1. 国家专利号200910065753.x 这个专利号是真的吗
你好,这个专利号是真的存在的,对应的名称是,一种固体水溶性脱铅蜂胶的制备方法。
摘要是:
一种固体水溶性脱铅蜂胶的制备方法,属于蜂胶深加工工艺领域,它主要是由下述步骤制备:将10~50重量份蜂胶原粉加50%~90%乙醇常温搅拌浸提6~24小时,用循环冷盐水降温至0~8℃冷浸2~12小时,经1000~6000rpm离心甩滤,滤液经酸性阳离子交换树脂层析柱层析,层析液减压除乙醇,得到相对密度为1.28的浓缩液,将浓缩液溶入含有5%~50%淀粉糖脂的纯化水溶液中,使用均质机或胶体磨进行乳化,乳化液经喷雾干燥或真空减压干燥制备固体水溶性蜂胶。经检测用本发明减少生产的蜂胶,蜂胶标志性成分总黄酮含量≥13.86mg/g,铅含量≤0.03ppm。
希望能帮助你。可以到zlppp.com查询。
2. 水性环氧的生产工艺,以及配方,注意事项
环氧树脂具有优良的物理、机械、电绝缘性能及对各种材料的粘接性能,广泛应用于涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料等领域¨ 。随着工业的发展及社会的进步,人们的环保意识逐渐增强,不含挥发性有机化合物(VOC)或少含VOC、以及不含有害空气污染物(HAP)的体系已成为新型材料的研究方向 。近年来,以水为溶剂或分散介质的水性环氧树脂越来越受到重视。水性环氧树脂通常是指以微粒或液滴形式分散在以水为连续相的分散介质中而配制的稳定分散体系。一般可分为水乳型环氧树脂胶液(环氧树脂水乳液)以及水溶性环氧树脂胶液(环氧树脂水溶液)两类,既保持了溶剂型环氧树脂的优点,还具有合理的固化时间并
有着很高的交联度和很大的粘度可调范围,操作性能好,施工工具可直接用水清洗,可与其它水性聚合物体系混合使用,以及价廉、无气味、VOC含量低、不燃,储存、运输和使用过程中安全性高等特点 。
随着生产技术的不断成熟和发展,水性环氧树脂的应用前景良好。国内外已研究和开发了很多新的品种,并将其不断地推广到各个相关领域 l。
1 水性环氧树脂的制备
水性环氧树脂制备方法主要有以下几种:
1.1 直接乳化法
直接乳化法又称机械法、直接法,通过球磨机、胶体磨、超声波振荡、高速搅拌,均质机乳化等手段将环氧树脂磨碎,在乳化剂水溶液的作用下,再通过机械搅拌将粒子分散于水中;或将环氧树脂和乳化剂混合,加热到适当的温度,在激烈的搅拌下逐渐加入水而形成乳液。可采用的乳化剂有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自制活性乳化剂 】。
机械法制备水性环氧树脂乳液的优点是工艺简单,所需乳化剂的用量较少,但乳液中环氧树脂分散相微粒的尺寸较大,约50/tm左右,粒子形状不规则且粒度分布较宽,所配得的乳液稳定性差,时间一长乳液就会分层,并且乳液的成膜性能也不是很好。
1.2 相反转法
相反转原指多组分体系中的连续相在一定条件下相互转化的过程,如在油/水/乳化剂体系中,当连续相由水相向油相(或从油相向水相)转变时,在连续相转变区,体系的界面张力最低,因而分散相的尺寸最小。通过相反转法将高分子树脂乳化为乳液,其分散相的平均粒径一般为1~2 ILm。
相反转法是一种制备高分子树脂乳液较为有效的方法,几乎可将所有的高分子树脂借助于外加乳化剂的作用并通过物理乳化的方法制得相应的乳液。用相反转法制备水性环氧树脂乳液的具体过程是在高速剪切作用下先将乳化剂和环氧树脂混合均匀,随后在一定的剪切条件下缓慢地向体系中加入蒸馏水,随着加水量的增加,整个体系逐步由油包水向水包油转变,形成均匀稳定的水可稀释体系。在这一过程中,水性环氧树脂乳液的许多性质会发生突变,如体系的粘度、导电性和表面张力等,通过测定体系乳化过程中的电导率和粘度的变化就可判断相反转是否完全。该乳化过程可在室温环境下进行,对于固体环氧树脂,则需要借助于少量有机溶剂或进行加热来降低环氧树脂的本体粘度,然后再进行乳化 -8l。
有研究按一定比例将环氧树脂和表面活性剂通过加热及过硫酸钾溶液催化,制得反应型环氧树脂乳化剂溶液,大大改善了乳化剂与环氧树脂的相容性。然后将双酚A型环氧树脂的乙二醇单乙醚溶液和反应型环氧树脂乳化剂按一定比例搅拌混合均匀,滴加蒸馏水至体系的粘度突然下降,此时体系的连续相由环氧树脂溶液相转变为水相,发生了相反转,继续高速搅拌一段U?I司后加入适量蒸馏水稀释到一定的浓度,制得水性环氧树脂乳液 l。
