⑴ 什么是碳基涂层
carbon matrix composite碳基复合材料有两种制备方法:一是浸渍法,即用增强体浸渍熔融的石油或煤沥青,再经碳化和石墨处理,它的基体是石墨碳,呈层状条带结构,性能是各向异性的。还有用增强体浸渍糠醇或酚醛等热固性树脂,只经碳化处理,它的基体是玻璃碳,即无定型碳结构,性能是各向同性的;另一是CVD法,即把烃类化合物的热解碳沉积在增强体上来进行复合,这种方法的碳基体是类似玻璃碳的热解碳。碳/碳复合材料不耐氧化,所以有时需要加抗氧化涂层
⑵ 石油是怎么来的
石油是由史前的海洋动物和藻类尸体变化形成的(陆上的植物则一般形成煤。)经过漫长的地质年代这些有机物与淤泥混合,被埋在厚厚的沉积岩下。在地下的高温和高压下它们逐渐转化,首先形成腊状的油页岩,后来退化成液态和气态的碳氢化合物。
由于这些碳氢化合物比附近的岩石轻,它们向上渗透到附近的岩层中,直到渗透到上面紧密无法渗透的、本身则多空的岩层中。这样聚集到一起的石油形成油田。
阿拉伯国家有如此丰富的石油资源的原因:阿拉伯在中东,中东地区是海洋生活着许多海洋生物,石油就是这些海洋生物和这些热带植物的尸体所组成的。
(2)石油树脂碳化扩展阅读:
石油的成油机理有生物沉积变油和石化油两种学说,前者较广为接受,认为石油是古代海洋或湖泊中的生物经过漫长的演化形成,属于生物沉积变油,不可再生;后者认为石油是由地壳内本身的碳生成,与生物无关,可再生。
石油主要被用来作为燃油和汽油,也是许多化学工业产品,如溶液、化肥、杀虫剂和塑料等的原料。
从寻找石油到利用石油,大致要经过四个主要环节,即寻找、开采、输送和加工,这四个环节一般又分别称为“石油勘探”、“油田开发”、“油气集输”和“石油炼制”。“石油勘探”有许多方法,但地下是否有油,最终要靠钻井来证实。一个国家在钻井技术上的进步程度,往往反映了这个国家石油工业的发展状况。
因此,有的国家竞相宣布本国钻了世界上第一口油井,以表示他们在石油工业发展上迈出了最早的一步。“油田开发”指的是用钻井的办法证实了油气的分布范围,并且油井可以投入生产而形成一定生产规模。
⑶ 有长期使用耐高温150度以上的树脂吗
聚四氟乙烯树脂可耐高温,长期工作在150度没有问题。制成品有薄膜,棒材等多种规格,可以买到。
⑷ 煤化作用的阶段与特征
一、煤的成岩作用与变质作用
无论是岩石学还是煤田地质学领域,对于成岩与变质作用的划分都存在着不同的认识。一般认为,由于亮褐煤(中国的老褐煤、美国的亚烟煤)已出现镜煤,具有强烈的镜煤化作用,并且具有微弱的光泽。因此,主张煤的成岩与变质作用的分界开始于亮褐煤的形成。
1.煤的成岩作用
泥炭形成后,由于盆地的沉降,在上覆沉积物的覆盖下被埋藏于地下,经压实、脱水、增碳,游离纤维素消失,出现了凝胶化组分,逐渐固结并具有了微弱的反射力,经过这种物理化学变化转变成年轻褐煤。这一转变所经历的作用称为煤的成岩作用。据E.Stach认为,这种作用大致发生于地下200~400m的浅层。
图3-1 成煤作用的阶段划分
图3-2 各种煤的含氧官能团含量变化(据Krevelen,1981)
在成岩作用中,煤受到复杂的化学和物理煤化作用。化学煤化作用主要反映在泥炭内的腐植酸、腐植质分子侧链上的亲水官能团,以及环氧数目不断地减少,形成各种挥发性产物,并导致碳含量增加,氧和水分含量减少。Blom等(1957)曾列举了煤的多种含氧官能团随碳含量增加的变化(表3-1),并引用了Krevelen(1961)图解(图3-2)。这是由于有机质的基本结构单元主要是带有侧链和官能团(如羟基—OH、甲氧基—OCH3、羧基—COOH、甲基—CH3、醚基—C—O—C、羰—=C=O等)的缩合稠环芳烃体系,碳元素主要集中于稠环中。稠环的结合力强,具较大的稳定性。侧链和官能团之间及其与稠环之间的结合力相对较弱,稳定性差。因此,在煤化过程中,随温度及压力的增加,侧链和官能团不断发生断裂和脱落,数目减少,从而形成各种挥发性产物,如CO2,H2O,CH4等逸出。
煤的物理煤化作用主要反映在发生了物理胶体反应,即成岩凝胶化作用,从而使未分解或未完全分解的木质纤维组织,不断转变为腐植酸、腐植质,使已经形成的腐植酸、腐植质变为黑色具有微弱光泽的凝胶化组分。成岩作用中,丝炭化组分和稳定组分也发生了变化。
2.煤的变质作用
煤的变质作用是指年轻褐煤,在较高的温度、压力及较长地质时间等因素的作用下,进一步受到物理化学变化,变成老褐煤(亮褐煤)、烟煤、无烟煤、变无烟煤的过程。这一阶段所发生的化学煤化作用表现为腐植物质进一步聚合,失去大量的含氧官能团(如羧基—COOH和甲氧基—OCH3),腐植酸进一步减少,使腐植物质由酸性变为中性,出现了更多的腐植复合物。本阶段物理煤化作用表现为结束了成岩凝胶化作用,形成凝胶化组分,植物残体已不存在,稳定组分发生沥青化作用,使叶片表皮蜡质和孢粉质的外层脱去甲氧基,形成易软化、塑性强,具粘结性的沥青质,并开始具有微弱的光泽。在温度、压力的继续作用下,腐植复合物不断发生聚合反应,使稠环芳香系统不断加大,侧链减少,不断提高芳香化程度和分子排列的规则化程度,变质程度不断提高,进而转变为烟煤、无烟煤和变无烟煤。M.R.Teichmüller根据一些作者的资料。以图解形式对微镜煤在烟煤和无烟煤煤化过程中的物理、化学变化和分子排列上的变化作了说明(图33)。
二、煤化作用特点
煤在连续的系列演化过程中,可明显地显现出增碳化趋势,即由泥炭阶段含有C,H,O,N,S5种主要元素,演变到无烟煤阶段基本上只含碳一种元素。因此,煤化作用过程,也可称作异种元素的排出过程。排出的方式是由其他元素和碳结合构成挥发性化合物,因此造成了随煤化程度增加,煤中的挥发物减少,碳含量增加。其次,也表现为结构单一化趋势,即由泥炭阶段含多种官能团的结构,逐渐演变到无烟煤阶段只含缩合芳核的结构,最后演变为石墨结构。因此,煤化作用过程实际上是依序排除不稳定结构的过程。煤化作用过程还表现为结构致密化和定向排列的趋势,即随煤化作用的进行,煤的有机分子侧链由长变短,数目变少,腐植复合物的稠核芳香系统不断增大,逐渐趋于紧密,分子量加大,缩合度提高,分子排列逐渐规则化,从混杂排列到层状有序排列,因此反光性能增强。
