导航:首页 > 污水知识 > 有机胺废水氨氮倒挂

有机胺废水氨氮倒挂

发布时间:2023-08-23 17:20:58

A. 废水中含氨和有机胺怎么去除

用化学沉淀法对厌氧处理后有机胺废水中的氨氮进行处理研究,考察回pH、n(Mg2+)∶n(NH4+)、n(PO34-)∶n(NH4+)、反应答时间等影响因素。结果表明,在pH=10,反应时间10min,n(Mg)∶n(N)∶n(P)=1.2∶1∶1.2时氨氮由659.03mg/L降至58.52mg/L,去除效率达到91.12%。

B. 氨氮高了,高氨氮废水有哪些处理方法

随着我国经济的高速发展,产生了大量高浓度氨氮废水。氨氮废水的大量排放,导致水体中氨氮大量富集,引起水体的富营养化与恶化,对水环境造成巨大危害,不仅严重影响了人们的正常生活,甚至危害了人们的身体健康,社会影响巨大。因此,国家在氨氮废水的排放要求方面也制定了越来越严格的法规与排放标准。目前,除了合成氨、肉类加工、钢铁等12个行业执行相应的国家行业标准(通常一级标准为25mg/L)外,其他均需遵守国家标准GB8978-1996«污水综合排放标准»。该标准明确1998年后新建单位氨氮最高允许排放浓度为15mg/L。
氨氮废水的处理方法和工艺有很多种,主要有物化法和生物法。物化法包括吹脱法、离子交换法、折点氯化法、化学沉淀法、膜分离法、高级氧化法、电解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厌氧氨氧化、A/O、A2/O、SBR、氧化沟等。
1、物化法
1.1 吹脱法
在废水中氨氮多以铵离子(NH+4)和游离氨(NH3)的状态存在,两者保持平衡,平衡关系为:NH3+H2O→NH+4+OH-。这个平衡受pH值影响。当废水pH值升高时,OH-离子增多,该平衡反应向左移动,有利于NH+4生成游离态的NH3,从而使得游离氨所占比例增大,游离氨易于从水中逸出。当废水的pH值升高到11左右时,废水中的氨氮几乎全部以NH3的形式存在,再加上曝气吹脱的物理作用,则可促使NH3更容易从水中逸出,向大气转移。此外,该反应为放热反应,温度升高,反应方程向左移动,也有利于NH3从水中逸出。依据此原理,可以采用吹脱法来去除废水中氨氮,吹脱法一般分为空气吹脱法、水蒸汽吹脱法(汽提法)和超重力吹脱法。
1.1.1 空气吹脱法
空气吹脱法去除氨氮的原理是:在碱性条件下,通过外力将空气鼓入需要脱氨处理的废水中,同时在废水中使鼓入的空气和废水充分接触,废水中溶解的游离态氨将穿过废水界面,向外界空气转移,从而达到去除氨氮的目的。
目前,空气吹脱法在高浓度氨氮废水处理中的应用较多,吹脱速率高,处理费用相对较低,但随着氨氮浓度的降低,特别是当氨氮质量浓度低于1g/L以下时,吹脱速率显著降低。气液比、pH值、气体流速、温度、初始浓度等是影响吹脱法处理效果的主要因素。
现有吹脱装置主要有吹脱池和吹脱塔,由于前者效率低,易受外界环境影响,因此多采用吹脱塔装置。通常采用逆流操作,塔内装有一定高度的填料以增加气—液传质面积,从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。
空气吹脱法的优点是:具有稳定的氨氮去除率,工艺操作简单,氨氮容积负荷大等。缺点是:吹脱过程中易使填料层结垢,使废水流通不畅,从而影响设备的正常运行;同时,吹脱工艺需要调节废水pH值,需投加大量碱,从而使废水处理成本增高;另外,经空气吹脱处理后,废水中还含有少量氨氮,处理后的废水时常不能达到国家排放标准。因此,吹脱法通常与其他方法联合使用。