1.3 自乳化法
自乳化法,又称化学法,或化学改性法。在环氧树脂中,环氧基的存在使其具有较好的反应活性,因为环氧环为三元环,张力大,C、0电负性的不同使该三元环具有极性,容易受到亲核试剂或亲电试剂进攻而发生开环反应;分子骨架上所悬挂的羟基虽然具有一定反应活性,但由于空间位阻,其反应程度较差 。。。因此可在环氧树脂分子骨架中引入一定量的强亲水性基团,如磺酸基、羧酸基等酸性基团;胺基等碱性基团,聚醚等非离子基团。这些亲水性基团能帮助环氧树脂在水中分散,使改性树脂具有亲水亲油的两亲性能,当这种改性聚合物加水进行乳化时,疏水性高聚物分子链就会聚集成微粒,离子基团或极性基团分布在这些微粒的表面,由于带有同种电荷而相互排斥,只要满足一定的动力学条件,就可形成稳定的水性环氧树脂乳液,从而使所得的改性环氧树脂不用外加乳化剂即可自分散于水中形成乳液。所需亲水基团的最低数量与亲水基团的极性大小,树脂的结构以及平均相对分子质量有关。树脂的相对分子质量小,相对分子质量分布宽时,其水溶性较好。因为高相对分子质量的分子在水中的扩散速度慢,且其溶液的粘度也大,增加了分子运动的阻力。而分子间的互溶效应则可使相对分子质量分布宽时的溶液的水溶性得到改善。
如用相对分子质量为4 000~20 000的双环氧端基乳化剂与环氧当量为190的双酚A环氧树脂和双酚A混合,以三苯基膦化氢为催化剂进行反应,可制得含亲水性聚氧乙烯、聚氧丙烯链段的环氧树脂,该树脂不用#F;bu-~L化剂便可溶于水,且耐水性强⋯ 。
根据反应类型的不同,可将自乳化法分为以下几类:
1.3.1 醚化反应型
由亲核试剂直接进攻环氧环上的C原子即为醚化反应型。可用的方法有:将环氧树脂和对位羟基苯甲酸甲酯反应,而后水解、中和;将环氧树脂与巯基乙酸反应,而后水解、中和;将对位氨基苯甲酸与环氧树脂反应,产物可稳定分散于合适的胺/水}昆合溶剂中[12l~
1.3.2 酯化反应型
酯化反应型与醚化反应型不同的是氢离子先将环氧环极化,酸根离子再进攻环氧环,使其开环。可行的方法有:用不饱和脂肪酸酯化环氧树脂,再将所得产物与马来酸酐反应,引入极性基;或者将不饱和脂肪酸先与马来酸酐反应,所得中间产物与环氧树脂发生酯化反应,然后中和产物上未反应的羧基。
在较激烈反应条件下,环氧树脂可以和羧酸发生酯化反应,按化学计量加入二酸,可得到含一游离羧基的环氧酯,用有机胺中和即得稳定分散体:磷酸与环氧树脂反应生成环氧磷酸酯,由于溶液有利于放热反应进行,用环氧树脂溶液反应可得最好结果,磷酸最好与水和醇一起逐步加入溶液中,反应极易制得二酯,二酯在醇作用下易解离成单磷酯,用胺中和,可得不易水解的较稳定水分散体。环氧树脂与丙烯酸树脂发生酯基转移反应,或环氧树脂与丙烯酸单体溶液反应,丙烯酸通过酯键接枝于环氧树脂上,这两种改性方法所得的水乳体系,大量用作罐头内壁涂料。目前,环氧树脂磺化水性化的报道较少,低相对分子质量的含环氧基有机物,在亚硫酸氢钠作用下可以磺化,通过这种方法有可能将低相对分子质量的环氧树脂改性,使其水性化。
酯化法的缺点是酯化产物的酯键会随U?I司增加而水解,导致体系不稳定。为避免这一缺点,可将含羧基单体通过形成碳碳键接枝于高相对分子质量的环氧树脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸单体与环氧树脂在自由基引发剂(BPO)存在的条件下进行接枝聚合,将羧基引入环氧树脂骨架中,制得水性环氧树脂。并研究发现接枝位置为环氧分子链上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低于100% ,最后产物为未接枝的环氧树脂、接枝的环氧树脂和聚丙烯酸的混合物, 由于没有酯键,用碱中和,可得稳定的水乳液。引发剂用量至少为单体量的3%, 在自由基引发剂为单体量的3% ~15%范围内,接枝率与引发剂用量呈线性关系,但过多的引发剂导致单体的自聚,或为链终止所消耗,接枝率不能保持原来的增加趋势;用所得产物制得的乳液粒子的粒径随制备时引发剂用量的增加而变小。最后产物中未反应的环氧树脂比原来的环氧树脂平均相对分子质量要低,这是因为高相对分子质量的环氧树脂有更
佳的接枝率,在高相对分子质量的环氧树脂中(数均
相对分子质量约为10 000),大约有34个重复单元O H
l一(卜一CH厂CI{-_一CH厂0一, 则有34 x 5=170个氢原