煤化作用过程中还表现为煤显微组分性质的均一性趋势,在煤化作用的低级阶段,煤显微组分的光性和化学组成结构差异显著,但随着煤化作用的进行,这些差异趋于一致,变得愈来愈不易区分。
煤化作用是一种不可逆的反应。煤化作用能否形成连续的系列演化过程,决定于具体地质条件。例如,含煤盆地由沉降转变为抬升,就会导致煤化作用的终止;如果后来由于岩浆作用加剧,或盆地再度沉降,那么煤化作用还可能再次进行下去。
图3-3 烟煤和无烟煤煤化过程中微镜煤的物理、化学和分子变化(据M.R.Teichmüller,1954,1968,简化并改绘)
表3-1 煤中各种官能团的氧含量 单位:%
(据Blom等,1957)
煤化作用的发展是非线性的,表现为煤化作用的跃变,简称煤化跃变。煤的各种物理、化学性质的变化,在煤化进程中,快、慢、多、少是不均衡的。20世纪40年代,英国煤岩学家指出,煤化过程中镜质组反射率的增高是跳跃式的。1939年Stach提出,挥发分为28%时类脂组出现煤化作用转折。70年代以来,提出了煤化过程中的4次明显变化,即煤化作用跃变。
第一次跃变发生在长焰煤开始阶段(Cdaf=75%~80%,Vdaf=43%,镜质组反射率Romax=0.6%),它与石油开始形成阶段相当(Cdaf,Vdaf等符号含义见第七章)。本次跃变的特点是沥青化作用的发生,随煤化程度的提高,各种含氧官能团逐渐脱落,在Rom=0.6%以前主要以析出CO2和H2O为特征;当煤化作用达到Rom=0.5%~0.6%阶段,芳香核稠环上开始脱落脂肪族和脂肪族官能团和侧链,形成以甲烷为主的挥发物,于是开始了生成沥青质的沥青化作用。
第二次煤化跃变出现在肥煤到焦煤阶段(Cdaf=87%,Vdaf=29%,Romax=1.3%)。跃变的发生是因煤中甲烷的大量逸出,从而释放出大量的氢所造成的。本阶段开始,由于富氢的侧链和键的大量缩短及减少,使煤的比重下降到最小值。在压力的作用下,煤的显微孔隙度逐渐缩小,水分减少。到焦煤阶段(Cdaf=89%,Vdaf≈20%,Romax≈1.7%),腐植凝胶基本上完成了脱水作用,水分和孔隙度都达到了最低值,发热量则升高到最大值(这和镜质组的硬度、密度的最小值,以及炼焦时可塑性最大值相一致),随后由于化学结构的变化,水分含量又有所回升。此外,第二次跃变中还有耐磨性、焦化流动性、粘结性、内生裂隙数目等都达到极大值,内面积、湿润热等达到最小值。这些性质变化曲线的明显转折,称为煤化作用转折。自第二次跃变后,壳质组与镜质组在颜色、突起、反射率等方面的差异愈加变小,当Vdaf=22%时,无论用化学还是用光学方法都不能使孢子体、花粉体与镜质组分开,角质体也有类似趋势,其反射率甚至高于镜质组。因此,壳质组在Vdaf=29%~22%这一阶段的明显变化又称为煤化台阶。本阶段与油气形成的深成阶段后期(即热裂解气开始形成阶段)相当,石油烃转化为气体烃,因此它对应于石油的“死亡线”。
第三次跃变发生于烟煤变为无烟煤阶段(Cdaf=91%,Vdaf=8%,Romax=2.5%)。煤化作用的第三次跃变以后,就是有人称为无烟煤化作用和半石墨化作用(M.R.Teich-müller,1987)的阶段,它们代表了煤化作用的最终阶段,其产物是无烟煤和变无烟煤的形成。
第四次跃变为无烟煤与变无烟煤分界(Cdaf=93.5%,Hdaf=2.5%,Vdaf=4.0%,镜质组反射率Romax=4%,Rom=3.5%)。本阶段和初期煤化作用阶段相比有较多的不同。在化学煤化作用方面,主要表现为氢含量与氢碳原子比的急剧下降。碳含量随埋藏深度的增加明显地增大,同时芳香单元的芳香度和缩合度也急剧增加。
物理煤化作用不仅首先反映在硬度增大、光泽增强上,到变无烟煤时几乎呈浅黄色金属光泽,宏观上微层理已不明显。更为明显的变化是在光学特征上,即在非偏光下,无烟煤与变无烟煤都更加显示出均质性的特征,在正交偏光下,主要显微组分又可显出差异,角质组和孢子体达到了最大反射率,且双反射率也较高,惰质组的最大反射率约等于或低于镜质组的反射率,镜质组的最大反射率在无烟煤阶段以后有时可以超过惰质组。
无烟煤阶段镜质组反射率随着煤化作用进一步增高,进入变无烟煤以后,由于最小反射率(Rmax为6%时)迅速减小,双反射率急剧加大(图3-4)。原联邦德国北部闵斯特兰1号钻孔,随深度增加煤化作用程度加深,并由此带来镜质组反射率的变化(图35)。镜质组反射率在无烟煤和变无烟煤(超无烟煤)阶段数据分布如此离散的原因,除了镜质组的二轴光性特征以外,还因为难以区别各种不同显微组分。
本阶段在煤的结构上主要表现为芳香族稠环体系的缩合度进一步增加,侧链更加减少,芳香单元直径加大,层系间空间减小,使得顺层面三维的定向排列更加紧密(图3-6)。
图3-4 以氢含量和镜质组反射率(Rmax、Rm和Rmin)为基础,介于烟煤和石墨阶段之间的煤级的增高(据Ragot,1977)
煤化作用中,腐植物质的煤化作用与沥青质的沥青化作用是同期进行的。沥青化作用是指壳质组(包括藻类体)和镜质组在煤化过程中形成沥青质,即石油型烃类的一种作用。这种作用起始于硬褐煤阶段(Rom=0.5%),持续到早期肥煤阶段(Rom=1.2%)。
荧光显微镜的发展进一步促进了对沥青化的认识。在荧光显微镜下观察,老褐煤亚烟煤和高挥发分烟煤的裂隙和微孔中,充填有弱反射的具强荧光的有机物质。烟煤中的沥青质来源于壳质组和镜质组,尤其是富氢镜质组。在一些用聚酯树脂浸润过的高挥发分烟煤光片上,用短波光照射时,可见到从镜质体裂隙、树脂体及渗出沥青体中析出的显示绿—黄荧光的油滴,在某些低煤化烟煤光片中可见到从镜质组微孔中渗出的沥青质所形成的薄膜。大约在Rom为0.6%~0.8%阶段,有些沥青质和部分树脂体一起转变为微粒体。
图3-5 原联邦德国北部闵斯特兰1号钻孔中的镜质组反射率(Rmax,Rmin和Rm)随深度而增加(据M.R.Teichmüller,1979)
由于镜质组中有0.4~0.6μm以下的极微孔隙起着分子筛的作用,使煤中生成的沥青质不能自由移动,而以吸附方式(可能还有化学方式)等为镜质组所吸收,只有少部分在裂隙微孔中形成渗出沥青体。
