⑴ 螯合树脂吸附重金属的原理及其优势是什么
螯合树脂的功能基团上的原子和金属离子发生配位反应,产生配位共价键,形成结构稳内定的螯合物,和离子容交换树脂的原理不同,离子交换树脂是用静电作用和金属离子结合。因此螯合树脂与金属离子的结合更稳定,特异性选择更好,应用也更加广泛。
一般来讲,螯合树脂的优势体现在处理精度更高,吸附量大,可以低浓度废水进行深度处理且浓缩比高。
⑵ 离子交换树脂吸附的原理
离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。
阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+——(R—SO3)2Ca+2H+
这也是硬水软化的原理。
阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为
R—N(CH3)3OH+Cl- ——R—N(CH3)3Cl+OH-
由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。
离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。
⑶ 离子交换树脂吸附的机理,处理成不同类型的树脂吸附效果有何差异
常规树脂的吸附机理类似于酸碱反应的原理,还有就是离子间的氢键/范德华力等版,离子交换树权脂是个很大的范畴,不同树脂由于所带基团、内部结构、孔容、空隙等原因会有不同的吸附效果,处理方式也会有所差异,建议到网络文库中搜索“离子交换树脂”先了解下树脂的基本知识再说吧。
⑷ 树脂净化水质原理
软化树脂原理:
1.软化树脂处理的原理就是回将原水通过答钠型阳离子交换树脂,常规的软化树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化。
2. 当软化树脂吸收一定量的钙镁离子之后,就必须进行再生,再生过程就是用盐箱中的食盐水冲洗树脂层,把树脂上的硬度离子在置换出来,随再生废液排出罐外,树脂就又恢复了软化交换功能。
⑸ 大孔树脂吸附原理
大孔树脂吸附原理:
大孔树脂吸附作用是依靠它和被吸附的分子(吸附质) 之间的范德华引力,通过它巨大的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。
大孔吸附树脂为吸附性和筛选性原理相结合的分离材料。大孔吸附树脂的吸附实质为一种物体高度分散或表面分子受作用力不均等而产生的表面吸附现象,这种吸附性能是由于范德华引力或生成氢键的结果。
同时由于大孔吸附树脂的多孔性结构使其对分子大小不同的物质具有筛选作用。通过上述这种吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而达到分离的目的。
(5)复合树脂吸附水污染机理扩展阅读:
大孔树脂吸附的用途:
大孔吸附树脂吸附技术最早用于废水处理、医药工业、化学工业、分析化学、临床检定和治疗等领域,近年来在我国已广泛用于中草药有效成分的提取、分离、纯化工作中。
与中药制剂传统工艺比较,应用大孔吸附树脂技术所得提取物体积小、不吸潮、易制成外型美观的各种剂型,特别适用于颗粒剂、胶囊剂和片剂,改变了传统中药制剂的粗、黑、大现象,有利于中药制剂剂型的升级换代,促进了中药现代化研究的发展。
国家中医药管理局等单位联合发布的2002~2010《医药科学技术政策》明确提出:研制开发中药动态逆流提取、超临界萃取、中药饮片浸润、大孔树脂分离等技术。
⑹ 螯合树脂吸附金属离子的原理是什么
晚上好,来金属离子在水溶液自中解离出来都是阳离子比较多,鳌合树脂是相反的阴离子可以做简单电荷相吸来锚固类似水处理常见的聚丙烯酰胺。一些树脂为了增强吸附力还对酸性做了改良多出诸如有机膦酸部分来增强对某些重金属离子的络合作用。不过这些树脂品种并不是所有离子均可良好吸收像是钠和钾离子等碱金属就比较差。
⑺ 树脂受到污染的原因是什么,水污染