子可被自由基离解而成为单体反应的起点,而如果使用的是低相对分子质量的环氧树脂,如数均相对分子质量为1 000左右, 则在环氧骨架上约有2个0H一0一CH厂Cl_卜CH厂一0一单元,那么只有1O个氢原子可作反应起点。由于这种接枝与通过酯键接枝于环氧骨架上不同,无需形成酯键,环氧官能基对其无影响,可用苯酚或苯甲酸将环氧官能基封端 。
1.3.4 开环接枝型
选羟基含量较高的环氧树脂作骨架材料,用不饱和脂肪酸进行酯化制成环氧酯,再以不饱和二元羧酸(酐)与环氧酯的脂肪酸上的双键进行自由基引发加成反应,以引进羧基。然后加碱中和,直接加水稀释即得水性环氧乳液。如可用亚麻油酸与环氧树脂制成环氧酯后,与马来酸酐进行自由基反应制备水性环氧树脂 。
这种方法制得的粒子较细,通常为纳米级,相反转法以及直接乳化法制得的粒子较大,通常为微米级。从此意义上讲,化学法虽然制备步骤多,不易操控,且成本高,但在某些方面仍具有实际意义。
1.4 固化剂乳化法
将多元胺固化剂进行扩链、接枝、成盐,使其成为具有亲环氧树脂分子结构的水分散型固化剂,同时它作为阳离子型乳化剂对环氧树脂进行乳化,两组分混合后可制成稳定的乳液。双酚A环氧树脂和过量的二乙烯三胺反应,形成胺封端的环氧树脂加成物,真空蒸馏除去多余的二乙烯三胺,再加入单环氧基化合物将氨基上的伯氢反应掉,最后加入乙酸中和,制成酸中和的环氧树脂固化剂。此固化剂可分散于水中,向其水溶液中直接加入环氧树脂或环氧树脂乳液,均可形成稳定的水乳化环氧一胺组合物,可配制水性常温固化清漆 。
2 水性环氧树脂体系的几个重要参数“
2.1 粒子大小及其分布
粒子大小及其分布对分散体系的性质及涂层的性质是非常关键的。涂层的干燥时间、涂层的透气性等参量随粒径增大而提高;涂层的光泽、耐水性、硬度、乳液与颜料的结合力、乳液的粘度及稳定性等参量随粒径增大而减小。而粒子大小及分布主要取决于制备方法、设备、乳化剂类型及用量等因素。粒子越小,膜的硬化过程越慢,膜的最终硬度越大;相反,较大粒子会加速涂层的硬化过程,但最终硬度较小。所以,若调节体系的粒子大小,使其具有一定分布,不仅可以保证膜快速硬化,又能保证膜的最终硬度。由水性化体系的固化过程可知:粒子大,其表面的固化剂浓度高,导致快速固化;然而,随着固化的进行,固化剂向微粒内部扩散的速度变慢,使粒子的内层来不及固化,导致固化不完全,降低了膜的最终硬度。相反,小粒子表面的固化剂浓度适中,固化速度慢,使固化剂有充分时间扩散到整个微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化剂浓度
乳化剂浓度对环氧树脂微粒化水基化体系性质的影响也是非常显著的,不仅影响粒子大小,而且也影响涂膜的性质,如膜的硬度。随着乳化剂浓度的增加,粒子平均尺寸变小,但当乳化剂浓度较大时(如15PHR),进一步增加乳化剂浓度,平均粒子尺寸减小得不明显。此外,乳化剂含量增加,涂层的硬度显著降低。因为乳液成膜是一个由O/W变为W/0的相反转过程,过多的乳化剂分散于涂膜中,导致膜的不均匀性;同时,乳化剂分散相起着增塑作用。
但可以想象,适量的乳化剂可以作为无机填料的表面处理剂,使无机填料与树脂具有良好的相容性,从而提高涂膜性质。
2.3 其它重要参数 ¨
水性环氧树脂乳液的稳定性也是一个重要参数。无论是外加乳化剂,还是自乳化环氧树Ji~?L液,都处于热力学不稳定状态,尤其是外加乳化剂型乳液(包括外加反应性乳化剂所得的自乳化乳液),仅有一定的贮存期。首先,环氧分子能被水解成a一二醇,它不与胺固化剂反应;其次,大多用非离子表面活性剂乳化环氧树脂,而由于非离子表面活性剂的浊点问题,一旦温度升高,聚醚和水的吸附量减少,即水化层厚度降低,液滴趋向于聚结成较大粒子,最终导致两相分离。通常环氧乳液在20℃时可贮存1年;而在40℃ ,3个月即发生相分离;6o℃时贮存,稳定期不到1个月。用固体或半固体状环氧树脂制
得的环氧乳液比用液体环氧树脂制得的乳液稳定性要好,这是因为固体环氧树脂可以制得粒径较小的乳液。对于自乳化环氧树脂乳液,温度上升,乳液也会沉淀,但一旦温度下降,经搅拌又可恢复原样,稳定性较好。确保乳液长期贮存稳定的最好方法是选择适宜的乳化剂(复合型乳化剂),避免极端温度(如低于0℃ ,或高于40℃)。乳液液滴的粒径和分布对乳液的稳定性也极为重要,小粒径和窄分布会大大增加乳液的稳定性。
此外,乳液流变特性的研究有助于指导施工过程。比较水基体系与有机溶剂体系的粘度与固含量的关系可见:水基体系的粘度更大,尤其是在高固含量时更是如此。这是因为水基体系中微粒表层的乳化剂与水形成强相互作用,导致体系的粘弹性增加所致。