富含沥青的煤多与海相或钙质沉积有关,含有丰富的壳质组(包括藻类体)和基质镜质体,黄铁矿与有机硫含量较高,并以氢含量和焦油产率高、水分低、反射率低、荧光性强的微镜煤为特点。这种煤在炼焦时,软化早且可塑性强,甚至在低煤化阶段就显示出良好的粘结性,显然这与沥青化作用的影响有关。煤中沥青质的产生,促进了煤化作用中的成岩凝胶化,从而使煤的结焦性较好,而且沥青化阶段的煤(Rom=0.5%~1.3%)最适合于煤的加氢。这是因为沥青质的产生,也促使高煤化阶段起阻碍作用的富氧官能团大大减少,因而在上覆压力下芳香层系顺层面易于有序排列,从而增加了反射率的各向异性。
关于煤化作用特征的认识在不断深化。近期,关于煤化作用中惰性组的演化问题,已日益受到关注,惰性组在煤化作用中不变化的观点已为若干研究成果所改变。有人提出至少一部分惰性组显微组分,如微粒体,是从富氢显微组分(如沥青质体)在成油之后伴随煤化作用形成的一种产物。Teichmüller所称的后生丝质体也是腐植壳质组织,是在地球化学煤化作用中由于惰性化作用形成的。
图3-6 低煤级及高煤级分子结构模式图(据Oberlin等,1980)
⑸ 油性氟碳漆和水性氟碳漆有什么区别
水性漆和油性漆有什么区别?
现今,人们都讲究低碳环保,所以在装修的时候,人们大多会选择一些比较环保的涂料。今天我们就主要讲一下环保型的防水性的涂料,防水性的涂料主要分为两种形式的涂料:水性漆和油性漆。那么这两款防水性的涂料的区别究竟在哪里呢?
水性氟碳漆广泛适用于各种建筑物外墙、屋顶及各种建材的耐久性装饰保护涂层。氟碳漆是现代工业防腐领域中应用较为广泛的油漆涂料,有水性和油性之分,不同类型的产品拥有不同的产品特点和涂覆范围,关于两者的区别将在本篇文章中讲述。
水性漆与油性漆的区别可以从以下几个角度来陈述:
a. 涂料体系的不同
1.树脂不同,水性漆由水性的氟碳乳液为成膜物质,属于一种高耐候性的保护涂料,涂膜硬度高,抗耐沾污性好。可分散(溶)于水中;
2.稀释剂(溶剂)不同。水性漆可用diwater(去离子水)进行任意比例添加进行稀释,油性漆则只能用有机溶剂(无味煤油、轻质白油等)进行稀释。
3.VOC含量不同,水性漆是一种环保健康的涂料,VOC含量很低,符合环保质量标准,使用也不会影响人们的健康。
b. 涂料施工要求不同
1.对于施工环境,水的冰点是0℃,因此水性漆不能在5℃以下施工,而油性漆在-5℃以上均可施工,只是干燥速度会减缓,道间间隔会拉长;
2.对于施工粘度,水的降粘效果差,水性漆在加稀降粘时会相对麻烦(粘度降低会大幅降低涂料工作液的固体份,影响涂料的遮盖力,增加了施工道数),油性漆调节粘度较为方便,粘度限制也会影响施工方式的选择;
3.对于干燥固化,水性漆更为娇气,湿度大了温度低了都不能很好固化,干燥时间延长,但如果升温加热,水性漆也需要梯度升温,瞬间进入高温环境,水性漆表干后内部水汽外溢会造成针孔甚至大面积鼓泡,这是因为水性漆里只有水作为稀释剂,没有挥发梯度。而油性漆,稀释剂为各沸点不同的有机溶剂组成,有多个挥发梯度,闪蒸(施工完毕后至进入烘箱之前的晾置期)后进入高温区烘烤不会出现类似现象。
c. 成膜后涂膜装饰性的不同
c-1. 光泽表现力不同
1.油性漆可以根据研磨来控制颜填料的细度,在存储中不易反粗,通过添加树脂控制涂料pvc(颜基比)、助剂(如消光剂)来实现涂膜光泽的变化,光泽可做到无光、哑光、半哑、高光。汽车漆的光泽能高达90%以上;
2.水性漆光泽表现力没有油性漆那么广,高光泽表现力较差,这是因为水性漆中的水作为稀释剂造成的,水的挥发特性导致了水性漆难以表现85%以上的高光泽。
c-2. 颜色表现力不同
1.油性漆颜填料选择范围广,即可是无机的又可是有机的,因此可以调出各种颜色,颜色表现力极佳;
2.水性漆颜填料选择范围小,大部分有机颜料是无法使用的,因色调不全,要调出像油性漆那么丰富的色彩是有困难的。
d. 存储和运输
水性漆不含易燃有机溶剂,存储运输相对安全,出现污染也可用大量水进行冲洗稀释,但水性漆存储和运输均有温度要求,零下5℃就需进行保温运输和存储,否则会出现破乳等问题。
e. 功能上的超越
油性漆大多为有机类产品,有机类产品在高温状况会出现断链、碳化等系列问题,目前有机类产品最高耐温不超过400℃。水性漆中采用特殊无机树脂的特种耐高温涂料则可耐温上千度,如上海衡峰FC-W系列水性氟碳漆在兼顾常规涂料的防腐、防氧化性能外,还能长期耐高温,最高可耐3000℃高温,这是油性漆不可能达到的高度。
g. 安全环保的差异
油性漆在生产、运输、储存、使用过程中均存在着火、爆炸的安全隐患,特别是在密闭空间施工,更是容易造成窒息、爆炸。同时有机溶剂也会对人体造成一定的伤害。最著名的案例就是甲苯致癌案,现甲苯已不让使用。油性漆的voc高,常规产品甚至高达400多,企业在生产、使用油性漆时环保和安全压力非常大。而水性漆在生产、运输、储存、使用环节都是环保、安全的(部分非正规厂家的伪水性漆除外),对于相应国家政策节能减排,安全环保做出了巨大贡献。
⑹ 炭素是什么东东
炭素是以高纯度优质无烟煤,经过深加工改变煤的一些性质得出的东西,原子为c,主要制品有石墨电极类等。
炭素制品按产品用途分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类等等。俗称炭砖或电炉块,主要用于冶金行业:有色金属和无色金属的冶炼以及电石、磷化工企业。
炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等炭素制品按原料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。
炭素的应用:
人工机械心脏瓣膜自1969年临床应用成功后,不到10年时间就有20多万人植入了这种人工心瓣,其中大约70%是用掺硅低温热解同性碳制成的。同类型机械心瓣在国内也于1978年应用于临床。通过完善机械心瓣的结构来不断改善心瓣的功能仍是当前研究的热点。