1.1.2 水蒸汽吹脱法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽与废水接触,将废水中游离氨蒸馏出来,以达到去除氨氮的目的。当向废水中通入水蒸汽时,两液相在填料表面上逆流接触进行热和物质交换,当水溶液的蒸汽压超过外界的压力时,废水就开始沸腾,氨就加速转为气相。此外,气泡表面之间形成自由表面,废水中的氨不断向气泡内蒸发扩散,当气泡上升到液面上破裂释放出其中的氨,大量的气泡扩大了蒸发表面,强化了传质过程,通入的蒸汽升高了废水的温度,从而也提高了一定pH值时被吹脱的分子氨的比率。
汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与空气吹脱法类似,氨氮去除率高,但汽提法工艺处理成本高,操作条件难控制,消耗动力高等。
1.1.3 超重力吹脱法
空气吹脱法和水蒸汽吹脱法一般采用填料塔作为吹脱设备,而超重力吹脱法是利用超重力设备———超重机取代传统的填料塔作为吹脱设备,以空气为气提剂,将水中的游离氨解吸到气相中的氨氮废水治理方法。
氨氮废水加碱调节pH值为10~11后进入超重机处理。废水经超重机分布器均匀喷洒在填料内缘,在超重力作用下,液体被填料粉碎成液滴,沿填料径向甩出,经筒壁汇集后从超重机底部流出。同时,空气经超重机进气口进入超重机壳体,在一定风压下,由超重机转子外腔沿径向进入内腔。在填料层内,气液两相在大的气液接触面积的情况下完成气液接触,将水中的游离氨吹出。气体送至除雾器,将夹带的少量液体分离后,至吸收装置,脱氨后排空。利用超重机的水力学特性与传递特性,可获得良好的吹脱效果并减少设备投资与运行费用。
与工业上传统仅使用塔设备的吹脱法相比,超重力法吹脱法具有以下几点优势:
(1)设备体积质量小,设备及基建费用少,过程放大容易,启动、停车迅速,运行更稳定;
(2)摆脱了重力场的影响,对物料粘度适应性广,操作弹性大;
(3)气相动力消耗小,物料停留时间短,传质系数大;
(4)去除氨氮效率高,有利于气相中氨的回收利用:
(5)能够增加水中的溶解氧,为可能的后续生化处理提供充足氧源。但是目前超重力法吹脱氨氮技术的大规模工业应用较少,主要是因为该技术不够成熟。特别是大型的结构,仍需要根据具体的物系进行合理设计和试验。
1.2 离子交换法
离子交换法是一种特殊的吸附过程即交换吸附。其主要机理是:利用离子间的浓度差和交换剂上的功能基对离子的亲和力作为推动力达到吸附特定离子的目的。吸附过程是可逆的,吸附饱和的交换剂通过添加特定的解吸液可对交换剂上吸附的离子进行解吸,从而实现交换剂的循环使用。常见的交换剂有沸石等天然交换剂和人工合成的离子交换树脂两大类,而后者还可根据树脂上功能团的不同分为阳离子交换树脂和阴离子交换树脂。
天然沸石(主要是斜发沸石)对NH+4具有强的选择吸附能力,并且天然沸石的价格低于人工合成的离子交换树脂。因此,工程上常用沸石对NH+4的强选择性,将NH+4截留于沸石表面,从而去除废水中的氨氮。pH值=4~8是沸石离子交换的最佳范围。当pH值<4时,H+与NH+4发生竞争;pH值>8时,NH+4变为NH3,从而失去离子交换性能。但是沸石交换容量容易饱和,吸附容量低,更换频繁,饱和后的沸石需再生才能再次使用。
离子交换树脂主要是利用特定阳离子交换树脂与水中的NH+4进行交换,交换后的树脂再通过解吸而还原。与沸石相比,强酸型阳离子交换树脂吸附容量大,处理效果稳定,但目前对强酸型阳离子交换树脂的研究多处于实验室阶段。
离子交换法的优点是去除率高,适用于处理中低浓度的氨氮废水。处理含氨氮10mg/L~20mg/L的城市污水,出水浓度可达1mg/L以下。但对于高浓度的氨氮废水,会造成短时间交换剂饱和,从而再生频繁,使处理成本增大,且再生液仍为高浓度氨氮废水,仍需进一步处理。在实际工程应用中,离子交换法常结合其它污水处理工艺来处理高浓度氨氮废水,先用其它方法作预处理,使经预处理后的废水浓度在100mg/L左右,然后再用离子交换法处理剩余氨氮废水。
1.3 折点氯化法