1 水性环氧树脂乳液的制备
众所周知,环氧树脂的亲水亲油平衡值(HI B)在3左右,是一种不溶于水也难于乳化的亲油性聚合物。为使其乳
化形成稳定乳液,目前国内外最常用的方法可归结为外加乳化剂法及自乳化法。
1 1 外加乳化剂法
这是一种藉外加乳化剂使环氧树脂乳化而形成水包油型(O/W)乳液的方法。其最主要的实施方法包括直接乳化
法及相反转法。
(1)直接乳化法Ⅲ 又称机械法 可用球磨机、胶体磨或均
化器等先将环氧树脂磨碎成粉末,然后加入乳化剂水溶液,继而再通过强烈机械搅拌将树脂粒子分散于水中而成。也可将环氧树脂和乳化剂混合后加热到适当温度,在施以激烈机械搅拌后逐渐加入水而形成乳液。乳化剂通常采用较多的有聚氧化乙烯烷基醚(HI B值为10.8-16.5)及聚氧化乙烯烷基酯(HLB值为9.0-16.5)。目前国内外陆续有许多新的乳化剂被开拓应用,如利用双酚A环氧树脂在路易斯酸催化下与聚乙二醇的反应产物,环氧树脂,聚乙二醇与多元胺作用的加成产物等。直接乳化法最大特点就是工艺简单,乳化剂用量也较少,但所得乳液中作为分散相的环氧树脂微粒粒径较大(约50 m)且粒径分布较宽,形状也不规则,乳液稳定性及成膜性相对较差。影响这~ 方法的因素颇多,除乳化剂的选择外,高效搅拌及分散时温度控制都是十分重要的。
(2)相反转法 这是一种有效制备高聚物水乳液的方法,包括从油包水(W/O)到水包油(O/W )的相转变过程,
在此过程中乳液的黏度、导电性及表面张力等诸多性质均会发生突变。在室温高速剪切作用下先将液态环氧树脂与乳化剂均匀混合,然后继续在一定剪切作用下缓慢地逐步向其中加入蒸馏水,增加到一定水量后,即出现整个体系逐步由油包水型向水包油型的转变,而形成均匀稳定并可由水稀释的乳液。若选用高分子质量固体环氧树脂,则需要加少量有机溶剂并加热以降低其本黏度,继而再行转换和乳化。这一方法的影响因素也较多,除必须有高效的高速剪切分散的设备外,乳化剂的类型、分子质量大小、使用浓度及操作温度等,实际上都对相反转过程、粒径控制及分散乳化效果有着直接影响。近来有人 对其相反转过程流变行为及相态发展进行了研究,在相反转点附近,体系油水相的界面张力最
小,此时产生的乳液具有最小分散相尺寸。
1.2 自乳化法
又称化学修饰法,这是利用环氧树脂活性基团的反应活
性将亲水性基团或链段引入到环氧树脂分子上而进行化学修饰改性的方法。这种具有疏水及亲水两性的环氧树脂,有着良好的表面活性,无需添加乳化剂而具有自乳化作用,自行分散于水中形成稳定乳液。亲水性基团及链段的引入主要是充分利用了环氧树脂分子中活性环氧基及活泼的次甲基上氢原子进行的。当然对高分子质量环氧树脂而言,还有仲羟基,但其反应活性相对要低得多。
(1)与环氧基的反应_8 因环氧基有较大张力及极性,很易与亲核试剂及亲电试剂作用而开环,方便地引入亲
水性基团及链段。例如选用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物与环氧树脂反应,则氨基使环氧基开环得到相应含羧基、磺酸基的环氧树脂,再经与氨水等碱性化合行分散于水中,也可用此产物使纯环氧
树脂进行乳化。也有用羟基苯甲酸甲酯、巯基乙酸酯等小分子化合与环氧基反应,然后再进行酯基水解和中和而引入亲水基团的。有人将丙烯酸齐聚物与环氧树脂作用,藉羧基使环氧基开环而引入含多羧基基团的环氧树脂再继而用氨水中和成盐,分散于水中形成稳定乳液。这类反应因使环氧基消失,一般需加入三聚氰胺或氮基树脂等以利固化成膜。也有人选用端环氧基聚氧化乙烯或端环氧基聚氧化丙烯乳化剂及双酚A与双酚A环氧树脂在三苯基膦化氢催化下反应.巧妙得到分别含亲水性聚氧化乙烯及聚氧化丙烯链段并含有环氧基的改性环氧树脂,不仅具有很好水分散性,且成膜后具有良好耐水性。也有以端羟基聚氧化乙烯或端羟基聚氧化丙烯代替上述双环氧乳化剂与之反应的报道。
(2)与次甲基上氢的反应 ” 有人将环氧树脂溶于溶剂,加入引发剂及亲水性单体如丙烯酸或甲基丙烯酸,加
热使引发剂分解产生初级游离基,并进攻环氧树脂次甲基使其活化而产生碳游离基成为新的活性中心,它引发单体进行聚合而使环氧树脂成为含多羧基基团亲水链的产物,用氨水中和得到了良好分散于水的稳定乳液。在游离基反应中一般对环氧基影响不大,但也有人将环氧基先用苯酚或苯甲酸或磷酸等予以保护,反应完后再予以还原。当然保护基的选择应符合易于引入,形成的中间结构能经受所处后继反应条件,并能在反应结束后不损及分子其他结构的条件下除去。