碳纤维及其织造物作为修复损伤的韧带与肌腱,国内已广泛应用于临床,当碳纤维作为腱的取代物移入体内后起柔性固定的作用,碳纤维相当于支架,新的腱逐渐在碳纤维周围形成并最终取而代之。
以上内容参考:网络—炭素
⑺ 淤泥固化处理方法
淤泥处理是对污泌泥进行处理、固化、脱水、稳定、干化或焚烧的加工过程。
原淤泥 (raw sludge):未经淤泥处理的初沉淀淤泥。二沉剩余淤泥或两者的混合淤泥。 初沉淤泥 (primary sludge): 从初沉淀池排出的沉淀物。
中文名称
淤泥处理
外文名称
suldge treatment
类型
加工过程
技术
堆肥化处理技术
泥浆处理小型河道清淤设备污水处理厂淤泥处理河道清淤设备清淤设备淤泥泵自来水污泥可以种绿化吗淤泥处理方案河道淤泥处理方案河道淤泥处理
分类
性质
原淤泥 (raw sludge):未经淤泥处理的初沉淀淤泥。二沉剩余淤泥或两者的混合淤泥。
初沉淤泥 (primary sludge): 从初沉淀池排出的沉淀物。二沉淤泥 (secondey sludge ):从二次沉淀池(或沉淀区)排出的沉淀物。 活性淤泥 (activated sludge): 曝气池中繁殖的含有各种好氧微生物群体的絮状体。
消化淤泥 (activated sludge): 经过好氧消化或厌氧消化的淤泥,所含有机物质浓度有 一定程度的降低,并趋于稳定。
回流淤泥 (returned sludge): 由二次沉淀(或沉淀区)分离出来,回流到曝气池的活 性淤泥。 剩余淤泥 (excess activated sludge): 活性淤泥系统中从二次沉淀池(或沉淀区)排 出系统外的活性淤泥。 淤泥气 (sludge gas): 在淤泥厌氧消化时,有物分解所产生的气体,主要成分为甲烷和 二氧化碳,并有少量的氢、氮和硫化氢。俗称沼气。
处理
淤泥处理前,首先要了解淤泥的分类,才能确定淤泥处理的方法:
1.自来水厂沉淀池或浓缩池排出的物化淤泥处理 淤泥分类:属中细粒度有机与无机混合淤泥,可压缩性能和脱水性能一般。
2.生活污水厂二沉池排出的剩余活性淤泥处理
淤泥分类:属亲水性、微细粒度有机淤泥,可压缩性能差,脱水性能差。
3.工业废水处理产生的经浓缩池排出的物化和生化混合淤泥处理 淤泥分类:属中细粒度混合淤泥,含纤维体的脱水性能较好,其余可压缩性能和脱水性能一般。
4.工业废水处理产生的经浓缩池排出的物理法和化学法产生的物化细粒度淤泥处理 淤泥分类:属细粒度无机淤泥,可压缩性能和脱水性能一般。 5.工业废水处理产生的物化沉淀粗粒度淤泥处理 淤泥分类:属粗粒度疏水性无机淤泥,可压缩性能和脱水性能很好。
技术原理
1.淤泥处理利用的一般技术
(1)淤泥的堆肥化处理技术
(2)淤泥的建材化技术
(3)淤泥的燃料化技术
(4)淤泥的厌氧消化(制沼气)技术
2.淤泥的电离辐射处理技术 微波技术在淤泥处理中的应用
(1)微波辐照淤泥处理技术
(2)微波化学分析技术
3. 超声波处理淤泥技术
4. 重金属的生物有效性及植物脱除技术
5. 淤泥的微生物处理技术
(1) 微生物淋滤技术
(2) 微生物吸附处理法
(3) 微生物脱臭技术
6.新兴淤泥热化学处理技术
(1) 湿式氧化技术
(2) 活性淤泥作黏结剂
(3) 剩余淤泥制可降解塑料
(4) 淤泥制活性炭
(5) O3/H2O2氧化技术
(6) UV/O3氧化技术
(7) UV/H2O2氧化工艺
(8) 其他热化学处理技术简介
处理方法
淤泥消化 (sldge digestion): 在氧或无氧的条件下,利用微生物的作用,使淤泥中的
有机物转化为较稳定物质的过程。
好氧消化 (aerobic sigestion): 淤泥经过较长时间的曝气,其中一部分有机物由好氧
微生物进行降解和稳定的过程。
厌氧消化 (anaerobic digestion): 在无氧条件下,淤泥中的有机物由厌氧微生物进行 降解和稳定的过程。 中温消化 (mesophilic digestion ):淤泥在温度为33-530C时进行的厌氧消化工艺。
高温消化 (thermophilic digestion ):淤泥在温度为53-330C进行的厌氧消化工艺。
淤泥浓缩 (sludge thickening): 采用重力或气浮法降低淤泥含水量,使淤泥稠化的过程。
淤泥淘洗 (elutriation of sludge ): 改善淤泥脱水性能的一种淤泥预处理方法。用清 水或废水淘洗淤泥,降低消化淤泥碱度,节省淤泥处理投药量,提高淤泥过滤脱水效 率。 泥脱水 (sludge dewatering ): 对浓缩淤泥进一步去除一部分含水量的过程,一般指 机械脱水。
淤泥真空过滤 (sludge vacuum filtration ): 利用真空使过滤介质一侧减压,造成介质 两侧压差,将淤泥水强制滤过介质的淤泥脱水方法。
淤泥压滤 (sludge pressure filtration ): 采用正压过滤,使淤泥水强制滤过介质的污 泥脱水方法。
淤泥干化 (sludge drying ): 通过渗滤或蒸发等作用,从淤泥中去除大部分含水量的过 程,一般指采用淤泥干化场(床)等自蒸发设施。
淤泥焚烧 (sludge incineration ):淤泥处理的一种工艺。它利用焚烧炉将脱水淤泥加 温干燥,再用高温氧化淤泥中的有机物,使淤泥成为少量灰烬。
几种淤泥处理的方法及优缺点分析
①淤泥的卫生填埋
这种处置方法简单、易行、成本低,淤泥又不需要高度脱水,适应性强。但是淤泥填埋也存在一些问题,尤指填埋渗滤液和气体的形成。渗滤液是一种被严重污染的液体,如果填埋场选址或运行不当会污染地下水环境。填埋场产生的气体主要是甲烷,若不采取适当措施会引起爆炸和燃烧。
②淤泥的直接土地利用
淤泥土地直接利用因投资少、能耗低、运行费用低、有机部分可转化成土壤改良剂成分等优点,被认为是最有发展潜力的一种处置方式,科学合理的土地利用,可减少淤泥带来的负面效应。林地和市政绿化的利用因不易造成食物链的污染而成为淤泥土地利用的有效方式。淤泥用于严重扰动的土地(如矿场土地、森林采伐场、垃圾填埋场、地表严重破坏区等需要复垦的土地)的修复与重建,减少了淤泥对人类生活的潜在威胁,既处置了淤泥又恢复了生态环境。