折点氯化法是将氯气通入氨氮废水中达到某一点,在该点时水中游离氯含量最低,而氨氮的浓度降为零。当通入的氯气量超过该点时,水中的游离氯就会增多,该点称为折点,该状态下的氯化称为折点氯化,折点氯化法的原理就是氯气与氨反应生成了无害的氮气。加氯量对反应有很大影响,当氯的投加量与氨的摩尔比为1∶1时,化合余氯增加,主要为氯氨。当该比例为1.5∶1时余氯下降至最低点即“折点”,反应方程式为:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影响因素,pH值高时产生NO-3,低时产生NCl3。为了保证完全反应,通常pH值控制在6~8,一般加9mg~10mg的氯气可氧化1mg氨氮。
折点加氯法的优点是氨氮去除率高(可达90%~100%),不受水温影响,处理效果稳定,反应迅速完全,设备投资少,并有消毒作用。缺点是由于在处理氨氮废水中要调节pH值,处理成本较高。同时液氯使用安全要求高且贮存时要求的环境条件高。另外,折点加氯法处理氨氮废水后会产生副产物氯代有机物和氯胺,会给环境带来二次污染。因此,折点氯化法多用于较低浓度氨氮废水,适用于废水的深度处理,工业上一般用于给水处理,对于大水量高浓度氨氮废水不适合。
1.4 化学沉淀法
化学沉淀法去除废水中氨氮的原理是:向氨氮废水中投加磷酸盐和镁盐,使废水中的氨氮与磷酸盐和镁盐生成一种难溶性的磷酸氨镁沉淀(MgNH4PO4•6H2O),从而达到去除废水中氨氮的目的。
磷酸铵镁(MAP)又称鸟粪石,可溶于热水和稀酸,不溶于醇类、磷酸氨以及磷酸钠的水溶液,遇碱易分解、在空气中不稳定,升温至100℃时便会失水变为无机盐,继续加热至融化(约600℃)则会分解成焦磷酸镁。MAP可以用作饲料和肥料的添加剂,是一种很好的长效复合肥;也可用于涂料生产、氨基甲酸酯、软泡阻燃剂制造和医药行业。因此,磷酸铵镁脱氮除磷技术既可以去除废水中的氨氮,又可回收较有经济价值的MAP,达到变废为宝的目的。
化学沉淀法的优点是工艺简单、效率高,经处理后产生的沉淀物MAP经进一步加工处理后,能成为性能优良的农家复合肥料。缺点是处理成本高。在处理氨氮废水过程中需加入大量价格昂贵的混凝剂。此外,去除1gNH+4-N可产生8.35gNaCl,由此带来的高盐度将会影响后续生物处理的微生物活性。因此,该方法一直停留在实验室规模未在工程上运用,较少用于实际氨氮废水处理。
1.5 膜分离法
膜分离法包括反渗透法、液膜法、电渗析法等。
1.5.1 反渗透法
反渗透就是借助外界的压力使膜内部的压力大于膜外的压力,使小于膜孔径的分子(水)透过,大于膜孔径的分子截留在膜内,这种作用现象称作反渗透。其作用机理关键在于半透膜的选择透过性,半透膜上有好多细小的微孔,像水分子这样的小分子可以自由的透过,而大于半透膜上微孔的NH+4则不能通过。当溶液进入膜系统后,在外加压力的作用下半透膜就会选择性的让某些小分子物质透过,大分子物质NH+4则会留在半透膜内侧通过管道另外的出口排出。
反渗透装置处理废水需要对原水进行预处理,不然会损坏装置内的膜件,并且该装置需要高质量的膜。
1.5.2 液膜法
液膜法又称气态膜法,目前已应用于水溶液中挥发性物质的脱除、回收富集和纯化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的机理是:采用疏水性中空纤维微孔膜,膜一侧是待处理的氨氮废水,另一侧是酸性吸收液,疏水的微孔结构在两液相间提供一层很薄的气膜结构。废水中NH3在废水侧通过浓度边界层扩散至疏水微孔膜表面,随后在膜两侧NH3分压差的推动下,NH3在废水和微孔膜界面处气化进入膜孔,然后扩散进入吸收液发生快速不可逆反应,从而达到脱除氨氮的目的。
液膜法具有比表面积大,传质推动力高,操作弹性大,氨氮脱除率高,无二次污染等优势,适合处理含盐量较高、油性污染物含量低的高氨氮废水。氨氮或含盐量较高时,能有效抑制水的渗透蒸馏通量,减弱对吸收液的稀释作用;但当废水中含有油性污染物时,会造成膜的污染,使膜的传质系数不能得到完全恢复。由于废水的复杂性、膜材料的研发更新换代、可逆吸收剂的研发以及后续副产品的生产应用等多种原因,气态膜法脱氨工业化进程很慢,国内生产应用实例较少。不过对于高盐高浓度氨氮废水,气态膜处理成本较低,其应用前景广阔。
