1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀专酸、稀碱溶液浸泡属洗脱,水洗至PH值中性即可使用。
2、钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍 (用NaCl量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。
3、氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH型强碱阴树脂则用4%NaOH溶液再生。
4、一些脱色树脂 (特别是弱碱性树脂) 宜在微酸性下工作。此时可通入稀盐酸,使树脂 pH值下降至6左右,再用水正洗,反洗各一次。
B. 树脂动态吸附饱和量怎么计算
称好你用的树脂质量,上柱后,上扬,当流出液浓度为初始上样液浓度的1/10左右,即认为吸附饱和,通过上样量计算被吸附的黄酮质量,除以树脂质量即可
C. “离子交换树脂的再生”的意思是什么
离子交换树脂为什么要再生?
离子交换树脂在长时间使用之后,吸附能力逐渐会达到饱和,树脂吸附能力达到饱和之后,就无法继续吸附水中的杂质,就需要对树脂进行再生处理,在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%左右。
离子交换树脂的再生方法:
1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用。
2、钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍 (用NaCl量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。
3、氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH型强碱阴树脂则用4%NaOH溶液再生。
4、一些脱色树脂 (特别是弱碱性树脂) 宜在微酸性下工作。此时可通入稀盐酸,使树脂 pH值下降至6左右,再用水正洗,反洗各一次。
D. 分离洛伐他汀使用的树脂
洛伐他汀(lovastatin)是目前临床上重要的降血脂药物,是由真菌产生的一种甲基羟二戊酰辅酶A(HMG�CoA)还原酶抑制剂。1979年Endo等〔1〕首次报道从红曲霉的发酵液中发现此物质,随后Alberts等〔2〕于1980年报道了洛伐他汀的新产生菌——土曲霉(Aspergillus terreus),并实现了产业化。洛伐他汀具有极性弱,难溶于水,溶于低级醇、酮、乙酸乙酯、乙酸丁酯、苯、甲苯,不溶于石油醚,正已烷。据此分离纯化一般多用溶媒萃取法〔3,4〕,但此法耗用大量溶媒,成本较高,经多次转提,收率较低。我们尝试根据洛伐他汀结构中具有羧酸基团的特性,采用大孔阴离子树脂动态吸附、解吸工艺提取纯化洛伐他汀。
1 材料与方法
1.1 实验材料
发酵菌种采用本公司生产的洛伐他汀生产菌种土曲霉WY9308VS。
乙酸乙酯、乙酸丁酯、丙酮、甲醇、乙醇为分析纯(南京化学试剂厂);盐酸、氢氧化钠为化学纯(上海化学试剂采购供应站);大孔树脂选用D�201、D�202、D�273、D�293、D�301、D�315和D�345(华东理工大学华震公司)共7种。
主要设备包括SHB�3型循环水真空泵(郑州长城科工贸有限公司);R�201型旋转薄膜浓缩仪(上海申胜生物技术有限公司);HPLC510泵486检测器(美国Waters公司);PHS�3C酸度计(上海雷磁仪器厂);ZK�82B电热干燥箱(上海实验仪器厂);Φ30mm×400mm玻璃吸附柱(上海玻璃仪器厂)。
1.2 方法
1.2.1 发酵液预处理方法 由于洛伐他汀在发酵液中以洛伐他汀羧酸形式存在于菌丝体内,在加入氢氧化钠的碱性条件下可以洛伐他汀酸钠的形式而溶于水。根据这一特性,以6mol/L氢氧化钠调整发酵液的pH至9~13,考察不同pH条件和搅拌时间对洛伐他汀溶出率的影响。以pH3.0搅拌120min条件下的洛伐他汀溶出率作为对照。
1.2.2 大孔阴离子树脂的筛选 根据洛伐他汀具有羧酸基团的特性,选用大孔阴离子树脂D�201、D�202、D273、D�293、D�301、D�315和D�345进行静态吸附筛选。
