导航:首页 > 耗材问题 > 影响聚砜超滤膜结构的因素

影响聚砜超滤膜结构的因素

发布时间:2022-05-06 15:23:51

A. 超滤膜的原理是什么孔径与分子量之间有关系吗

一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。采用超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。

以压力差为推动力的膜过滤可区分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。它们的区分是根据膜层所能截留的最小粒子尺寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。由此可知,超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。

我们都知道筛子是用来筛东西的,它能将细小物体放行,而将个头较大的截留下来。可是,您听说过能筛分子的筛子吗?超膜 --这种超级筛子能将尺寸不等的分子筛分开来!那么,到底什么是超滤膜呢?

超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。

B. 板框压滤机过滤效果的影响因素有哪些

1流体的特性
与流体的特性有关。例如,流体的粘度和化学/离子成分,流体的粘度越大在相同的压力前提下流速越慢,流体与膜之间有较多接触,过滤效果较好;再如,流 体和膜的混合/接触时间对过滤效果也有较大影响,混合/接触时间越长则过滤效果越好。此外,需要留意的是,流体的特性只影响膜对流体的吸附截留效果而不影响颗粒大小的排除。
2操纵前提
与实际操纵前提有关,如颗粒的流速和过滤压力。要想取得好的过滤效果,一般选择较低的流速,流速越 低截留效果越好。实践证实膜的结构移动对过滤是不利的,一旦膜的结构在过滤过程中发生了变化,则颗粒和纤维就能从深层过滤器析出,影响到过滤效果。但是,速度/压差仅对吸附截留有重要影响,对大小排除影响相称小。
3颗粒类型
颗粒类型与过滤效果也有很大关系,颗粒分为可变 形颗粒和不可变形颗粒2种。在一定的压力下,可变形颗 粒会进入过滤膜内并导致更多的过滤网孔堵塞,从而影 响到过滤效果,如凝胶的过滤。然而,不可变颗粒过滤时则会在滤膜上形成一层类似饼状的物体。
4过滤膜类型
与过滤膜的类型有关,不同过滤膜的孔径和结构不 同,有些膜的结构是刚性的,有些膜的结构是可移动的。 预过滤膜的额定孔径没有一个同一的国家尺度,不同的 制造商有自己的定义和方法,所以选择和更换商家时需 引起高度留意,同样是0.22μm的预过滤膜,选用不同制 造商的过滤效果会存在很大差别。而除菌过滤的公共孔径是有法划定义的,各个商家执行的是统一个尺度,在 选择和更换时就相对要简朴一些。
5过滤材质
与过滤的材质有关,过滤材质按与水的关系分为亲 水性(水可浸润)和疏水性(水不可浸润)2种。亲水性的 过滤器主要应用在水或水/有机溶液混合的过滤和除 菌过滤,如纤维素材料(再生纤维素、混合纤维素酯)、 PVPP聚碳酸酯、PVDF改良聚偏二氟乙烯;疏水性过滤 器是通过水被截流或“引导”进入滤膜,主要应用在溶剂、酸、碱和化学品过滤,罐/设备呼吸器,工艺用气,发 酵进气/排气过滤,如PTFE聚四氟乙烯、PVDF聚偏二氟 乙烯、聚丙烯、聚砜、聚碳酸酯等。 (上海青上过滤)

C. 印染废水,是染浆废水来的,脱色效果不好,怎么办

不知到你用的什么工艺,一般生物处理不易脱色的话,可以考虑加点絮凝剂,另外氧化法也比较常用,下面一个参考文摘不错的:
由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大.染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂.三是水质水量不稳定,排放具有间歇性.印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大.
3. 脱色处理方法
3.1 物理方法
3.1.1吸附法

吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法.吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的.吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种.目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用.
常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等.传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能.活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料.若废水BOD5> 500mg/L,则采用吸附法是不经济的.膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用.
吸附法尤其适合难生化降解的纺织印染废水脱色处理,印染废水的吸附脱色技术是一项非常有效而又比较经济的方法.活性炭吸附脱色技术不适合印染废水一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难,所以活性炭的再生技术是正在研究的课题,其中生物再生是研究的重点方向.煤、炉渣吸附剂,原料来源广,成本低,但在处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用.离子交换树脂对水溶性染料离子吸附特别有效,离子交换吸附剂的开发研制是今后的主要发展方向之一.廉价、高效、因地制宜新型吸附材料的开发是一项很有前途的技术.吸附法与其它处理方法的优化组合处理印染废水,脱色效果更佳.[5]
综上所述,吸附脱色的发展方向体现在两个方面: ①根据吸附机制开发、寻找新的吸附剂; ②对现有吸附剂的改性与活化, 以提高脱色效果和再生能力.
3.1.2超滤法脱色
超滤是利用一定的流体压力推动力和孔径在20~200üA 的半透膜实现高分子和低分子的分离.超滤过程的本质是一种筛滤过程,膜表面的孔隙大小是主要的控制因素.该法的优点是不会产生副作用,可以使水循环使用.早在70 年代初期, 膜分离技术就尝试用来处理印染废水.目前, 该方法可用于去除各种染料和添加剂.但由于分离染料混合物的困难, 并未达到完美的程度.
在这种技术中,半透膜的性质起着决定性的作用.就材料而言,膜有动态膜,纤维素类膜,聚砜超滤膜,荷电超滤膜或疏松反渗透膜.[6]
(1)动态膜从处理效果和经济上讲,ZrO-PAA 动态膜是可行的.但能耗较大,其渗透水及化学物质的再利用率可达88% 到96%.
(2) 纤维素类膜.CA 膜的选择性随膜表面与各种染料互变异构体相互作用而发生变化,但膜材料本身在耐pH、耐温等方面仍然有所不足.纤维素类膜在耐pH值、耐压、耐温度等方面优于CA ,用纤维素超滤膜反渗透处理染色废液, 染料去除率97% 以上可实现水的循环使用,但反渗透所需的高压操作仍是它的不足.
(3) 聚砜超滤膜由于其良好的物理化学稳定性,有较大的应用前景.使用聚砜超滤膜代替纤维素膜可实现高温操作, 回收染料减轻污染, 但仍未达到国家排放的标准.
(4) 荷电超滤膜或疏松反渗透膜是用来描述其分离性能介于反渗透和超滤之间的一种膜.荷电超滤膜是以其化学结构含有荷电基团而定义的, 疏松反渗透膜是以其物理结构而命名, 它们往往指的一种膜.对盐NaCl 截留只有2%~ 3% , 而对于500~2 000 分子量的物质,具有较高的分离率, 同时保持高的水通量.一般染料的分子量正好在这种膜的截留范围, 特别是离子型染料.该膜在低压下操作(10 kg/cm 2) 耐pH值、耐压密、耐污染、耐温等方面都比较突出,前景广阔[7].
3.1.3辐射降解法
电离辐射可有效地降解染料水溶液,辐射技术和其它技术有很好的协同作用.与常规污染物处理技术相比,辐射技术在常温常压下进行,具有工艺简单、无二次污染等特点,对难降解有机污染物的处理更有其独特长处.[8]
用60Co γ射线辐照甲基橙和活性艳蓝KNR水溶液,辐照后染料水溶液的可见光区和紫外区的特征吸收峰随吸收剂量的增加而渐渐下降至接近零,说明辐射降解反应既破坏了染料分子的发色基团,同时也破坏了染料的有机分子结构.脱色率和COD去除率均随吸收剂量的增加而增加.过氧化氢与辐射有协同作用,在相同的吸收剂量下,脱色率和COD去除率均随过氧化氢的浓度增加而增加.另外,该法pH值适用范围很广;溶液的初始浓度越大,COD去除和脱色效果越差;氧的存在可以促进染料分子的降解.在同样辐照条件下,染料的辐射降解效果因染料分子的结构不同而略有不同[9].
辐射法处理印染等难降解污水时虽然有机物的去除率高、设备占地小、操作简便,但用来产生高能粒子的装置价格昂贵,技术要求高,而且该方法能耗较大,能量利用率不高,若要真正投入实际运行,还需进行大量的研究工作.
3.2 物理化学法
3.2.1絮凝法