1.5.3 电渗析法
电渗析法的原理是:当进水通过多组阴阳离子渗透膜时,NH+4在施加的电压影响下,透过膜到达膜另一侧浓水中并集聚,从而从进水中分离出来,实现溶液的淡化、浓缩、精制和提纯。国内外专家在电渗析法处理氨氮废水方面作了大量研究,并取得了一定成绩。但由于高选择性的防污膜仍在发展中,且对废水预处理的要求很高,电渗析法用于工业尚需时日。
1.6 高级氧化法
高级氧化法是通过化学、物理化学方法将废水中污染物直接氧化成无机物,或将其转化为低毒、易降解的中间产物。应用于脱除废水中氨氮的高级氧化法主要有湿式催化氧化法和光催化氧化法。
1.6.1 湿式催化氧化法
湿式催化氧化法是20世纪80年代国际上发展起来的一种治理废水的新技术,其原理是:在特定的温度、压力下,通过催化剂作用,经空气氧化可使污水中的有机物和氨氮分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。
湿式催化氧化法技术优点是:氨氮负荷高,工艺流程简单,氨氮去除率高,占地面积少等。缺点是:在处理氨氮废水中会使用大量催化剂,造成催化剂的流失和增加对设备的腐蚀,使氨氮废水处理成本增大。
湿式催化氧化法从处理效果上来说适合高浓度氨氮废水的处理,但这种方法对温度、压力、催化剂等条件要求非常严格,反应设备须抗酸抗碱耐高压,一次性投资巨大,而且处理水量较大时费用很高,经济上不划算,目前在国内还鲜有工程应用的实例。
1.6.2 光催化氧化法
光催化氧化法是最近发展起来的一种处理废水的高级氧化技术,它可以使废水中的有机物在特定氧化剂的作用下完全分解为简单的无机物CO2和H2O,达到降解污染物的目的,处理方法简单高效,没有二次污染。但由于反应过程中需要的催化剂难以分离回收,使该方法在实际工程中一定程度上受到了限制。
1.7 电解法
电解法利用阳极氧化性可直接或间接地将NH+4氧化,具有较高的氨氮去除率,该方法操作简便,自动化程度高,其缺点是耗电量大,因此并不适用于大规模含氨氮废水的处理。
1.8 土壤灌溉法
土壤灌溉法是把低浓度的氨氮废水(50mg/L)作为农作物的肥料来使用,该法既为污灌区农业提供了稳定的水源,又避免了水体富营养化,提高了水资源利用率。土壤灌溉法只适合处理低浓度氨氮废水,当废水中的氨氮浓度低于50mg/L左右时,废水中的氨氮在土壤表层发生硝化作用,在土壤深度30cm左右达到峰值,随后由于脱氮等作用,在100cm处减小到10mg/L左右,在400cm以下土壤中未测出NH+4,直接污染到地下水的可能性几乎为零。
2、生物法
生物脱氨氮的原理:首先通过硝化作用将氨氮氧化成亚硝酸氮(NO-2-N),再通过硝化作用将亚硝酸氮进一步氧化为硝酸氮(NO3-N),最后通过反硝化作用将硝酸氮还原成氮气(N2)从水中逸出。
生物法的优点是:可去除多种含氮化合物,对氨氮可以彻底降解,总氨氮去除率可达95%以上,二次污染小且运行费用低。然而生物法对水质有严格的要求,高浓度的氨氮对微生物活性有抑制作用,会降低生化系统对有机污染物的降解效率,从而导致出水难于达标排放。
因此,生物法主要用来处理低浓度的氨氮废水,且没有或少有毒害物质存在,主要在处理生活污水以及垃圾渗滤液等方面应用较广泛。常见的氨氮废水生物处理工艺有传统硝化反硝化、同步硝化反硝化、短程硝化反硝化、厌氧氨氧化、A/O、A2/O、氧化沟和SBR。
3、方法比较
根据废水中氨氮浓度不同可将废水分为三类:
(1)低浓度氨氮废水:氨氮浓度小于50mg/L;
(2)中浓度氨氮废水:氨氮浓度为50mg/L~500mg/L;
(3)高浓度氨氮废水:氨氮浓度大于500mg/L。

