1. 什么是界面反应抛光
界面反应抛光是根据两相之间接触表面的特性及表面上的各种化学物质种类、含量、存在状态及性质,且在一定的条件下发生的各种化学反应。
2. ebsd反极图上的最大值和最小值是什么意思
1、EBSD测定的织构可以用多种形式表达出来,如极图、反极图、ODF等(见图5)。同X-ray衍射测织构相比,EBSD具有能测微区织构、选区织构并将晶粒形貌与晶粒取向直接对应起来的优点。另外,X射线测织构是通过测定衍射强度后反推出晶粒取向情况,计算精确度受选用的计算模型、各种参数设置的影响,一般测出的织构与实际情况偏差15%以上。而EBSD通过测定各晶粒的绝对取向后进行统计来测定织构,可以认为EBSD是目前测定织构最准确的手段。当然与X-ray比,EBSD存在制样麻烦等缺点。2、用EBSD同时测定两个相的晶体学取向时,可以确定两个相之间的晶体学关系。为了确定两相间的晶体学关系,一般需要测定30处以上两相各自的晶体学取向。并将所有测定结果同时投影在同一极射赤面投影图上进行统计,才能确立两相间的晶体学关系[3]。与透射电镜和X-ray相比,采用EBSD测定两相间晶体学取向关系具有显著的优越性。用于EBSD测试的样品表面平整、均匀,可以方便地找到30个以上两相共存的位置。同时晶粒取向可以用软件自动计算。而透射电镜由于样品薄区小的关系,难于在同一样品上找到30个以上两相共存位置。另外,其晶粒取向需手动计算。X-ray一般由于没有成像装置,难于准确将X-ray定位在所测定的位置上。3、另外,当第二相与基体间的惯习面、孪生面、滑移面等在样品表面留下迹线,尤其在两个以上晶粒表面留下迹线时,可以采用EBSD确定这些面的晶体学指数。
3. ebsd测锻态织构系统坐标与样品坐标怎么放置
油罐车:又称流动加油车、电脑税控加油车、引油槽车、装油车、运油车、拉油车、石油运输车、食用油运输车,主要用作石油的衍生品(汽油、柴油、原油、润滑油及煤焦油等油品)的运输和储藏。根据不同的用途和使用环境有多种加油或运油功能,具有吸油、泵油,多种油分装、分放等功能。运油车专用部分由罐体、取力器、传动轴、齿轮油泵、管网系统等部件组成。 管网系统由油泵、三通四位球阀、双向球阀、滤网、管道组成。
4. 扫面电镜样品需要腐蚀么
作断口是不能腐蚀的,否则会改变断口形貌,现在你要做形貌,多数需要腐蚀,否则晶粒之间区分不开,腐蚀之后晶粒形貌清晰。当然,如果你只是分析金属与陶瓷的界面情况,是否腐蚀就要看具体情况了。另外,建议你用背散射看看,效果也许更好。
5. 请问粉末样品怎么进行镶样并进行相成分分析
我看到别人是这样做的。粉末与环氧树脂混合,硬化后磨制成金相式样,再进行导电处理。
6. EBSD分析(electron backscatter diffraction)是指
EBSD即电子背散射衍射。EBSD的原理始于20世纪50年代,技术问世于80年代。EBSD是扫描电子显微镜(SEM)的一个标准分析附件,但大大拓宽了扫描电子显微镜进行微观分析的功能。它可以与SEM的其他功能(包括EDS等配件)结合起来,原位成像、成分分析、大样品分析、粗糙表面成像等,克服了传统分析方法中的一些缺陷。
EBSD系统主要由背散射探测器、高灵敏度CCD数字照相机、图像采集卡、计算机分析软件及数据库等组成(图7-2)。探测器用于获取样品中激发出的背散射电子信号;高灵敏度CCD数字照相机获得electron backscat-ter pattern图像后,经过图像采集卡输送到计算机系统。计算机自动对于采集的图像进行识别和标定,同时与标准数据库进行比对,进而获得晶体颗粒的结晶学信息。
EBSD系统把显微构造与晶格结构(或结晶学)直接联系起来;测定优势定向颗粒群中单个晶体颗粒的定向;标定晶体颗粒的基本几何属性参数;获取超微尺度上晶体界面属性在内的晶体空间要素的大量信息等。目前EBSD已经成为一种非常成熟的技术,并在材料科学、地质学、冶金学、考古学等领域得到了广泛的应用。尤其是在材料科学中,已经成为物质材料显微组构、构造标定和研究的一种常规手段。