研究表明,这类接枝环氧树脂中丙烯酸链段含量对乳液稳定性影响很大。
(3)与羟基的反应 对于分子质量较大的环氧树脂中的仲羟基,虽然反应活性不及前者,但仍可以通过其反应而引入亲水基团或链段。如有人使用磷酸与其反应形成单、双或三磷酸酯环氧,用氨水中和成盐而具亲水性。也有酸酐与之反应形脂肪酸环氧,也有将不饱和脂肪酸与之反应形成不饱和脂肪酸环氧酯,再通过双键作用与顺丁烯二酸酐反应而制成水性脂肪酸环氧的报道。
1 3 改性固化剂乳化法[. ]
除上述方法外还可采用改性固化剂乳化法,它不需要先
将环氧树脂改性和乳化,而在配制使用前与改性固化剂混合乳化,这种固化剂一般由多元胺固化剂进行加成扩链、接枝、成盐而制得,非极性及具有表面活性的基团和链段的引入,不仅改善了与其环氧树脂的相容性,而且对低分子质量液体树脂有良好乳化作用,因而同时兼有乳化及交联固化功能。
如将多乙烯多胺与单环氧或多环氧化物加成使大部分伯胺氢封闭,再用双酚A环氧树脂与之加成,达适当亲水亲油平衡值后与甲醛作用使伯胺氢羟甲基化。或将过量的多烯多胺与环氧树脂加成后,用脂肪族或芳香族单环氧化合物封闭其伯胺氢,以水(或水溶性有机溶剂)稀释后,以醋酸中和部分伯胺氢。封端的作用主要在于制约伯胺基上的氢的活性。
制备中控制好HLB值可保证其良好水分散性。
2 水性环氧树脂的固化机理[18,1 9j 1 、 、
水性环氧树脂乳液在配制时根据组成及成膜后性质的
不同要求,需调节环氧与固化剂 的摩尔比,当使用分子质量较大的固体环氧时,尚需加入乙二醇醚一类的成膜助剂。颜填料则可分别添加在环氧及固化剂内,最好质量相近。由于这是一种以溶有固化剂的水为连续相,环氧树脂为分散相的多相体系,涂装后水分在适当蒸汽压条件下会逐渐挥发。有人认为随水分大部分挥发,环氧颗粒相互接触形成球体紧密堆积而聚结,而含固化剂的剩余水分则填充于其间,继而固化剂不断扩散人环氧,二者相互作用而交联固化成膜,残余水分及其他添加助剂则扩散到膜表面挥发。但随着交联固化的进行,环氧颗粒内质量增大,黏度及玻璃化转变温度升高,会大大影响固化剂向内部扩散的速度,但速度过快并不利于成膜过程的进行,透射电镜测试也显示了其相应的两相
结构,初步成膜后其固化反应实际上继续进行,到完全固化需要持续一定时间。
由水的挥发,颗粒聚结,固化剂。扩散及交联固化成膜的反应机制充分说明,水分的挥发及固化剂扩散速度是极重要的技术关键,环氧分散相的粒径愈小,固化剂与环氧的相容性愈好,少量成膜助剂的使用及合适的水蒸发的控制手段都将直接影响成膜的过程及性质。陈声锐指出 水分的蒸发分2个阶段,先是流体状态时其蒸发速率恒定,二是成膜后水分需从内部扩散到表面蒸发速率较慢,并指出固化成膜时的温度、膜厚度及环境相对湿度皆制约着水分的蒸发。
3 有待改善的问题
以水性环氧树脂为基础的水性涂料具有环境污染小,对
许多基材包括潮湿基材都有良好附着力 可与水 泥砂浆或水性聚合物配合使用,操作方便,有很好的应用前景,但实践中还是有不少问题需要予以改善。
(1)由于水的蒸汽压及蒸发潜热皆比有机溶剂高,作为
涂料涂装后水的蒸发较慢,在低温及潮湿环境下更甚,微量水分的残留常造成涂膜表干时间延长,涂膜起泡或凹陷。
(2)由于水的冰点低,作为水性涂料,其冻融稳定性较溶
剂型为差。
(3)由于水的表面张力较大,作为水性涂料大大影响了
其对基材及添加的颜填料的润湿及附着。
(4)由于水的电导率高及乳化剂存在,易使涂装金属受
到一定腐蚀。
3. 求均质机、搅拌机、乳化机三者的区别
均质机、搅拌机、乳化机有以下区别:
一、原理不同:
1、均质机是通过转子和定子的精密配合,转子高速平稳的旋转,形成高频、强烈的圆周切线速度、角向速度达到均质。
2、搅拌机是通过工作原理是靠搅拌杯底部的刀片高速旋转,在水流的作用下把食物反复打碎。
3、乳化机是通过与发动机连接的均质头的高速旋转,对物料进行剪切,分散,撞击。这样物料就会变得更加细腻。
二、应用区别:
1、均质机一般应用在用于生物技术领域的组织分散、医药领域的样品准备、食品工业的酶处理多数用于研究物质。
2、搅拌机一般应用与家庭可实现多种水果蔬菜的搅拌,从而榨出新鲜美味的果汁和蔬菜汁的小型机器。
3、乳化机一般应用与诸如粘合剂、油漆涂料、化妆品、食品、药品、塑料树脂、印染、油墨、沥青等行业都有广泛的应用。
三、优缺点区别:
1、均质机优点是优点是混合效果最好。缺点为功耗大,产量低,容易出现故障,维修成本较高。
2、搅拌机优点是最传统的搅拌方式,应用最为广泛,方便便捷。缺点对物料没有剪切细化作用,只能进行简单的混合。
3、乳化机优点是混合效果好,选择合适的乳化头可以适用多种工况条件,应用广泛。缺点为产量低,对硬颗粒物料和高粘度物料,混合效果差。
乳化机特点:
1.、三级在线分散乳化机。
2、三级定转子形式: 2G (粗) 4M(中)6F (细)。
3、稳定的均质乳浊液和悬浮液的完美选择。
4、分散头可自由组配,模块化,易于维护。
5、只需一次处理便可得到集中的颗粒大小分布。
6、无极调速(变频器)。
7、所有接触物料材质均为SS316。
8、符合CIP/SIP清洁标准,适合食品及医药生产。
9、获得了美国食品及药品管理局(FDA)颁发的3A等级证书。
4. 均质机在做软冰淇淋原料中的作用是什么
均质机是以高压往复泵为动力传递及物料输送机构,将物料输送至工作阀(一级均质阀及二级乳化阀)部分。要处理物料在通过工作阀的过程中,在高压下产生强烈的剪切、撞击和空穴作用,从而使液态物质或以液体为载体的固体颗粒得到超微细化,因此也成为高压均质机。
BuB图1:物料被输送至工作阀进口(尚未通过工作阀) 图2:物料源源不断地通过一级均质阀和二级乳化阀
如图1所示,物料在尚未通过工作阀时,一级均质阀和二级乳化阀的阀芯和阀座在力F1和F2的作用下均紧密地贴合在一起。物料在通过工作阀时(如图2),阀芯和阀座都被物料强制地挤开一 条狭缝,同时分别产生压力P1和P2以平衡力F1和F2。物料在通过一级均质阀(序号1、2、3)时,压力从P1突降至P2,也就随着这压力能的突然释放,在阀芯、阀座和冲击环这三者组成的狭小区域内产生类似爆炸效应的强烈的空穴作用,同时伴随着物料通过阀芯和阀座间的狭缝产生的剪切作用以及与冲击环撞击产生的高速撞击作用,如此强烈地综合作用,从而使颗粒得到超微细化。一般来说,P2的压力(即乳化压力)调得很低,二级乳化阀的作用主要是使已经细化的颗粒分布得更加均匀一些。据美国Gaulin公司的资料介绍,绝大部分情况下,单单使用一级均质阀即可获得理想的效果。
主要优缺点:
相对于离心式分散乳化设备(如胶体磨、高剪切混合乳化机等)),高压均质机的特点是1))细化作用更为强烈。这是因为工作阀的阀芯和阀座之间在初始位是紧密贴合的,只是在工作时被料液强制挤出了一条狭缝;而离心式乳化设备的转定子之间为满足高速旋转并且不产生过多的热量,必然有较大的间隙(相对均质阀而言);同时,由于均质机的传动机构是容积式往复泵,所以从理论上说,均质压力可以无限地提高,而压力越高,细化效果就越好。2)均质机的细化作用主要是利用了物料间的相互作用,所以物料的发热量较小,因而能保持物料的性能基本不变。3)均质机能定量输送物料,因为它依靠往复泵送料。4)均质机耗能较大5)均质机的易损使较多,维护工作量较大,特别在压力很高的情况下6)均质机不适合于粘度很高的情况EuE
产 品 分 类 及 选 用
高压均质机的分类:
按结构型式分为立式整体型均质机和卧式组合型均质机。前者一般适用于中小型设备(功率在45kw以下);后者适用于大型设备(功率在45kw以上)。目前国内大多数厂家生产的都是立式整体型均质机。这种型式结构紧凑,外形美观占地面积小。但对大型设备而言,稳定性就成了主要的问题。所谓卧式组合型均质机指的是电机、减速箱、曲轴箱、润滑站等相对独立成块,并分布在同一水平面上,通过皮带(轮)、联轴器、油管等连成一体。整机重心低、运转平稳、检修方便。1995年5月为给世界上最著名的化工企业之一德国BASF公司配套高质量的大吨位均质机,我们研制了国内第一台大型卧式均质机。在此基础上通过几年的实践,该产品形成十几个规格的系列,最大功率达150kw(对应流量20t/h,压力22Mpa)。经上海科技情况所计算机联机检索证明为国内首创,技术水准接近国际先进水平。
按柱塞每分钟的往复次数分为普通型均质机和低速型均质机。美国Gaulin公司将柱塞每分钟往复次数在150次以下划为低速型,在150次以上的称为普通型。均质机曲轴的 转速(即同比决定柱塞的往复频率)是决定整机性能的最关键的因素之一。在材质、加工精度、结构等相同的情况下,在一定范围内转速越低,则各磨擦副(如轴与瓦、柱塞与密封等)在单位时间内的磨损度、泵体内各受力零件(如阀芯、阀座等)在同等时间内的损坏程度均大幅度降低,且设备运转的稳定性也大大提高。所以该系列特别适合于长时间使用的场合。我厂在1995年率先开发的LS系列低速高速能均质机以优异的性能迅速在全国得到推广,截至1999年已有国内外400多家用户选用。