1.2.3 大孔阴离子树脂的预处理和再生方法 将准备装柱使用的新树脂,用2倍左右体积的乙醇浸泡2h,并不时搅动,除去色素和杂质,用离子水洗涤后装柱,以1/15~1/20(BV/min)的流速,将4倍体积的1mol/L的氢氧化钠溶液通过树脂层,用离子水洗涤至流出液呈中性。再将4倍体积的1mol/L的盐酸溶液通过树脂层,用离子水洗涤至流出液呈中性。再次将4倍体积的1mol/L的氢氧化钠溶液通过树脂层,用离子水洗涤至流出液呈中性备用。树脂的再生方法与上述预处理方法相同。
1.2.4 树脂的动态吸附和解吸
吸附 取己预处理的树脂200ml,将预处理过的发酵滤液从柱顶通入,流速为1/30(BV/min),以50ml为一个体积分部收集,测定浓度,计算吸附容量。
解吸 柱床洗涤后,用适当解吸液洗脱洛伐他汀酸,流速为1/100(BV/min),以50ml为一个体积分部收集,测定浓度,计算解吸率。
1.2.5 溶媒法萃取工艺 将至发酵终点的发酵液用6mol/L盐酸调pH至3.0,搅拌120min后过滤,取菌丝体加入3倍体积的乙酸丁酯进行萃取,重复萃取两次,合并乙酸丁酯萃取液,于50~60℃减压浓缩,浓缩液于0~10℃结晶,离心分离结晶体,粗结晶于50~60℃真空干燥,用丙酮再次结晶,并经无水乙醇重结晶后,成品于50~60℃真空烘干。
1.2.6 洛伐他汀浓度的测定方法
HPLC法测定样品中洛伐他汀的浓度〔5〕 取样品液1.00ml用无水乙醇稀释至待测浓度。以洛伐他汀对照品的无水乙醇溶液(300μg/ml)为对照计算浓度。
色谱条件 Agilent Zorbax SB C18柱(4.6mm×250mm,5μm);流动相:乙酸∶水∶甲醇(2.4∶400∶2000);柱温25℃;检测波长238nm;流速1.5ml/min。
1.2.7 成品质量分析 对采用大孔吸附树脂工艺获得的连续5批小试成品,按美国药典USP27版的规定〔6〕进行检测,并与采用溶媒萃取工艺的5批小试成品的检测结果进行比较。
2 实验结果
2.1 发酵液预处理方法的研究
发酵液在不同pH和搅拌时间下对洛伐他汀相对溶出率的影响结果见Tab.1,显示洛伐他汀的最佳溶出条件为pH11.0,搅拌时间90min。本工艺的相对溶出率与溶媒法工艺在pH3条件下的相对溶出率相当。
2.2 最佳吸附条件的研究
2.2.1 树脂的选择 筛选用7种树脂对洛伐他汀酸的吸附量见Tab.2。结果显示,强碱树脂吸附性能明显优于弱碱性树脂,其中D�273具有最佳吸附性能,因此确定D�273树脂进行最佳工艺的研究。
2.2.2 最佳吸附流速 考虑到洛伐他汀在碱性条件下的降解,故对在pH11条件下预处理后的发酵液用6mol/L的盐酸调节pH至8.0。以洛伐他汀浓度为5,130mg/L的预处理液上柱,比较1/15、1/30和1/45(BV/min)时的吸附性能,结果见Tab.3。结果表明,流速越慢,吸附越好。但考虑到洛伐他汀的稳定性及流速过慢会延长生产周期,提高成本,因此选用中速1/30(BV/min)为实验吸附流速。
2.3 最佳解吸条件的研究
2.3.1 解吸溶剂的静态筛选
选用甲醇、乙醇、丙酮、乙酸乙酯、乙酸丁酯等五种溶剂进行筛选。结果表明,乙醇和甲醇具有较好的解吸能力,而乙醇毒性大大低于甲醇,故选用乙醇作为解吸剂。
2.3.2 最佳解吸条件 为提高解吸收率,使洗脱峰集中,根据洛伐他汀钠易溶于水的特点,用不同浓度的氢氧化钠溶液和乙醇的混合液解吸,其对解吸率和解吸体积的影响见Tab.4。结果表明,采用含4%氢氧化钠的75%乙醇进行洗脱时洗脱峰最集中,收率最高。而更高浓度的氢氧化钠由于碱性过大,破坏了洛伐他汀,收率明显降低。
2.4 实验室规模放大试验工艺流程
根据上述试验结果,确定如下最佳工艺流程。首先将发酵液用6mol/L氢氧化钠溶液调至pH11.0,搅拌90min,抽滤,并用50%发酵液体积的pH11.0的碱水顶洗,得滤液,滤液用6mol/L的盐酸调至pH7~8;用经预处理后的D�273树脂吸附,流速1/30(BV/min),用水洗涤两倍树脂体积,用两倍树脂体积的75%乙醇(含4%氢氧化钠)解吸,流速1/100(BV/min),边解吸边用6mol/L的盐酸将解吸液的pH调至7~8,解吸完毕后,解吸液于50~60℃真空浓缩回收乙醇;浓缩液转移到分液漏斗调pH2.5~3.0,加入等体积乙酸丁酯进行萃取,萃取液于50~60℃减压浓缩;浓缩液于0~10℃结晶5~10h,抽滤得粗品;粗品于50~60℃真空烘干,用丙酮结晶一次,再用无水乙醇重结晶得成品。该试验工艺的总收率达68%。