印染废水的絮凝脱色技术, 投资费用低, 设备占地少, 处理量大, 是一种被普遍采用的脱色技术.某印染厂采用混凝脱色- 悬浮曝气生物滤池工艺处理主要含活性染料的废水,原水CODCr, SS的平均质量浓度分别为296,285 mg/L 和平均色度为550倍, 处理后出水水质相应各项指标分别为40, 20 mg/L 和10 倍, 其去除率分别为87%, 92%和98%.[10]
在印染废水中使用的絮凝剂很多,大致可分为无机絮凝剂、有机絮凝剂和微生物絮凝剂三类,其中,有机絮凝剂还分为天然有机高分子絮凝剂、合成有机高分子絮凝剂.由于印染废水水质比较复杂,无机单盐絮凝剂在水解絮凝过程中,未能完成具有优势絮凝效果的形态,投药量大,絮凝效果差;无机高分子絮凝剂可以较好地除去废水中大部分悬浮态染料,但对于水溶性染料中分子量小、不容易形成胶体的废水则难以处理;有机高分子絮凝剂对于水溶性染料等废水具有很好的脱色性能,但单独使用效果差,而且易于产生有毒物质;因此,开发研制价廉、无毒、高效的新型有机絮凝剂,已成为目前絮凝法的主要研究方向之一.
复合絮凝剂则能同时发挥几种絮凝剂的优点,使絮凝法用于印染废水处理既经济,又适用.如将有机絮凝剂与无机絮凝剂复配使用,充分发挥有机高分子絮凝剂的吸咐架桥性能和无机絮凝剂的电性中和能力,可以使处理出水达到较好的效果.此外,淀粉衍生物、木质素衍生物、羧甲基壳聚糖[11]等天然高分子具有无毒、原料广、价廉和可生物降解等优点,也得到科研工作者的高度重视.另外,微生物絮凝剂是利用生物技术,从微生物体或其分泌物提取、纯化而获得的一种安全、高效,且能自然降解的新型水处理剂.与普通的絮凝剂相比,有固液易于分离,沉淀少,适用性广等优点,因此微生物絮凝剂的研究正成为当今世界絮凝剂方面研究的重要课题[12].总之,高效、无毒、无害的环境友好性絮凝即将在印染废水处理中有广阔的应用前景.
絮凝法虽然是含染料废水处理的常用方法,但对于许多可溶性好的染料, 处理效果往往不佳.因此, 复合絮凝法将成为工业废水处理工艺研究的主要内容和发展方向.根据实际出水要求,采用适当的预处理和后处理手段,发挥絮凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
然而,用絮凝法进行废水脱色依然存在以下几个方面的问题:产生大量的淤泥;由于废水水质变化大,每批废水脱色前均需要进行预试验,以确定最佳条件,提高了成本,又费时.过量的阳离子絮凝剂会在废水中产生大量氮的化合物,它们对鱼类有毒且难以生物降解和硝酸化抑制,絮凝剂过量也可能导致沉淀重新溶解.脱色效率低,不符合排放标准.因此,实际生产中,应根据实际出水要求,采用适当的预处理和后处理手段,发挥混凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
3.3 化学方法
3.3.1电化学法