C. 高浓度氨氮废水的处理现状与发展

高浓度氨氮废水对环境的危害非常大,一旦进入水体,和棚备会对环境造成严重污染,其主要表现有:(1)引起水体富营养化;(2)消耗水体中的溶解氧。氨对生物体还会造成一定的毒害作用,氨可通过皮肤、呼吸道及消化道引起中毒。氨浓度在0.1mg/L时,人可感觉到刺激作用,浓度在0.7mg/L时可能危及生命。水中的氨氮在微生物作用下转变为硝态氮和亚硝态氮,二者均为强化学致癌物质亚硝基化合物的前体物质,有致癌、致突变、致畸的性质,对人体危害十分严重。因为氨氮污染的种种危害和出水排放标准的不断提高,高浓度氨氮废水的处理受到了社会各界的重视。在高浓度氨氮废水处理技术的研究、开发和应用中涌现了一大批行之有效的处理工艺,这些脱氮技术可分为物理化学脱氮技术和生物脱氮技术两大类。
1 高浓度氨氮废水处理的现状
1.1 物理化学脱氮技术
目前我国常用的物化法脱氮技术主要和氏有吹脱法、折点加氯法、选择性离子交换法、化学沉淀法等。
1.1.1 吹脱法。吹脱法是通过向废水中加入碱调节pH值,使水中离子氨(NH4+)转为游离氨(唤毁NH3),再通入蒸汽或空气进行吹脱,将废水中氨转化为气相,从而达到去除氨氮的目的。一般采用NaOH或CaO调节废水pH,采用冷却塔作为吹脱装置。吹脱法操作灵活,占地面积小,脱氮效率高,对于处理浓度较高的氨氮废水得到了较为广泛的推广和使用。但吹脱法也存在一些问题,比如冬季(低温)氨吹脱效率不高;若以石灰调节pH,易在吹脱塔内形成水垢;逸出的氨会污染空气,形成二次污染。
1.1.2 折点加氯法。折点加氯法是向废水中投加足量氯气,使水中离子氨(NH4+)氧化成氮气的废水脱氮技术。其化学反应式为:
NH4++1.5HClO→0.5N2↑+1.5H2O+2.5H++1.5Cl-(1-1)
在折点加氯法中,余氯浓度和残留氨氮浓度与氯气、氨氮质量之比有关。最佳理论投氯量(以Cl2计)与氨氮的质量之比为7.6:1。折点加氯法对于氨氮浓度低的废水来说比较经济适用,常常作为废水深度处理的一个步骤连接在其他脱氮工艺之后。
1.1.3 化学沉淀法。化学沉淀法中应用较多的是磷酸铵镁沉淀法,它是向废水中投加磷酸盐和氧化镁,使氨形成磷酸铵镁沉淀而被去除的废水脱氮技术。其化学反应式为:
NH4++Mg2++PO43-→MgNH4PO4•6H2O↓ (1-2)
化学沉淀法工艺简单、效率高,但投加药剂量大,从而致使处理成本较高。另外,产生的磷酸铵镁容易造成二次污染。研究开发磷酸铵镁的回用和综合利用技术,对于磷酸铵镁沉淀法在高浓度氨氮废水处理工程中的应用具有重要意义。
1.2 生物脱氮技术
生物脱氮技术是利用微生物的代谢作用使废水中的氨氮转化为氮气从水体中逸出。氨氮的去除过程主要包括两个步骤:硝化作用和反硝化作用。
硝化作用。包括两个基本的反应步骤:(1)由亚硝酸菌参与的将氨氮转化为亚硝酸盐(NO2-)的反应;(2)由硝酸菌参与的将亚硝酸盐转化为硝酸盐(NO3-)的反应。硝化作用过程需要在好氧条件下进行,并且以氧作为电子受体。其反应方程式如下:
亚硝化反应:2NH4++3O2→2NO2-+2H2O+4H+ (1-3)
硝化反应:2NO2-+2O2→2NO3- (1-4)
反硝化作用。将硝化过程中产生的硝酸盐或亚硝酸盐还原成氮气的过程。反应过程中反硝化菌利用各种有机基质作为电子受体,以硝酸盐作为电子受体而进行缺氧呼吸。
硝化菌是好氧、自养菌,反硝化菌是兼性、异养菌,因此硝化反应和反硝化反应实现的环境条件不同。现行的生物脱氮工艺一般是将缺氧(厌氧)和好氧区分开,如A/O工艺和A/A/O工艺,氨氮在好氧区被亚硝化菌和硝化菌氧化成亚硝态氮和硝态氮,然后将混合液回流到前置缺氧段;在缺氧条件下,亚硝态氮和硝态氮被反硝化菌还原为氮气,达到脱氮目的。另一种工艺是后置反硝化工艺,即把反硝化反应器放在硝化反应器之后,因混合液中缺乏有机物,一般需人工投加碳源。
2 高浓度氨氮废水处理的未来发展
2.1 研究组合式的脱氮技术
物理化学脱氮技术和生物脱氮技术各自有其优势及局限性。组合式处理技术就是把两种及两种以上的处理方法结合起来对高浓度氨氮废水进行综合处理。例如,当污水中氨氮浓度较高而营养物质较少时,先对高浓度氨氮污水进行吹托,可以提高去除效率;在低浓度条件下进行吸附可以减少吸附剂的用量和再生次数,提高出水水质。也可用生物法作后续处理,通过前面的吹脱处理,降低氨氮的浓度后,可减轻氨氮对微生物的抑制作用,降低营养物的投加量,提高出水水质。
2.2 对现有处理技术进行改进研究
现有的高浓度氨氮废水处理工艺还有改进的潜力,应开展对现有工艺的改进研究。比如吹脱法中,可通过试验考察各个处理因素(pH值、温度、鼓风量、吹托时间等)对处理结果的影响,根据试验结果分析得到最佳工艺参数,并对现有的氨吹脱设备进行改造。磷酸铵镁沉淀法中,通过试验选定沉淀效果最好的组合药剂,确定其最佳反应条件,并对磷酸铵镁晶体中营养物质的缓释性能和磷酸铵镁的循环性能进行研究。
2.3 研究和发展新型脱氮技术
操作简便、处理性能稳定高效、运行费用低廉、能实现氨氮回收利用的处理技术是高浓度氨氮废水处理的发展方向。物理化学脱氮技术方面,国内外研究者对超声技术、电化学法、微波技术、高级氧化技术处理高浓度氨氮废水进行了研究,部分工艺已有工程实例且取得了良好的处理效果。生物脱氮技术方面,随着生物学机理的深入揭示和相关学科的发展和渗透,为高浓度氨氮废水的高效生物脱氮提供了可能的途径,发展出了一些新型的脱氮工艺,包括短程硝化反硝化工艺、同步硝化反硝化工艺和好氧反硝化工艺等。
3 结语
高浓度氨氮废水对环境具有很大的危害性。目前,针对高浓度氨氮废水的处理技术虽然众多,且各具特点,但仍存在一定的局限性。操作简便、处理性能稳定高效、运行费用低廉、能实现氨氮回收利用的处理技术是高浓度氨氮废水处理的发展方向。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