③淤泥的焚烧
湿淤泥干化后再直接焚烧应用得较为普遍,没有经过干化的淤泥直接进行焚烧不仅十分困难,而且在能耗上也是极不经济的。 以焚烧为核心的淤泥处理方法是最彻底的淤泥处理方法,它能使有机物全部碳化,杀死病原体,可最大限度地减少淤泥体积;但是其缺点在于处理设施投资大,处理费用高。
工艺流程
首先,原淤泥通过淤泥泵由二沉池打到另一个池子中从而和上清液分离。因为原淤泥的含水率通常能达到99.5%,所以淤泥必须浓缩,有多种可行的方法用于减少淤泥的体积。例如真空过滤和离心等机械处理的方法通常用于将淤泥以半固体形式处置之前。通常这些方法是淤泥焚烧处理的准备工作。如果计划采用生物处理,则多数才用重力沉降或者是气浮的方法进行浓缩。这两种情况所对应的淤泥仍然是流态的。
重力浓缩池的设计和运行类似于污水处理中的二沉池。浓缩功能是主要的设计参数,为了满足更大的浓缩能力,浓缩池基本上比二沉池要深。一个设计正确,运行良好的重力浓缩池至少能提高两倍的淤泥含泥量。也就是说,淤泥的含水率可以有99.5%减少到98%,或者更少。这里值得一提的是,重力浓缩池的的设计要尽量基于中式结果的分析,因为合适的淤泥负荷率与淤泥的属性的有很大关系的。
如果采用溶气气浮浓缩,需要有一小部分的水,通常是二沉池出水,在400kPa的压力下充气。这种过饱和的液体通入罐底,而淤泥在大气压下通过。气体以小气泡的形式和淤泥中的固体颗粒黏附,或则是被包围,从而带动固体颗粒上浮到表面。浓缩了的淤泥的上部被除去,而液体由底部流回溶气罐充气。
体积减少后,淤泥中含有大量的有害成分,在处置之前需要将之转化为惰性成分。最常用的方法是生物降解稳定。因为这个过程目的在于将物质转化为最终无菌产物,所以常应用消化的方法。淤泥消化既能进一步的减少淤泥体积也能使所含固体转化为惰性物质并且大体的上没有病菌。通过厌氧消化或好养消化都能达到淤泥消化目的。
淤泥含有多种有机物,因此需要多种微生物来分解。有关资料将厌氧消化中的微生物分为两类:产酸菌和甲烷菌。所以,我们也能把厌氧消化分为两步。第一步,由兼性厌氧菌和厌氧菌组成的产酸菌通过水解作用溶解有机固体。接着溶解质由发酵作用转化为酒精和低分子量分子。第二步,有严格厌氧菌组成的甲烷菌将乙酸、酒精、水和二氧化碳转化为甲烷。因为两种菌群只能在无氧的环境下存活,所以厌氧消化的反应器必须是密闭的。设计容器的时候同时也要考虑另外的一些因素,例如:温度、pH值和混合物搅拌。 淤泥也可以通过好氧消化稳定。这种消化基本上只能用于可生化淤泥而不能用于初沉池淤泥,伴随着二沉池和淤泥浓缩池中淤泥体积的减少,这个工艺需要不断的鼓气。好氧消化多应用于深度曝气系统。再者,好氧消化对环境条件不敏感,也不局限有流行变化。
淤泥消化以后,淤泥中的有机物能被去除并且能进一步的减少淤泥体积。接下来,淤泥需要处置。多种方法可以用来有效的处置淤泥。其中包括焚烧、卫生填埋和用作化肥以及土壤改良剂。原淤泥可以用来焚烧,可以有效地减少含水率。添加燃料可以用来引起和维持燃烧,城市垃圾也可能用来达到这个目标。原淤泥和消化淤泥也可以用卫生填埋来处置。淤泥的土地应用实践了好几年,而只限于处理消化淤泥。淤泥的营养成分有利于植物成长,而其颗粒特性可用于土地改良。这些应用局限有饲料作物和非人类消费,而运用于支持可食用植物的可能性正在研究中。淤泥土地应用的主要限制因素为植物富集金属毒性和水体富营养污染。淤泥的应用可通过在流态时由喷淋器喷淋、沟渠导流或直接注入土壤。去水淤泥可以由传统农用机械铺设在土地之上在和培养土壤。 上述文字指的是一般淤泥的处理。因为淤泥能造成环境的污染,所以我们需要尽最大的努力使之无害化。很多导致类型污染的具有不同特性淤泥正在研究中。在本文中,我将叙述一种来自于人类产油和石油工业的淤泥,这个代表性淤泥称之为含油淤泥。
大量的淤泥产生,而这种淤泥中含有相当大量的油,必须在最终处置之前将之去除。炼油厂产生的淤泥不能被安全的处置,除非将其含油量去除到一定程度。此外,在炼油厂的油水分离系统和储油罐中因为含油原料的累积而产生的淤泥的处理费用很高,并且对环境造成很严重的污染。石油是一种疏水混合物例如:烷烃,芳香烃,树脂和沥青。许多化合物是有毒性的,致突变的和致癌的。它们的排放的受到严格控制的,因为它们对人体健康和环境的负面影响,它们被美国环保部门分类并列为环境污染物优先。
有很多种方法可以用来处理含油淤泥。化学和物理的方法例如:焚烧、氯氧化、臭氧氧化和燃烧,生物的处理方法例如:生物修复、传统堆肥法等等。随着技术的发展,含油淤泥的低温冷处理和生物修复成为了两条有效的处理途径。
低温冷处理技术作为一种物理的处理方法能有效地增加淤泥的脱水性质,改变絮凝剂的结构形式并减少淤泥周围的水含量。比较那种"初沉降",冷处理能够除掉溶液中的杂质,因此达到更好浓缩目的,最近就是在讨论冷处理的这种好处。据我们所知,资料中没有讨论冷处理技术来分离油泥中的油的可行性。但是,如果在自然条件允许的许多国家里,冷处理技术提供了一种有效的处理含油淤泥的处理和处置的方法。 通过比较常规方法处理和冷处理之后淤泥,我们可以发现,冷处理之后的样品上面浮了一层油。最后我们可以发现试管中分三层:最上面的一层是清的浮油,底层是一层深色的沉降物,中间一层是清水。原始的淤泥经过24小时的沉降,可以看见上浮液和底部沉降物,但是没有可见的油相。通过上面的叙述的现象揭示了简单的冷处理能有效分离油泥中的油。
物理化学的方法可以用来处理油泥,但是费用却是很高的。堆肥和通过接种降解油类菌种或激活原有生物进行生物修复被看为两种经济的方法来对付油污染。堆肥有些看得见的优点例如:基建和维护费用低、设计和运行简单并能去处部分的油。然而,堆肥处理基本上不能达到环境的标准了。 油泥中含有的大部分油是难于生物降解的。很多研究证明了生
⑻ 既然塑料是石油做的,那么能不能把塑料在变回为石油
塑料的合成原料来自石油提取物中的不饱和烃。首先,成分决定了塑料不能变成石油。其次,不是所有的反应都是可逆的。很多塑料加热可以直接碳化,没有碳氢化合物甚至无法改变。这是不可能的。以后可能会实现。目前的技术不可用。塑料的主要成分是聚乙烯。这个反应是不可逆的,不可能把塑料变成油乙烯可以通过石油裂解得到,石油是合成塑料等有机物的基本原料。