电化学法是处理印染废水的另一种有效的处理方法.电化学法通过可溶性电极在阳极和阴极上发生电絮凝、电气浮和H的间接还原作用从而达到处理废水的目的.电化学法处理印染废水具有设备小、占地少、运行管理简单、COD去除率高和脱色好等优点,但同时电化学法存在着能耗大、成本高和析氧析氢副反应等缺点.近年来,随着电化学和电力工业的发展以及许多新型高析氧析氢过电位电极的发明,电化学法又重新引起人们的重视.根据电极反应方式划分, 传统电化学方法可细分为内电解法、电絮凝和电气浮法、电氧化学.
内电解法是利用废水中有些组分易被氧化,有些组分易被还原,在有导电介质存在时,电化学反应便会自发进行,同时兼有絮凝、吸附、共沉淀等综合作用的一种废水处理方法[13].最著名的内电解法是铁屑法, 即将铸铁作为滤料, 使印染废水浸没或通过, 利用Fe 和FeC 与溶液的电位差, 发生电极反应, 产生较高化学活性新生态H, 能与印染废水多种组分发生氧化还原反应, 破坏染料发色结构, 而阳极产生的新生态Fe2+, 其水解产物有较强的吸附和絮凝作用.该法不需要外加电源,操作简单,成本低廉,是种很有前途的处理方法.
电气浮法是以Fe、AL作阳极产生的H2将絮体浮起;而电絮法则是利用电极反应产生的Fe2+ 、Al3+实现絮凝脱色.采用石墨、钛板等作极板, 对染料废水通电电解, 阳极产生O2或Cl2, 阴极产生H2.通过O的氧化作用及H的还原作用破坏染料分子而使印染废水脱色, 脱色率可达98% 以上,COD去除率达80%以上.
国内重点研究的是电化学与其它方法相结合,其中较为有成就的是用絮凝复合床新技术处理高色度印染废水,对色度>10000倍的印染废水处理后,脱色率可达99%以上,CODCr去除率达75%.国外在新型电极方面研究较多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等电极.
电催化高级氧化技术(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近发展起来的新型AOPs ,因其处理效率高、操作简便、与环境兼容等优点引起了研究者的注意.它能在常温常压下,通过有催化活性的电极反应直接或间接产生轻基自由基, 从而有效降解难生化污染物.陈武等进行了三维电极电化学方法处理印染废水实验, COD去除率达74.7% ,色度去除率达93.3%[14].
3.3.2氧化法
氧化法是使染料分子中发色基团的不饱和双键被氧化断开,形成分子量较小的有机物或无机物,从而使染料失去发色能力的一种印染废水处理方法.氧化法主要有:高温深度氧化法、化学氧化法和光催化氧化降解法等.
高温深度氧化法主要是焚烧法.
化学氧化法是印染废水脱色处理的主要方法,其机理是利用氧化剂将染料不饱和的发色基团打破而脱色.Fenton试剂(Fe2+-H2O2)、臭氧、氯气、次氯酸钠等是一般采用的氧化剂.常见的有组合法和催化氧化法等.如采用混凝- 二氧化氯组合法的优点在于ClO2氧化能力强,是HClO的9倍多,且无氯气氧化法处理废水时可能与水中有机物结合生成氯代有机物(AOX)[15].
化学氧化法能有效地去除印染废水中的色度,但不能很好地去除废水中的COD,对此有人提出了不完全氧化的方法,即只部分氧化,使有机物通过自由基耦合降低水溶性而絮凝去除.陈玉峰[16]等通过实验发现,电生成Fenton试剂处理实际工业印染废水,CODCr去除率在80 %以上, 脱色率达到95% ,处理费用1117元/m3,具有很好的实际应用价值和市场前景.盛翼春[17]通过研究发现,采用新型电催化氧化对染料浓度高达0.3g/l的水溶性染料废水在2分钟内脱色率高达95%以上.
同时,随着太阳能技术的发展进步,光催化氧化也越来越受到人们的重视.夏金虹[18]用纳米TiO2粉体光催化降解印染废水,脱色率为96% , CODCr去除率为86%,TiO2催化性能比较稳定,可重复使用.光催化氧化技术具有工艺设备简单、操作条件易控制、处理成本较低、氧化能力强、无二次污染等突出优点,在有机废水处理中有着广阔的应用前景.但悬浮体系的纳米TiO2颗粒由于粒径极为细小,存在着难以回收、容易中毒、不易分散等缺点,需通过先进的负载技术或光化学反应器,甚才会获得更高催化效率.因此,纳米TiO2光催化剂的负载技术对其实现大规模实用化、商品化和工业化具有重大的实际意义,是今后TiO2研究的主要方向[19].