D. 含氨氮废水处理,试试这3个方法

最近很多人跟我抱怨说氨氮废水处理总是不达标,试过很多方法还是失败,总是降不下,各种抱怨。在此,我想跟大家说不着急,我们慢慢看。

氨氮废水处理总是不达标,一定是你方法没有用对;下面我就氨氮废水处理方法来讲讲常用的以下几种。

1:化学氧化法

化学氧化法是通过投加氨氮去除剂去处理,加药后不会产生沉淀物,分解物也不会重新结合。不过因为它的氧化性强,所以需要在生化的后端投加,因为它的氧化性强,所以反应时间很快,一般在5~6分钟左右就反应完全,直接把氨氮降下来,去除率高达96%以上。

小结:适用于中高浓度的氨氮超标处理。

2:化学沉淀法

化学沉淀法是往水中投加某种化学药剂,与水中的溶解性物质发生反应,生成难溶于水的盐类,形成沉渣易去除,从而降低水中溶解性物质的含量。

采用的常见沉淀剂是Mg(OH)2和H3PO4,适宜的pH值范围为9.0~11,投加质量H3PO4/Mg(OH)2为1.5~3.5。

废水中氨氮浓度小于900mg/L时,去除率在90%以上,沉淀物是一种很好的复合肥料。由于Mg(OH)2和H3PO4的价格比较贵,成本较高,处理高浓度氨氮废水可行,但该法向废水中加入了PO43-,易造成二次污染。

小结:适用于高浓度氨氮废水处理。

3:吹脱法

吹脱法是将废水调节至碱性,然后在汽提塔中通入空气或蒸汽,通过气液接触将废水中的游离氨吹脱至大气中。通入蒸汽,可升高废水温度,从而提高一定pH值时被吹脱的氨的比率。用该法处理氨时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。

小结:适用于高浓度氨氮废水处理。

总结

国内外氨氮废水处理的各种技术与工艺过程,都有各自的优势与不足,由于不同废水性质上的差异,还没有一种通用的方法能处理所有的氨氮废水。

因此,必须针对不同工业过程的废水性质,以及废水所含的成分进行深入系统地研究,选择和确定处理技术及工艺。

E. 我公司的废水含有有机氨,经过生化池,由于氨化作用,氨氮就会上升,请问有什么好的解决方法么

该考虑化学生物联用
本文作者: 陈昭考

随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮废水污染已经成为当今环境工作者所面临的重大课题。

1 氨氮废水的来源
含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。
2 氨氮废水的危害
水环境中存在过量的氨氮会造成多方面的有害影响:
(1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3
--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重後果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。
(3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而
增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。