2.5 成品质量分析
所得洛伐他汀产品为白色针状结晶,无臭、无味。连续5批小试成品的主要指标见Tab.5,均符合美国药典USP27版规定。
2.6溶媒法和树脂法提取工艺的成本、质量及收率比较
采用本研究确定的树脂法提取工艺,与传统的溶媒法萃取工艺进行比较,树脂法在有机溶剂使用量和总成本(Tab.6)方面均明显优于溶媒萃取法,成品质量不低于溶媒萃取法而提取平均收率略高于溶媒萃取法(Tab.7)。
3 结论
大孔树脂法较溶媒萃取法提取洛伐他汀有以下显著优点:采用阴离子大孔树脂的D�273吸附洛伐他汀,减少了大部分色素和杂质的吸附,因而洗脱液质量好,洗脱高峰集中,洗脱液体积仅为树脂柱体积的2.5倍量,解吸收率高;大孔树脂工艺摒弃了大量溶媒,大大减少了萃取液的浓缩量,既节约了能源和溶媒的损耗,也减少了由于浓缩过程带来的热破坏,生产成本大大降低,简化了设备和安全设施投入,提高了生产安全性,在当今能源和石化产品价格据高不下的年代具有一定的应用价值。大孔树脂法在过滤和树脂吸附及解吸过程中要求生产必须连贯迅速,过程的延误会造成洛伐他汀在碱性条件下过多地降解,若发生停电、停水等情况时存在收率降低的风险。
【参考文献】
〔1〕 Endo A. Monacolin K, a new hypocholesterolemic agent proced by a Monascus species 〔J〕. J Antibiot,1979,32(8):852
〔2〕 Alberts A W, Chen J, Kuron G, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl�coenzyme A rectase and a cholesterol�lowering agent 〔J〕. Proc Natl Acad Sci USA,1980,77(7):3957
〔3〕 Hajko P, Vesel T, Ivan P. Process for the isolation of lovastatin 〔P〕. US: 5712130,1998�7�27
〔4〕 Kumar P, Raman S, Norula P, et al. Process for the isolation of lovastatin 〔P〕. US: 7052886,2006�5�30
〔5〕 文镜,刘迪,金宗濂. 洛伐他汀检测方法研究进展〔J〕. 北京联合大学学报,2003,17(3):71
〔6〕 United States Pharmacopeial Convention Inc. The United States Pharmacopoeia XXVII 〔S〕. Taunfon: Rand McNally,2004:1109
E. 离子交换树脂如何再生
离子交换树脂再生方法:
一、阳离子交换树脂再生
1.配酸,比重≥3,同时将阳床内水全部放空;
2.打开进酸阀、上排阀,其他阀门全部关闭,打开酸泵;
3.待进酸液面超过树脂以上500px后,开启下排,下排流量和进酸流量相同,此时流量控制在600-1000L/h,进酸时间不低于40分钟。
4.阳床清洗进酸完毕后可直接进行清洗,先开启砂过滤,精密过滤,精密过滤处于上排上进状态。放掉阳床进酸管道、上进管道内的残酸,方法是开启上进下进,下排开启进酸阀,此时将精密过滤出水阀打开、关闭上排阀,将进酸管道内的残酸冲洗到酸槽后关闭进酸阀;关闭阳床下进阀,开始进行清洗,清洗时打开阳床上排阀,阳床内的水须始终漫过树脂,注意不要使树脂失水;清洗到下排阀出水PH值为7左右(接近中性)为止。
二、阴离子交换树脂再生
1.配碱,比重≥5,将阴床内水放空;
2.打开进碱阀、上排阀,其他阀门全部关闭,然后开启碱泵;
3.待碱液液面超过树脂500px后,开启下排,下排流量与进碱流量一致,此时流量控制在600-1000L/h,进碱时间不得少于60min,进碱完毕后放空阴床内碱液。