树脂抄都有分食品级的,袭如果是食品级树脂固化后应该污染不大的,例如有些食用水管,酱油储管,都是用食品级树脂做的。如果是不是食品级树脂完全固化的话,长期泡水就都会有污染,如果不完全固化,什么树脂都会有大危害。
⑻ 环氧树脂复合材料可以用于吸附水中污染物吗
这个还复真不知道呀,环氧树脂制是泛指分子中含有两个或两个以上环氧基团的有机化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶的具有三向网状结构的高聚物。凡分子结构中含有环氧基团的高分子化合物统称为环氧树脂。固化后的环氧树脂具有良好的物理、化学性能,它对金属和非金属材料的表面具有优异的粘接强度,介电性能良好,变定收缩率小,制品尺寸稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定[1] ,因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料等用途。美国进口普卫欣天 猫有效防雾霾出门做好防护
⑼ 吸附种类和吸附机理
按吸附现象产生的原因而言,可分为物理吸附及化学吸附。
(一)物理吸附
固体颗粒表面电荷的不均衡,往往使其带电荷。按其电荷的性质可分为永久电荷和可变电荷。
永久电荷是矿物晶格内的同晶替代所产生的电荷。例如,粘土矿物的结构为硅四面体和铝八面体,四面体内的硅和八面体内的铝均可被与其直径大小相近的离子所替代;四价的Si4+可被三价的Al3+所替代,而三价的Al3+可被二价的Mg2+所替代,这样的结果,使颗粒表面电荷产生了不均衡,使其呈现出负电性。由于同晶替代是在粘土矿物形成时产生的,并且是在粘土晶格的内部,因此一旦产生这种电荷就不会改变,具有永久性质,故称永久电荷。蒙脱石和伊利石的同晶替代较多,所以它们的表面电荷以永久电荷为主;而高岭石则不同,它的同晶替代少,其主要的表面电荷另有来源。
可变电荷是颗粒表面产生化学解离形成的,其表面电荷的性质(正电荷或负电荷)及数量往往随介质的pH值的改变而变化,所以称为可变电荷。例如某些胶体颗粒表面分子或原子团的解离:
(1)二氧化硅胶体和含水二氧化硅胶体的解离
水文地球化学基础
(2)粘土矿物颗粒晶面上的OH基中H+的解离
水文地球化学基础
高岭石晶体表面的OH基较多,所以它的表面电荷以可变电荷为主。
(3)氢氧化铁及氢氧化铝表面分子OH基的解离
Fe(OH)3→Fe(OH)2--+OH-
A1(OH)3→Al(OH)2++H+
(4)腐殖质上某些原子团的解离
水文地球化学基础
上述谈到颗粒表面电荷形成的机理。由于固体颗粒表面带电荷,所以在固液相接触时。便会发生靠固体表面静电引力吸附液相异性离子的现象,这种现象称为物理吸附。
物理吸附的特点是,其吸附的键联力为静电引力,键联力较弱,因此已吸附在颗粒表面的离子,在一定条件下,可被液体中另一种离子所替换,所以物理吸附也称为“离子交换”。被吸附离子的电性,取决于表面电荷的电性,颗粒表面带负电荷,吸附阳离子,称为阳离子吸附,或阳离子交换;颗粒表面带正电荷,吸附阴离子,称为阴离子吸附,或阴离子交换。物理吸附这个表面反应是一种可逆反应,可用质量作用定律来描述。
(二)化学吸附
化学吸附不是依赖于静电引力发生的,液相中的离子是靠键力强的化学键(如共价键)结合到固体颗粒表面的;被吸附的离子进入颗粒的结晶格架,成为晶格的一部分,它不可能再返回溶液,是一种不可逆反应。这种现象也称为“特殊吸附”。产生化学吸附的一个基本条件是,被吸附离子直径与晶格中网穴的直径大致相等,例如,K+的直径为266pm(2.66Å),硅铝酸盐胶体晶格网穴直径为280pm(2.80Å),它们的直径大致相等,所以K+可被吸附到胶体的晶格里。
在实际研究中,要区分物理吸附及化学吸附是十分困难的;而物理吸附要比化学吸附普遍。因此,目前研究最多的是物理吸附,而且物理吸附的研究,实际上也包括化学吸附在内,因为两者很难区分。特别是地下水污染中污染物的研究更是如此。
⑽ 树脂吸附是什么原理
不能说吸附只能说置换,比如钠离子置换水中的铁离子 钙离子。