按控制方式可 分为手动控制式、手调液力控制式以及全自动控制式。目前,手动控制式在市场上占主导地位。如果整条生产线都是自动控制的,可选用全自动控制均质机。关于全自动控制均质机,可参阅《均质机、喷雾泵自动控制技术》
按使用情况可分为生产用均质机和实验型均质机。相对于其它厂家的产品,我厂生产的JHG系列实验型均质机具有以下特点:1)采用柱塞水平运动结构,与柱塞垂直(上下)运动的实验机相比,其柱塞处可喷淋冷却水,从而延长柱塞密封圈的寿命 2)物料泄漏后不会进入油箱 3)立方体形的整体造型,美观且操作方便,并可加轮子方便搬运。
按均质机在生产线上的位置可分为上游均质机和下游均质机。一般在灭菌前使用的均质机称上游均质机,在灭菌后使用的均质机称下游均质机。通常前者采用一般的均质机即可,而后者要采用无菌均质机。所谓无菌均质机,就是将均质机柱塞处的动密封泄漏点以及进出口的静密封处的泄漏点通过蒸汽(或过热水)与大气隔绝,这样的均质机可作为无菌设备在杀菌后使用。如果有此类需要,我们将乐意提供该类设备。
高压均质机的选型
(1)选择普通型还是低速型?对应于同样的流量和压力,普通型均质机的单价要比低速型机的单价要低。所以综合考虑价格性能因素,我们建议:如果设备每天的运转时间在10小时以内,则可考虑用普通型(HOMG系列);如果设备每天的运转时间在10小时以上18小时以下,建议选择低速型(LS系列);如果工况为连续使用型,即连续几天或几十天连续不停地使用,则要作为特殊工况单独考虑。
(2)关于流量:用户在使用过程中,会发现很多情况下实际流量比制造商所提供的性能参数中标定的设备流量要小一些。这主要是由以下原因造成的:a)粘度:用户所处理的物料是千变万化的,其粘度差别很大。一般来说,物料的粘度越高,其容量效率越低(即流量损失越大),参见下表:
粘度(CST) 100 1000 2000 6000 10000
容积效率 92% 91% 90.5% 80% 59%
粘度与容积效率的关系(仅供参考)
b)压力:压力对容量效率的影响很大,特别在压力很高等情况下。这是因为,在高压下,通常被视为不可压缩的流体成了弹性体;同时,压力越高,通过泵体内阀芯阀座的内泄漏也增加了 c)进料方式:一般来说,压力进料比自吸进料的容积效率要高一些。
综上所述,我们建议: a)所处理物料的粘度越大,所使用的压力越高,则所选择的设备流量就要留更多的裕量 b)尽量采用压力进料,进料压力在1.5kgf/cm2左右 c)如果整条生产线的产量必须严格保持一致,那么最好采用变频调速的方式使流量无级可调。
(3)关于压力:压力越高,细化效果越好;但同时,压力越高,设备价格也越高,耗电量也同比增大,同时易损件增多也就是说,压力越高,运行费用越大。有必要了解的是,压力和细化效果呈根号曲线关系,而压力与运行费用接近于正比例(见下图)
所以,在选择压力参数时,我们建议采用以下原则:在达到经济破碎效果的前提下,使用压力越小越好。在使用压力选定后,再根据制造商提供的设备性能参数表,选择标定的额定压力大于使用压力的设备即可。
应 用 简 介
均质机操作独特的原理为无数工艺流程的革新以及各种新产品的开发应用提供了简便而卓有成效的途径,均质机的作用主要有:提高产品的均匀度和稳定性;增加保质期;减少反应时间从而节省大量催化剂或添加剂;改变产品的稠度改善产品的口味和色泽等等,其典型的应用领域如下:
化工行业:油漆涂料,各种乳化剂,燃油重油消毒剂,杀虫剂,感光乳剂,橡胶浆,树脂胶,增稠剂,膨润土,香精,硅材料,碳黑,氧化镁,二氧化钛等。
化妆品行业:洗涤剂,调理剂,润肤露,香水等。食品饮料行业:豆乳、牛乳,花生乳,浓缩乳,奶油,混合乳酪,各种果肉型天然饮料,冰淇淋,花粉液等中西保健营养液,食品添加剂,各种调味品等。
制药行业:抗生BuB素,抗酸剂,液浆制剂,静脉乳剂等。
生物工程技术:高压均质机在生物工程上的应用愈来愈受到重视,这主要是因为高压均质机能够高效率地对细胞壁进行破碎从而提取其内含物:如酶、朊等。
下面举几个具体的例子来简单说明一下均质机的应用:
为什么化妆品会被表皮吸收:经常听到化妆品广告中有这样的语句:渗入肌肤表层被肌肤完全吸收。事实上,被肌肤完全吸收是不可能的,但渗入肌肤表层却有着科学的依据。生物学告诉我们,人体表皮微孔的平均直径约在1.5微米,而绝大多数化妆品原料在450kgf/cm的均质压力作用后的平均颗粒度在1微米左右,这样化妆品渗入肌肤就不难理解了。同时也就不难理解国外化妆品行业为什么会大量使用高压均质机。
怎样提高鳖精,蜂皇浆,花粉口服液,药品等的人体吸收率:在这些比较贵重的产品的生产中,提高人体的吸收率有很大的意义,因为吸收率提高意味着达到同样效果时所用原料的减少,也即意味着生产成本的降低。怎样达到这个目的呢?大家知道,人体之所以会吸收是由于酶的作用,吸收效率很大程度上取决于酶促反应的面积。进入人体的物质其颗粒度越小则与酶接触起反应的表面积越大,所以吸收的效率越高。而高压均质机的作用就是使介质的颗粒极度细化(液-液均质平均粒度在1um以下),何况均质后的产品还能得到不沉淀高胶状高稳定性等优点,从而使成品的外观也大大改善,所以在较昂贵的口服液中使用高压均质机的效益是显而易见的。
根据第2条叙述的原理,相信大家不难理解使用高压均质机后为什么可以提高化学催化剂,各种添加剂以及其它化工产品的功效。
有人问:既然均质机的工作介质是流体,那么在粉状产品中又是如何应用的呢?这个问题再简单不过:用高压均质机细化后,在进行干燥的粉状产品即可得到高质量
5. 国家专利号200910065753.x 这个专利号是真的吗
你好,这个专利号是真的存在的,对应的名称是,一种固体水溶性脱铅蜂胶的制备方法。
摘要是:
一种固体水溶性脱铅蜂胶的制备方法,属于蜂胶深加工工艺领域,它主要是由下述步骤制备:将10~50重量份蜂胶原粉加50%~90%乙醇常温搅拌浸提6~24小时,用循环冷盐水降温至0~8℃冷浸2~12小时,经1000~6000rpm离心甩滤,滤液经酸性阳离子交换树脂层析柱层析,层析液减压除乙醇,得到相对密度为1.28的浓缩液,将浓缩液溶入含有5%~50%淀粉糖脂的纯化水溶液中,使用均质机或胶体磨进行乳化,乳化液经喷雾干燥或真空减压干燥制备固体水溶性蜂胶。经检测用本发明减少生产的蜂胶,蜂胶标志性成分总黄酮含量≥13.86mg/g,铅含量≤0.03ppm。
希望能帮助你。可以到zlppp.com查询。
6. 怎样的内置结构能分散受到的力。
采用十二胺盐处理的蒙脱土(MMTDDA)和环氧(E-51)/4,4′二胺基二苯砜(DDS)体系为研究对象,分别通过普通搅拌(磁力搅拌)和高速剪切分散(高速乳化均质机)两种分散MMTDDA的工艺制备了环氧树脂MMTDDA纳米复合材料。透射电镜(TEM)观察表明,普通搅拌分散法制备的纳米复合材料中存在较多粘土团聚体,而通过高速剪切分散施加一定外部剪切力细化分散粘土团聚体,则有利于粘土片层在固化过程中充分解离,力学性能明显提高。在一定剪切速率下,力学性能随剪切分散时间的增加而增加;当粘土含量为3wt%时,冲击强度可由32.1kJ/m2提高到43.9kJ/m2,提高近36.8%,弯曲强度也有一定提高。
7. 哪位大侠帮忙翻译下产品名称1、Homogenizer(Mixture of resins,LAC) 2、M-cresol formaldehyde condensate
高速搅拌器
甲醛冷凝液
腰果松香
8. 制备akd乳液均质压力过高会怎么样
乳胶漆是一种水性涂料,以水作为分散介质,高聚物分子均匀地分散在水中形成稳定的乳液作为成膜物质,加入颜填料和各种功能性助剂,经分散研磨形成一种混和分散体系。其组成中有机溶剂含量低,只有2%—8%左右。是一种绿色环保型涂料。目前,乳胶漆的品种主要有聚醋酸乙烯乳胶漆、乙苯乳胶漆、苯丙乳胶漆、纯丙烯酸酯乳胶漆、叔碳酸酯乳胶漆等,近年来还出现高弹性和高耐候性的有机硅单体、有机氟单体改性丙烯酸乳胶漆。乳胶漆由乳液,颜填料,助剂和水四个部分组成。丙烯酸酯类乳胶涂料具有十分优异的耐候性、保色性和保光性具有比醋酸乙烯类涂料更好的耐水性、耐碱性和抗污性。对颜料的黏结能力大,施工性能好。以过硫酸钾作为引发剂,十二烷基苯磺酸钠和吐温-60为乳化剂通过乳液聚合制得丙烯酸酯液,再加入填料及各种助剂,经过高速搅拌、均质而出料。合成纯丙乳液时选择甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸等单体作原料。在这些单体中,甲基丙烯酸甲酯主要为乳液提供必要的硬度,耐大气性和耐洗刷性,甲基丙烯酸丁酯,提供树脂的弹性、柔韧性、耐冲击性和涂膜的附着力。丙烯酸为分子结构提高亲水基团可增加涂膜与基材的附着力。