它们可以自由改变其组成和形状,由合成树脂和添加剂如填料、增塑剂、稳定剂、润滑剂和颜料组成。塑料的主要成分是树脂。树脂一词最初是以动植物分泌的脂类命名的,如松香、虫胶等。树脂是指没有与各种添加剂混合的高分子化合物。树脂约占塑料总重量的40%~100%。塑料的基本性能主要取决于树脂的性质,但添加剂也起着重要的作用。
⑼ 环氧树脂和不饱和聚酯树脂哪个将来发展前景较好
给你看两篇文章
不饱和聚酯树脂产品发展至今大约有70多年的历史。在这么短的时期内,不饱和聚酯树脂产品无论从产量还是从技术水平方面均得到了飞速的发展,目前不饱和聚酯树脂产品已发展成为热固性树脂行业中最大的品种之一。
在不饱和聚酯树脂的发展过程中,从产品专利、商业杂志、技术书籍等方面的技术信息层出不穷。至今每年都有上百项发明专利是关于不饱和聚酯树脂的。由此可见,不饱和聚酯树脂制造和应用技术随着生产的发展也日益成熟,逐步形成了自己独特的完整的生产与应用理论的技术体系。
在过去的发展过程中,不饱和聚酯树脂对于一般用途来说,具有特殊意义的贡献。将来我们要向一些特殊用途的领域发展,同时还要使通用树脂低成本化。下面介绍几种比较有意义和发展前景的不饱和聚酯树脂类型。
1)低收缩树脂。这个树脂品种或许只是一个老话题,不饱和聚酯树脂在固化时伴随有较大的收缩,一般体积收缩率达6-10%。这种收缩会使材料严重变型甚至破裂,尤其是在模压成型工艺中(SMC、BMC)。为了克服这一缺点,通常采用热塑性树脂作低收缩添加剂。在这个领域的第一个专利是1934年杜邦公司,专利号为U.S.1,945,307。专利叙述了二元羧酸与乙烯基化合物的共聚合反应。很明显,在当时,这项专利开创了聚酯树脂低收缩技术的先河。此后,有很多人志力于共聚物体系的研究,这些共聚物体系当时被认为是塑料合金。1966年Marco的低收缩树脂被首次用于模塑成型中并用于工业化生产。其后塑料工业协会将这种产品称为"SMC",含义为片状模塑料,它的低收缩预混配合物"BMC"含义为团状模塑料。对于SMC板材,一般要求树脂成型后的部件具有良好的配合公差、柔韧性和A级光泽,要避免表面有微裂纹,这就要求配合的树脂要有较低的收缩率。
当然,其后又有很多专利对这项技术进行了改进和提高,对于低收缩作用的机理的认识也逐渐成熟,各种各样的低收缩剂或低轮廓添加剂品种应运而生。常用的低收缩添加剂有聚苯乙烯、聚甲基丙烯酸甲酯等。
2)阻燃树脂。有时阻燃材料与药品救助具有同等的重要性,阻燃材料可以避免或减少灾难的发生。欧洲最近十年由于采用了阻燃剂,火灾致死人数降低了约20%。阻燃材料本身的安全性也是很重要的,在工业上,规范使用材料类型是缓慢的、艰难的过程,目前欧共体已经和正在对很多卤系及卤-磷系阻燃剂进行危害性评估,其中很多将于2004年-2006年间完成。
目前我国一般采用含氯或含溴的二元醇或二元酸卤素取代物作为原料来制得反应型阻燃树脂。卤素阻燃剂在燃烧时会产生大量烟雾并伴有刺激性很强的卤化氢生成。在燃烧过程产生的这一浓烟毒雾给人们造成极大的危害。据统计,火灾事故中80%以上的死亡原因是由此而造成的。用溴或氯系作为阻燃剂的另一不利条件是在其燃烧时还会产生腐蚀性和污染环境的气体,会导致对电器原件的破坏。采用无机阻燃剂如水合氧化铝、镁、硼、钼化合物等阻燃添加剂,虽有明显消烟作用,能制得低烟低毒阻燃树脂,但如果无机阻燃剂填料量过大,不但树脂粘度增大,不利于施工,同时树脂中加入大量添加型阻燃剂时,会影响树脂固化成型后的机械强度和电性能。
目前,国外很多专利报导了采用磷系阻燃剂生产低毒、低烟阻燃树脂的技术。磷系阻燃剂的阻燃效果相当大,燃烧时生成的偏磷酸可聚合成稳定的多聚态,形成保护层,覆盖在燃烧物表面,隔离氧气,促进树脂表面脱水碳化,形成碳化保护膜从而阻止燃烧。同时磷系阻燃剂还可与卤素阻燃剂配合使用,有非常明显的协同作用。
当然,将来阻燃树脂的研究方向是低烟、低毒、低成本。理想的树脂是无烟、低毒、低成本、不影响树脂固有的物理性能、不需加入添加材料,能够在树脂生产厂直接生产制造的阻燃树脂。
3)增韧树脂。与最初的不饱和聚酯树脂品种相比,现在的树脂韧性已经有了大幅度的提高。但随着不饱和聚酯树脂下游行业的发展,对不饱和树脂的性能提出了更多新的要求,尤其是韧性方面。不饱和树脂固化后的脆性,几乎成了限制不饱和树脂发展的重要问题。不论是从浇铸成型的工艺品产品还是模压成型或缠绕成型的产品,断裂延伸率成为考核树脂产品质量的重要指标。
目前国外一些厂商采用加入饱和树脂的方法来提高韧性。如添加饱和聚酯、丁苯橡胶和端羧基丁苯橡胶等,这种方法属于物理增韧法。还可采用向不饱和聚酯的主链中引入嵌段聚合物,例如不饱和聚酯树脂与环氧树脂和聚氨酯树脂形成的互穿网络结构,极大地提高了树脂的拉伸强度和冲击强,这种增韧方法属于化学增韧法。还可采用物理增韧与化学增韧相结合的方法如把活性较高的不饱和聚酯与活性较低的材料相混就能达到所需的柔韧性能。目前SMC板材由于其轻质、高强、耐腐蚀性、设计灵活性在汽车行业得到了广泛的应用,对于汽车而板、车后门、外面板等重要部位,要求有较好的韧性,例如汽车外护板可在稍受碰后有限度地向后弯曲并恢复原状。
提高树脂的韧性,往往会损失树脂的其它性能,如硬度、弯曲强度耐热性能以及在施工时的固化速度等。提高树脂的韧性又不损失树脂的其它固有性能成了不饱和聚酯树脂科研开发的重要课题。
4)低苯乙烯挥发树脂。在加工不饱和聚酯树脂的过程中,挥发性的有毒苯乙烯会对施工人员的健康产生很大的危害。同时苯乙烯散发到空气中,也会造成严重的空气污染。因此,很多国家的职能机关限制苯乙烯在生产车间空气中允许的浓度。例如在美国其允许PEL值(permissibleexposurelevel)是50ppm,而在瑞士,其PEL值为25ppm,这样低的含量是不太容易达到的。依靠强力的通风作用也很有限。同时,强力的通风还会导致苯乙烯从制品的表层散失以及大量苯乙烯挥发到空气中。因此寻找减少苯乙烯挥发的方法,从根源上来说,还是要在树脂生产厂完成这项工作。这就要求开发不污染或少污染空气的低苯乙烯挥发(LSE)树脂或无苯乙烯单体的不饱和聚酯树脂。
