换树脂处于蒸馏水中要比在盐溶液中易胶溶,Na型比Ca型易胶溶。离子交换器备用后刚投入运行时,有时发生出水带色的现象,就是胶溶的缘故。
8、 耐热性
各种树脂所能承受的温度都有限度,超过此温度,树脂热分解的现象就很严重。由于各种树脂的耐热性能不一,所以对每种树脂能承受的最高温度,应由鉴定试验来确定。一般阳树脂可耐100℃或更高的温度;阴树脂,强碱性的约可耐60℃,弱碱性的可耐80℃以上。通常,盐型要比酸型或碱型稳定。
9、 抗冻性
根据对各种树脂在-20℃的抗冻性试验,发现大孔型树脂的搞冻性优于凝胶型树脂,实际上冰对大孔型树脂没有影响。凝胶型阳树脂的抗冻性不如阴树脂。无论阴、阳树脂,机械强度好的(磨后圆球率高),抗冻性能也好。进行滤干外部水分的001×7阳树脂10周期(冻干24h,再完全解冻24h为1周期)的测定,发现磨后圆球率有所下降,裂球率提高,冰冻对浸在水中的001×7阳树脂的磨后圆球率几乎无影响;201×7阴树脂不管滤干外部水分、还是浸在水中冰冻,磨后圆球率和裂球率均变化不大,表明阴树脂韧性较强。
10、 耐辐射性能
在有核反应堆的企业中,所用离子交换剂的抗辐射性是很重要的。一般而论,无机离子交换剂的耐辐射性能较好,而树脂均易降解,其中又以阴树脂为严重。
11、导电性
干燥的离子交换树脂不导电,纯水也不导电,但用纯水润湿的离子交换树脂可以导电,所以这种导电属于离子型导电。这种导电在离子交换膜及树脂的催化作用上很重要。
二、化学性能