总之, 氧化法是一种优良的印染废水脱色方法,但也有其自身的缺憾.如果氧化程度不足, 染料分子的发色基团可能被破坏而脱色, 但其中的COD仍未除尽; 若将染料分子充分氧化, 能量、药剂量消耗可能会过大, 成本太高, 所以氧化法一般用于氧化- 絮凝或絮凝- 氧化工艺.采用氧化- 絮凝工艺, 目的是通过氧化法将水溶性染料分子变为疏水性或使阳离子染料分子转变为中性, 阴性分子, 以利絮凝除去.反之, 采用絮凝- 氧化工艺则是将氧化作为后处理步骤, 对印染废水做深度处理经进一步去除残余色度及COD[20].
3.3.3还原法
还原法式使用还原型脱色剂对直接染料废水进行脱色处理的方法,使用的原料主要是铁屑.铁屑是机械加工过程中的废料, 用于处理印染废水,不仅成本低廉、操作简单, 而且能够获得以废治废的效果.该方法主要基于电化学反应.铁屑是铁-碳合金, 浸入废液后形成无数微小原电池.电极反应产物为Fe2+, H2,OH-, 均具有较高的化学活性, 可有效地脱除废水中的染料分子.其它还原剂有保险粉(+ 活性炭)、亚硫酸及其盐.洪俊明等[21]通过铁屑内电解的强化A/ O MBR 工艺处理印染废水, 出水的水质中色度的去除率超过90.0 %和COD的去除率达到94.9 %.董永春[22]等采用以含硫还原剂和氢化物引发剂为基础的稳定双组分还原反应系统,处理直接染料染色废水,使之与其中的直接染料发生还原脱色反应,其优点是脱色剂用量少,反应快速,脱色率高.还原法的主要缺点是还原降解产物具有毒性, 必须经过二次处理.如活性炭吸附等, 处理费用增大.
3.3.4高级氧化法
高级氧化法(Advanced Oxidation Processes ,AOPs)脱色被认为是一种很有前途的方法.所谓高级氧化法如UV + H2O2、UV + O3, 因为在氧化过程中产生羟基自由基(·OH), 其强氧化性使染料废水脱色.经研究发现它对偶氮染料的脱色很有效, 高级氧化反应随O3和H2O2加入量的增加,其反应速率也随之增加[23]. 在实际生产中与某些化学辅助剂会提高脱色效果, 而且UV + H2O2方法处理偶氮型活性染料产生的降解产物对环境完全无害.最近的研究发现二氯三嗪基型偶氮类活性染料使用UV + H2O2方法脱色也有很好的效果[24].
氧化剂O3对绝大多数染料的脱色效果较好, 无二次污染, 引入紫外光(UV) 等可加快氧化和提高脱色率.有学者指出O3/UV 对偶氮染料脱色效果好,UV 的引入促使O3在溶液中产生氧化性强的羟自由基.胡文容[25]等指出, 虽超声波几乎不能降解偶氮肿I , 但对O3氧化有明显的强化作用, 当O3浓度为7107mg/ L , 加80w 超声波是超声波协同O3处理偶氮肿的最佳组合, 既可满足90 %脱色率, 又可节省48%的O3.但是目前用O3处理染废水费用较高, 开发新型臭氧发生器并和UV 或超声波连用以提高效率、降低费用是O3在染料废水处理中推广的前提, O3对COD的去除不理想.
高级氧化法的对环境污染极小,效果较好,但有一个严重不足之处是处理费用较高, 从而限制了它的广泛使用.
3.3.5超声波氧化
超声波处理印染废水是基于超声波能在液体中产生局部高温、高压、高剪切力,诱使水分子及染料分子裂解产生活性非常强的氢氧自由基, 对大部分有机污染物有氧化作用并可并促进絮凝;同时,在超声波作用下传质加强,超声空化产生局部高温高压,可大大强化氢氧自由基对有机物的氧化速度,提高降解效率.
用超声波可以强化臭氧氧化处理偶氮类染料废水,这是因为超声波空化效应产生高能条件促使臭氧快速分解,产生大量的自由基,从而使氮类染料脱色.张家港市九州精细化工厂用根据超声波气振技术设计的FBZ 废水处理设备处理染料废水[26],色度平均去除率为97.0 % ,CODCr去除率为90.6% ,总污染负荷削减率为85.9 %.符德学[27]等使用该法处理含碱性湖蓝-5B的印染废水,COD去除率达90.2%,脱色率达到98.3%.刘静[28]等的实验结果表明,超声波与微电场的协同作用大大提高了脱色率,在最佳条件下处理60min,色度去除率可达96.6%.
3.3.6萃取法
萃取是采用与水互不相溶,但能很好溶解污染物的萃取剂,使其与废水充分混合接触后,利用污染物在水中和溶剂中不同的分配比分离和提取污染物,从而净化废水.废水中的酸性染料可用混合胺进行萃取回收,阴离子染料可用离子对萃取法用长碳链去除,萃取剂可用氢氧化钠再生.由邻苯二甲酸与间苯二酚为原料制备荧光黄的生产废水可用N235/煤油系统萃取,其COD去除率可达91-98%,色度去除率为99.8%[29].
离子对萃取法是一种新的废水脱色方法.该法是将染色残液与一非水溶性有机溶剂一同振荡,当两相分离时,水相中便呈现无色,染料聚积于上层有机相中.只要燃料含有至少一个磺酸基团或者是染料必须是酸性的,那么任何深浓的染色废液均可用此法脱色.该有机相可反复使用数次[30].离子对萃取法的优点有:液/液相分离工艺简单,能耗低.对于活性染料来说,仅钠盐和钙盐形成的水解产物需处理.萃取剂无需再生就可重复使用[31].