减少挥发性单体含量,在近几年来一直是国外不饱和聚酯树脂行业开发的课题,目前采用的方法有很多种:1)加入低挥发抑制剂的方法。2)不含苯乙烯单体的不饱和聚酯树脂配方有用二乙烯基体、乙烯基甲基苯、α-甲基苯乙烯来取代含苯乙烯单体的乙烯基单体3)低苯乙烯单体的不饱和聚酯树脂配方是并用上述单体与苯乙烯单体,比如使用邻苯二甲酸二烯丙酯、丙烯酸共聚物等高沸点乙烯基单体与苯乙烯单体其用4)另一种减少苯乙烯挥发的方法是把双环戊二烯及其衍生物等其它单元引入不饱和聚酯树脂骨架,实现低粘度化,最终使苯乙烯单体含量降低。
在寻求解决苯乙烯挥发问题的途径上,必须综合考虑树脂对现有的成型方法如表面喷涂、层压工艺、SMC成型工艺的适用性,工业化生产的原料成本问题,与树脂体系的相容性,树脂的反应活性、粘度,成型后树脂的机械性能等问题。在我国在限制苯乙烯挥发方面还没有明确立法,但随着人民生活水平的提高,人们对自身健康认识以及环保意识的提高,对于我们这样的不饱和消费大国,相关的立法是只是迟早的问题。
5)耐腐蚀树脂。不饱和聚酯树脂的一个较大的用途是其对有机溶剂、酸、碱、盐等化学品的耐腐蚀性。目前耐腐蚀树脂分为以下几类:1)邻苯型、2)间苯型、3)对苯型、4)双酚A型、5)乙烯基酯型,以及其它如二甲苯型、含卤素化合物型等,经过几十年来几代科学家的不断探索,对于树脂的腐蚀以及抗腐蚀机理已经研究的比较透彻了。
通过各种方法对树脂进行改性,如向不饱和聚酯树脂中引入难于耐腐蚀的分子骨架或采用不饱和聚酯与乙烯基酯及异氰酸酯形成互穿网络结构,对于提高树脂的耐腐蚀性是很有效的,加外采用酸树脂混配的方法制造的树脂也能达到较好的耐腐蚀效果。与环氧树脂相比,不饱和聚酯树脂的低成本、加工方便成为极大的优势,但不饱和聚酯树脂的耐腐蚀性尤其是耐碱性却远不如环氧树脂,很长一段时期来,尤其是在腐蚀严重的场合,不饱和聚酯树脂还不能取代环氧树脂。目前防腐蚀地坪的兴起,更是对不饱和聚酯树脂形成机遇与挑战。因此,开发专用耐腐蚀树脂具有广阔的前景。
6)胶衣树脂。胶衣在复合材料中起着重要的作用,它不仅起着对玻璃钢制品表面的装饰作用,而且起着耐磨、耐老化、耐化学腐蚀的作用。胶衣树脂的发展方向是研制低苯乙烯挥发、空气干燥性好、耐腐蚀性强的胶衣树脂。胶衣树脂中耐热水胶衣有很大的市场,玻璃钢材料如果长期浸入热水中,表面就会出现水泡,同时由于水逐渐浸透到复合材料内部而使得表面水泡逐渐膨胀,水泡不仅会影响胶衣的外观,而且会逐渐降低制品的各项强度性能。美国堪萨斯州厨房用具公司(CookCompositesandPolymersCo.)采用环氧树脂和缩水甘油醚封端的方法制造一种胶衣树脂,具有低粘度和优异的耐水性、和耐溶剂性。另外,该公司还采用经过聚醚多元醇改性和环氧树脂封端的树脂A(柔性树脂)与双环戊二烯(DCPD)改性的树脂B(刚性树脂)复配,这两种均具有耐水性能的树脂经过复配,除具的好的耐水性外,还具有好的韧性和强度,可作为胶衣树脂或胶衣树脂与普通树脂之间的隔离层树脂使用,可有效地阻止水或溶剂或其它低分子物质穿过胶衣层渗入到玻璃钢材料体系中,成为综合性能优异的耐水树脂。
7)光固化不饱和聚酯树脂。不饱和聚酯树脂的光固化特点是适用期长、固化速度快。不饱和聚酯树脂通过光固化可满足对苯乙烯挥发量限制的要求。由于光敏剂及光照装置的进步,为光固化树脂的发展打下基础。各种紫外光固化的不饱和聚酯树脂已研制成功并已大量投入生产。提高了材料性能、工艺性能以及表面耐磨性,同时采用这种工艺也提高了生产效率。
8)特殊性能的低价树脂。这种树脂包括发泡树脂与含水树脂――目前,木材能源的缺乏在世界范围内有一个上升的趋势。同样也缺乏从事木材加工业的熟练的操作工人,而这些工人的薪金也越来越高。这种条件下就为工程塑料进入木材市场创造了条件。不饱和发泡树脂和含水树脂作为人造木材在家具行业里将以其低成本、高强度的特性而得到发展。应用一开始将是缓慢的,以后随着加工技术的不断提高,这种应用必将得到迅速的发展。
不饱和聚酯树脂可以发泡,制成发泡树脂,可用作墙板、预成型的浴室隔板等。以不饱和聚酯树脂作为基体的泡沫塑料可的韧性、强度比发泡PS好;加工比泡沫PVC容易;成本比泡沫聚氨酯塑料低,添加阻燃剂等也可使其阻燃和耐老化。虽然树脂的应用技术已全面发展,但发泡不饱和聚酯树脂在家具中的应用还没有被重视,经过调查,一些树脂制造商对于开发这种新型的材料有很大的性趣。一些主要的问题(结皮、蜂窝结构、胶凝-成泡的时间关系、放热曲线控制)在工业化生产以前还没有完全解决。在没有得到答案前,这种树脂由于它的低成本只能应用于家具行业。一旦这些问题得到解决,这种树脂将会广泛地应用于泡沫阻燃材料等领域而不仅仅是利用其经济性。
含水不饱和聚酯树脂可分为水溶型和乳液型两种。国外早在60年代就开始就有这方面的专利和文献报导。含水树脂是将水作为不饱和聚酯树脂的一种填料在树脂凝胶前加入树脂中,含水量最高可达50%,这样的树脂称为WEP树脂。该树脂具有低成本、固化后质量轻、阻燃性好、低收缩率低等特点。我国对于含水树脂的开发和研究始于80年代,已经有很长一段时期,在应用方面,已见用于锚固剂。含水不饱和聚酯树脂是UPR的一个新品种。实验室的技术日趋成熟,但应用方面的工作研究较少,需要进一步解决的问题是乳液稳定性问题和固化成型过程中的一些问题以及客户的认可问题。一般一个万吨级不饱和聚酯树脂每年可产生约600吨废水,如果利用不饱和聚酯树脂生产过程中产生的缩水循环利用生产含水树脂,即降低了树脂成本又解决了生产环保问题。
9)采用新的原材料和新的工艺合成的高性能树脂。双环戊二烯改性不饱和聚酯树脂是最近几年在我国迅速发展的树脂品种。据江苏亚邦涂料公司和天津合材有限公司提供测试数据表明,DCPD改性树脂其浇铸体和玻璃钢性能的技术指标与普通邻苯型树脂不相上下。目前双环戊二烯树脂以其较低的价格和良好的性能迅速被市场所接受。各企业纷纷开发此类产品,产品技术逐渐成熟。其中天津合材树脂有限公司开发的"低温催化法合成双环戊二烯不饱和聚酯树脂"于2004年通过天津市科委的科技成果鉴定,并于2005年获得天津市优秀项目二等奖。