4.阴床清洗时需打开中间水箱泵、风机,防止碱液倒流至中间水箱槽,然后将进碱管道内残碱冲洗到碱槽内及即可以开始阴床清洗;同阳床清洗一样,清洗到下排排出水PH值约为7(中性),测试电导率小于5即可。
详情点击:网页链接
F. 离子交换法树脂的处理与再生
离子交换法树脂的处理与再生:
1. 首先对床层进行反吹,将进口吸附的杂质吹掉,防止树脂柱压力增加。
2. 用再生液从出口进入,对树脂柱进行再生。
3. 再生完毕,用纯水对树脂柱进行清洗,洗涤至符合要求时,再生完毕,重新投入使用。
G. 离子交换树脂再生方法
阳树脂:酸--(水洗)-碱(水洗)--酸;阴树脂:碱--(水洗)-酸(水洗)--碱。盐酸浓度4-6%;氢氧化钠浓度4%,每种洗涤方式是从柱子下往上反洗,使用量约3倍树脂体积,洗脱时间6小时以上。
H. 什么叫做离子交换树脂的再生
离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交版换树脂带有大量的权钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。
2.当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫做“再生”。
I. 离子换树脂再生方法
1.将树脂放在一大桶内,先用清水漂洗干净,滤干。
2.用80%~90%工业乙醇浸泡24小时,洗去树脂内的乙醇溶性有机物然后抽干(滤液供回收乙醇)。
3.用40~50℃的热水浸泡2小时,洗涤几次后,再浮选或筛选出粒度合适的树脂。目的是洗去树脂内的水溶性杂质和乙醇味。然后抽干。
4.用4倍于树脂量的2摩尔/升盐酸(1:5)溶液浸泡处理2小时(要经常翻动),目的是洗去酸溶性杂质。用蒸馏水或自来水洗至中性,抽干。
5.用4倍于树脂量的2摩尔/升(8%)氢氧化钠溶液浸泡2小时(需经常翻动),目的是洗去碱溶性杂物。用蒸馏水或自来水洗至中性,抽干,备用。
6.如果是阴离子树脂,可转型为C1型或OH型,用盐酸按上法处理一次即可;如是阳离子树脂,可转为H型或Na型,用氢氧化钠按上法处理一次即可。
再生,用过的树脂。如希望阳离子树脂为H型、Na型或NH4型,则可分别用盐酸、氢氧化钠或氢氧化铵处理;要使阴离子树脂为C1型、OH型,则可用盐酸或氢氧化钠分别处理。
树脂宜保存于阴凉处,但不宜深冻,因深冻会破坏树脂的内部结构。短期存放可置于1摩尔/升盐酸或氢氧化钠溶液中。长期存放可加入适量防腐剂封存。遇到树脂长霉,可用1%甲醛浸泡1小时后,再漂洗干净,然后进行再行处理。
J. 各类离子交换树脂的再生方法
再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐:
1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用。
2、钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍 (用NaCl量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。
3、氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH型强碱阴树脂则用4%NaOH溶液再生。
4、一些脱色树脂 (特别是弱碱性树脂) 宜在微酸性下工作。此时可通入稀盐酸,使树脂 pH值下降至6左右,再用水正洗,反洗各一次。
5、阳树脂再生:
通盐酸:在环境温度下,将4%的树脂床体积4倍的HCL通过树脂床,通过时间约2小时。
慢洗:以相同流速和;流向,通2倍树脂体积的除盐水。
快洗:以运行流速和流向,通除盐水至PH=5-6.树脂床备用。
6、阴树脂再生:
通氢氧化钠:在环境温度下,将浓度为4%的树脂体积4倍量的NaOH通过树脂床,通过时间约为2小时。
慢洗:以相同流速和;流向,通2倍树脂体积的除盐水。
快洗:以运行流速和流向,通除盐水至PH=8,树脂床备用
具体操作可根据树脂使用情况酌情增加酸碱的浓度和再生时间。
(10)树脂动态分离再生扩展阅读:
应用领域:
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。