3.4 生物处理方法
生物法是利用微生物酶来氧化或还原染料分子,破坏其不饱和键及发色基团,从而达到处理目的的一种印染废水处理方法.生物法目前仍是国内外主要的印染废水处理方法.
生物法的缺点在于微生物对营养物质、PH、温度等条件有一定的要求,难以适应印染废水水质波动大、染料种类多、毒性高的特点;同时还存在占地面积大、管理复杂、对色度和COD去除率低等缺点.生物法处理印染废水的脱色率和COD去除率不高,一般不适宜单独应用,可作为预处理或深度处理.
3.4.1传统生物处理技术
生物法处理印染废水中,以活性污泥法最为普遍,这是因为活性污泥法具有可分解大量有机物、能去除部分色素、可调节pH值、运转效率高且费用低等优点,但对色度的去除往往不够理想,因此组合式生物处理技术是目前印染废水的常用方法.我国生物法中以表面活性污泥法和接触氧化法占多数,此外,鼓风曝气活性污泥法、射流曝气活性污泥法、生物转盘法等也有应用,生物流化床尚处于试验性应用阶段.
在印染废水处理中,厌氧- 好氧工艺具有的这种独特降解机理引起国内的广泛关注,并得到了深入的研究和应用,取得了明显的效果[32].娄金生等在印染废水的处理过程中采用了厌氧- 好氧工艺,取得了良好效果,COD总去除率大于90 % ,脱色率大于95%.
3.4.2微生物强化处理技术
随着纺织工业新产品和新技术的开发,印染废水中水溶性染料、活性染料和化学浆料的数量和种类的不断增加,从而导致印染废水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此选育及应用优化脱色菌和PVA降解菌开始引起人们的关注.选育和培养出各种优良脱色菌株或菌群是生物法一个重要的发展方向.白腐真菌不但对活性艳红X3B染料有较好的脱色作用,而且对难处理的成分复杂的实际染料废水也有较好的降解作用,能有效去除印染废水的COD和BOD5.虽然不能彻底生化降解染料废水,但给后续的深度处理带来极大方便[33].
黄建岷[34]在实验中采用富集法分离菌株,所得脱色菌处理印染废水有明显的脱色效果,脱色率可达70 %以上.与活性炭吸附脱色相比差异不大,证明利用微生物处理印染废水的色度问题是可行的, 但在菌种筛选方面仍有大量工作可做.
3.4.3膜生物反应器处理技术
膜生物反应器处理技术作为一种新型的污水处理工艺,是传统活性污泥法和膜分离技术的有机结合,可通过膜片提高某些专性菌的浓度和活性,还可以截留许多分解速度较慢的大分子难降解物质,通过延长其停留时间而提高对它的降解效率.但由于膜易堵塞且制造费用较高,对膜技术在水处理领域全面推广产生一定阻力.不过,随着材料科学的发展、膜制造技术的进步、膜质量的提高、膜制造成本的降低以及工艺的改进,膜生物反应器的应用范围将越来越广.
3.4.4生物酶脱色技术
一些使用合适的厌氧和嗜氧的联合生物处理可提高染料的降解性, 但是在厌氧条件下, 偶氮还原酶通常将偶氮染料分解为相应的胺类, 其中许多会致低能或致癌,而且偶氮还原酶具有强专一性, 只分解被选择染料的偶氮键.与此相反,苯氧化酶——过氧化木质素酶(木质素酶, LiP) , 过氧化锰酶(MnP) , 和漆酶——对芳香环没有强的专一性, 因此, 有可能降解各种不同的芳香化合物.这些酶制剂可有效地使许多结构不同的染料脱色.初始反应速率与制剂中每一个酶(漆酶、LiP 和MnP) 都有关系.一些染料添加剂可显著降低脱色速率.因此, 在评价新的酶及其处理工艺时, 必须考虑染色助剂对酶活性的影响.今后研究工作主要集中于已选择出的酶的固定化以便为酶脱色的工业应用打下基础[35].
4. 发展前景
各种脱色方法比较分析,可以看出每种处理方法从经济性,技术性,对环境影响和实用性都有一定的缺陷, 气吹、混凝、吸附、过滤等一般具有设备简单、操作简便和工艺成熟等优点,但是这类处理方法通常是将有机物从液相转移到固相或气相,不仅没有完全消除有机污染物和消耗化学药剂,而且造成废物堆积和二次污染.吸附脱色具有只吸附染料, 但不破坏其结构的特点, 但目前使用的吸附剂往往存在吸附量不够, 或再生不容易的缺点.高级氧化法脱色如光氧化、超临界氧化、湿式氧化、低温等离子体化学法被认为是一种很有前途的方法, 但其昂贵的价格成为制约其广泛应用的重要原因.一些传统的氧化方法如NaClO、H2O2、臭氧和紫外氧化等证明对废水脱色并不有效, 采用强化物理化学与酶催化降解的方法可能将有非常广阔的应用前景.因此在实际工程中应该按照具体条件和要求,合理选择工艺组合,以便取得最佳的效果.