EBSD技术的发展和应用,也为岩石超微构造分析与研究拓展了新的空间。自90年代中期EBSD技术引入变形岩石显微构造与结构分析研究中以来,不少学者对于具有特殊性(即非导电性和晶体结构非对称性)的岩石样品开展了初步研究工作。在岩石显微构造研究中,通过EBSD可以快速获取海量数据,使得研究极细粒物质(微米-纳米级)的定向组构成为可能,确定二轴晶矿物的结晶学组构(如角闪石)更简便;也为获得快速准确地确定金属矿物和不透明矿物及等轴晶系均质体矿物(如石榴子石)的结晶学组构提供了技术支撑;更可以开展岩石显微构造、矿物塑性变形机制;矿物相鉴定、矿物相变、晶粒尺寸测量、超微域内的应变估算、矿物晶格优选方位(LPO)与地震波各向异性的关系研究等;并通过岩石微观和超微观构造,反演和示踪地球动力学过程的信息等等。
总之,EBSD技术的广泛应用,必将带来岩石显微构造分析与研究的新突破,也将成为未来一个时期岩石变形机制与岩石圈流变学研究取得飞速发展的催化剂。
EBSD制样:EBSD分析对于样品表面的抛光度要求较高,有不同的制作方法,包括机械抛光、电解抛光、离子束抛光和聚焦离子束(FIB,focused ion beam)切割。下面简单介绍最常使用的机械抛光方法。
机械抛光过程的主要目的,在于将样品制备初期阶段磨制过程中在样品表面形成的几个纳米厚的变形层去除,以使得背散射电子信号有效地反映晶体内部结构特征。样品制备包括两个阶段,即磨制阶段和抛光阶段:
(1)磨片:将拟观察分析的样品制作成普通光片或光薄片,最好用较细的金刚砂磨制薄片;(2)抛光:依次使用9μm、6μm、3μm金刚石溶液、1μm alpha氧化铝或0.3μmalpha氧化铝和0.05μm或0.02μm硅胶/氧化铝抛光液或抛光膏进行抛光。
对于不导电的非金属样品,还需要在样品表面喷碳或镀金,以便于观察和获取更好的信号。值得注意的是,由于背散射电子获取的信号是样品表面10nm以内的晶体结构信息,样品喷镀的厚度需要严格掌握。
7. 样品表面有应力不可以做ebsd吗
1、EBSD测定的织构可以用多种形式表达出来,如极图、反极图、ODF等(见图5)。同X-ray衍射测织构相比,EBSD具有能测微区织构、选区织构并将晶粒形貌与晶粒取向直接对应起来的优点。另外,X射线测织构是通过测定衍射强度后反推出晶粒取向情况,计算精确度受选用的计算模型、各种参数设置的影响,一般测出的织构与实际情况偏差15%以上。而EBSD通过测定各晶粒的绝对取向后进行统计来测定织构,可以认为EBSD是目前测定织构最准确的手段。当然与X-ray比,EBSD存在制样麻烦等缺点。
2、用EBSD同时测定两个相的晶体学取向时,可以确定两个相之间的晶体学关系。为了确定两相间的晶体学关系,一般需要测定30处以上两相各自的晶体学取向。并将所有测定结果同时投影在同一极射赤面投影图上进行统计,才能确立两相间的晶体学关系[3]。与透射电镜和X-ray 相比,采用EBSD测定两相间晶体学取向关系具有显著的优越性。用于EBSD测试的样品表面平整、均匀,可以方便地找到30个以上两相共存的位置。同时晶粒取向可以用自动计算。而透射电镜由于样品薄区小的关系,难于在同一样品上找到30个以上两相共存位置。另外,其晶粒取向需手动计算。X-ray一般由于没有成像装置,难于准确将X-ray定位在所测定的位置上。
3、另外,当第二相与基体间的惯习面、孪生面、滑移面等在样品表面留下迹线,尤其在两个以上晶粒表面留下迹线时,可以采用EBSD确定这些面的晶体学指数。
8. 有哪位做过变形铜的EBSD请各位指教!
变形态的就是都不是很好做。如果样品是小块或者片状看端面的话,建议可以利用类似酸喷的装置,将电解液喷到样品表面。采用上下式(样品在上,另一极板在下)多做几组,。如果是片状看表面的话,可以采用甲板式(两极板中间夹样品),利用千分尺检测表面,大概抛掉3个U左右就可以。大量做样就会有经验。
9. EBSD快速扫描的尺寸范围
样品台移动EBSD扫描模式可以做大范围织构检测,具体尺寸受电镜样品台本身可移动的范围。虽然EBSD可以通过样品台移动扫描模式或者电子束扫描模式多图扫描后拼图来低倍检测较大范围的织构,但自己尝试过多次,效果不是很好。EBSD优点是做微区的晶体织构分析,宏观织构测定优选XRD(比EBSD准确,制样简单,费用低)。
总体来说由于做EBSD样品需要倾斜70°,样品过大过重,高倍长时间扫描时容易发生飘逸,所以EBSD样品小点好。
上述为个人观点,希望对你有帮助。
10. EBSD样品如何制备,需要注意什么
方法:
有固体溶剂压片和直接使用粉末压片。
注意:
使用固体溶剂压片是其溶剂的性质不能与待
测物质相近,然后就是溶剂的使用量的问题。直接压片时晶粒要细小,试样取向无规则。