用回收的废聚对苯二甲酸乙二醇酯(PEF)或回收废对苯二甲酸(PTA)可生产不饱和聚酯树脂,既解决了环保问题,又降低了合成高性能树脂的成本,合成的树脂具有优异的韧性、弹性、和强度,一些性能甚至优于用间苯二甲酸制备的树脂,且成本可与邻苯二甲酸树脂相比。由于对苯型树脂在耐腐蚀、耐热性能方面优于邻苯型及间苯型树脂,也大大拓展该树脂在化工防腐领域中应用。我国天津合成材料厂(天津合材树脂有限公司)利用这项技术生产的199A树脂曾获天津市科技进步奖。江浙地区窨井盖用BMC树脂和广东地区缠绕树脂已部分采用了下脚对苯型树脂。下脚对苯型树脂产区在温州、富阳、武进、泉州、番禺等地有较大的市场。厦门汇大化工公司为综合利用厦门翔鹭石化公司的PTA下脚料,正在进行扩建成10万吨树脂生产能力进行配套。随着国家提出"循环经济"的发展方针,这两大类树脂会加速增产。
近几年,一些专利报导用双环戊二烯与废PET联合使用,作为生产不饱和聚酯树脂的原材料,可以产生优势互补的效果。即解决PET树脂与苯乙烯相溶性差的缺陷,又解决了双环戊二烯改性树脂韧性较差缺陷,还可进一步降低树脂成本。
2-甲基1,3-丙二醇(MPD)是近年来市场上常见的品种,它具有较高的沸点,具有两个羟基可快速缩合反应,由此制备的树脂具有较高的反应活性以及优异的机械性能和耐腐蚀性能。可以和对苯二甲酸配合使用,起到优势互补的作用,制造的树脂可用于强腐蚀环境如玻璃钢槽、罐等场合。
采用甲基丙烯酸缩水甘油酯(GMA)作为合成树脂的原材料。GMA含有一个活性的环氧基团,可以与聚酯链中的羧基反应,起到封端的效果。这种树脂在分子链的端基产生一个甲基丙烯酰组份,可以与苯乙烯单体发生聚合反应,分子链中间是柔性链节,可使固化后的树脂具有很好的韧性和回弹性。
10)用于不饱和聚酯树脂辅料的开发。与不饱和聚酯树脂相关的辅料包括:各种催化剂、分散剂、消泡剂、抗氧剂、紫外线吸收剂、促进剂、固化剂、色浆、胶衣、脱模剂、添加剂等材料。国内各种辅料的开发已比较完善,尤其是复合促进剂的开发,为树脂的快速固化提供了良好的条件。目前,国产的促进剂质量已有大幅度的提高,在固化速度、固化后对制品的色泽影响方面都优于进口材料。但国产固化剂的质量(主要是过氧化甲乙酮)却有所下降,存在着固化剂中低分子物过高、含水量过高等缺点,且固化剂生产厂时有爆炸现象发生,这主要是由于我国的固化剂生产技术还不过关,还需要进一步巩固和提高。其它辅料方面,高档助剂(如分散剂、消泡剂、抗氧剂等)仍以进口为主,我国专业研究和生产不饱和聚酯树脂相关助剂的厂家很少,说明我国的不饱和辅料技术还有一个很大的缺口。
总之,如果一种材料具有低成本,那么在工业上一定会找到它的用途和价值;如果一种材料具有满足市场所需求的性能,就一定会有生命力,而这些材料在制造过程中的一些技术问题,也终将会被攻克。很简单,例如如果能够制造出一种普通价位的阻燃树脂,我们将会看到市场上所有的树脂材料都将是阻燃的。
环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。
根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。
纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到143.5万吨,1999年为159.5万吨,2002年为 186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。
一、产业历史 我国环氧树脂产业起步于 1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。
经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。
进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。
二、产业特点
一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。
二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。
三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。
四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。
五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。
六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。
三、应用分析
目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂 2000年仅0.1公斤,而2005年已达到0.3公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。
我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到 130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。
四、市场建议
但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。
其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。
再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。
最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。
你对比下吧,其实不管是哪个行业,只要是你去研究了你会发现他们都是海有很多空间去开发的,我就是研究环氧树脂的