D. 超滤膜有主要有哪些材质,各有什么特点

超滤膜的抄结构:

超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。

超滤膜还可以分为板框式、管式、卷式和中空纤维式等


超滤膜的特点

超滤膜的过滤过程不会发生化学变化,没有相变,保留水中物质原有的活性,在常温环境下就可以操作,不需要对其加热,节约了能源,比较适合于热敏性物质的分离,比如生物制品、菌体、蛋白质等。

1.创新的可更换膜组件设计

2.省膜更换成本,不锈钢膜壳可重复使用

3.护操作简单,用户可以在现场自行更换

4.支膜组件出现问题时,不会影响整套系统的运行

5.膜组件规格多,从DN65到DN250,面积从1.1m到72㎡

6.可以满足您不同的需求,优化的设计整套系统

7.膜组件长可达4.0米,标准长度3.0米和3.66米

8.个性化设计,可以根据您的需求定制膜组件

如果还有什么不明白的想了解的详细的可以看网页链接

E. 影响过滤效果的因素有哪些

1、物料过滤状态下的温度和粘度;

2、物理和化学特性;
3、单位时间处理量;
4、滤饼含湿率;
5、滤液中的固体含量;
6、滤饼的洗涤程度。

F. 净水器超滤膜材料有哪些种类分别有什么优点缺点求专家解答,打广告的请自行离开。

你好,很高兴为你解答,净水器的超滤膜是比较重要的,超滤膜的材料可分内有机材料和无机材容料,超滤膜根据膜材料的不同分为:无机膜和有机膜,无机膜主要是陶瓷膜和金属膜。有机膜主要是由高分子材料制成,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚偏氟乙烯等等。根据膜形状的不同,可分为平板膜、管式膜、毛细管膜、中空纤维膜等,无机膜中,陶瓷超滤膜在家用净水器中应用比较多。陶瓷膜寿命长,耐腐蚀,但出水有土味,影响口感。同时陶瓷膜易堵塞,清洗不易。中空纤维超滤膜由于其填充密度大,有效膜面积大,纯水通量高,操作简单易清洗等优势,被广泛应用于家用净水行业。

G. 超滤膜的简介

超滤膜是一种孔径规格一致,额定孔径范围为0.001-0.02微米的一种微孔过滤膜专。超滤膜采用压力差为推动力的膜过属滤方法为超滤膜过滤。以膜的额定孔径范围作为区分标准时压力差为推动力的膜过滤可区分为:微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。超滤膜的孔径只有几纳米到几十纳米,也就是说在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。

H. 万能的度友 有谁能帮帮我谈谈 对超滤膜的认识和了解。(越多越好) 谁能谈谈啊 100分奖励

超滤膜是一种用于超滤过程能将一定大小的高分子胶体或悬浮颗粒从溶液中分离出来的高分子半透膜。 以压力为驱动力,膜孔径为1~100nm,属非对称性膜类型。孔密度约10/cm,操作压力差为100~1000kPa,适用于脱除胶体级微粒和大分子,能分离浓度小于10%的溶液。

1. 超滤膜结构

这种高分子聚合膜具有不对称的微孔结构,分为两层:上层为功能层,具有致密微孔和拦截大分子的功能,其孔径为1~20nm;下层具有大通孔结构的支撑层,起增大膜强度的作用。

功能层较薄,透水通量大。一般先制成管式、板面式、卷式、毛细管式等各种型的组件,然后组装多个组件在一起应用,以增大过滤面积。膜的超滤过程在本质上是机械筛滤过程,膜表面孔隙的大小是最主要的控制因素。超过滤膜能分离的溶质(高分子或溶体)为1~30nm大小的分子,它排斥的物质除膜的特性外,还与物质分子的形状、大小、柔度及操作条件等有关。早期的超滤膜用玻璃纸、硝酸纤维膜等。

2. 超滤膜制作材料

通常由各种高分子材料制成,如醋酸纤维素类、醋酸纤维素酯类、聚乙烯类、聚砜类、聚酰胺类以及芳香族聚合物类等。

3. 超滤膜性能表征

性能用纯水透水率平方米·小时和截留分子量和截留百分率表示。纯水透过率越大越好,截留率一般要求>99%。高质量的超滤膜孔密度很大,孔径分布很窄。

4. 超滤膜应用领域

超滤膜已广泛用于工业废水和工艺水的深度处理,如化工、食品和医药工业中大分子物质的浓缩、纯化和分离,生物溶液的除菌,印染废水中染料的分离,石油化工废水中回收甘油,照相化学废水中回收银以及超纯水的制备等。此外,还可用于污泥浓缩脱水等。

I. 影响滤芯过滤效率的因素有哪些

1流体特性
与流体特性关例流体粘度化/离流体粘度越相同压力前提流速越慢流体与膜间较接触滤效较;再流 体膜混合/接触间滤效较影响混合/接触间越则滤效越外需要留意流体特性影响膜流体吸附截留效影响颗粒排除
2操纵前提
与实际操纵前提关颗粒流速滤压力要想取滤效般选择较低流速流速越 低截留效越实践证实膜结构移滤利旦膜结构滤程发变化则颗粒纤维能深层滤器析影响滤效速度/压差仅吸附截留重要影响排除影响相称
3颗粒类型
颗粒类型与滤效关系颗粒变 形颗粒变形颗粒2种定压力变形颗 粒进入滤膜内并导致更滤网孔堵塞影 响滤效凝胶滤变颗粒滤则滤膜形层类似饼状物体
4滤膜类型
与滤膜类型关同滤膜孔径结构 同些膜结构刚性些膜结构移 预滤膜额定孔径没同家尺度同 制造商自定义所选择更换商家需 引起高度留意同0.22μm预滤膜选用同制 造商滤效存差别除菌滤公共孔径划定义各商家执行统尺度 选择更换相要简朴些
5滤材质
与滤材质关滤材质按与水关系亲 水性(水浸润)疏水性(水浸润)2种亲水性 滤器主要应用水或水/机溶液混合滤除 菌滤纤维素材料(再纤维素、混合纤维素酯)、 PVPP聚碳酸酯、PVDF改良聚偏二氟乙烯;疏水性滤 器通水截流或引导进入滤膜主要应用溶剂、酸、碱化品滤罐/设备呼吸器工艺用气发 酵进气/排气滤PTFE聚四氟乙烯、PVDF聚偏二氟 乙烯、聚丙烯、聚砜、聚碳酸酯等 (海青滤)

J. 超滤膜的原理是什么孔径与分子量之间有关系吗

超滤膜原理

超滤膜筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的专压力下,当属原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。

超滤膜孔径与分子量之间的关系

超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。

阅读全文

与影响聚砜超滤膜结构的因素相关的资料

热点内容
奥克斯净化器怎么使用说明 浏览:408
长春污水厂建设 浏览:989
含油量对超滤膜通量的影响 浏览:336
福建古巴胶树脂 浏览:909
陶壶烧水会有水垢吗 浏览:80
西宁印染污水聚丙烯酰胺多少钱 浏览:709
污水处理如何降低水中色度 浏览:371
蒸馏水什么行业需求大 浏览:626
吴川市的污水 浏览:10
csm反渗透膜价格 浏览:780
含煤废水氯根 浏览:934
回力联名鞋防盗扣有什么用 浏览:529
雪铁龙滤芯用的什么品牌的 浏览:803
南京电热水器除垢 浏览:568
污水处理设备医用空气消毒机 浏览:587
污水泵厂工资多少 浏览:900
辉腾30的机油滤芯在哪里 浏览:950
别克威朗用的什么机油滤芯 浏览:439
三溢滤芯是什么牌子的 浏览:627
使电镀废水成果冻状加什么 浏览:903