3 氨氮废水处理的主要技术
目前,国内外氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。

3.1 生物脱氮法
微生物去除氨氮过程需经两个阶段。第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。

工业氨氮去除大全

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1. 折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。折点加氯法处理後的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。2. 选择性离子交换化去除氨氮离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类矽质的阳离子交换剂,成本低,对NH4+有很强的选择性。O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。3. 空气吹脱法与汽提法去除氨氮空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至堿性时,离子态铵转化为分子态氨,然後通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯堿生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。吹脱和汽提法处理废水後所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。4. 生物法去除氨氮生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下: 亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3-硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。常见的生物脱氮流程可以分为3类:⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统、後置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池後,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其後好氧池的有机负荷。此外,後置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;⑶生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。由于常规生物处理高浓度氨氮废水还存在以下:为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。5. 化学沉淀法去除氨氮化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在堿性水溶液中生成沉淀。在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4•6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程後,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4•6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强堿性溶液中生成比MgNH4PO4•6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。

F. 污水处理氨氮高怎么办

含有氨氮污水的处理:

进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。

整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法。

生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。

二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

(6)有机胺废水氨氮倒挂扩展阅读:

生活污水处理:

1、农村生活污水治理方法

生活污水→化粪池→厌氧池→人工湿地(种植根系发达、喜湿、吸收能力强的美人蕉、水葱、菖蒲等植物)经“过滤”后排放的方法进行处理,主要适用于农村分散生活污水处理,建成后运行费用基本为零,使用寿命在10年以上。

2、城市生活污水治理方法

将城市生活污水输送到城市周围的农村,利用农村广阔的土地来净化城市生活污水。将是一劳永逸与一举多得的好方法。以日供应生活用自来水100W立方的大中型城市为例:普通的污水处理设施造价1000元/立方。

建设成本10亿,年运营成本100W立方/天×365×0.5元/立方=1.8亿.采用土壤净化法建设成本1000元/立方,年运营成本100W立方/天×365×0.1元/立方=0.4亿.同时年节约农用水资源3.6亿立方,节约化肥约1万吨/年,减少农药用量5吨/年。

3、生活污水处理新技术:分散式处理

生活污水分散式生物集成处理系统是针对生活污水的一种新型、经济环保的处理系统。该系统具备设备投资少、运行成本低、安装简便等优势,利用生物强化技术对污染物进行高效降解,可实现对生活污水就地、就近处理,并达到水资源循环再生利用的目的。

分散式污水处理技术具有设备占地面积小、无须铺设管网、设备集成度高等特点,因此基础设施费用及土建费用在整体投资中占比较小,仅30%左右,而约有70%的投资主要用于对污水处理设备的采购和安装。

G. 高氨氮废水如何处理

高氨氮废水处理方法如下:

1、吹脱法

吹脱法的基本原理是气液相平衡和传质速度理论。将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。

2、离子交换法

应用离子交换法处理含氨氮废水,为常见的就是以沸石作为交换载体,提高氨氮脱除率。基于历史实践数据可知,每克沸石可以吸附15.5mg的氨氮,且对于粒径在30~60目的沸石其脱除氨氮的效率可以达到78%。但是相比其他处理技术,利用沸石交换脱除工艺操作比较复杂,并且再生液为需要再次处理的高浓度氨氮废水,因此更适用于低浓度氨氮废水处理。

吹脱法处理氨氮技术参数

(1)吹脱法普遍适宜的pH 在11 附近;

(2)考虑经济因素,温度在30~40 ℃附近较为可行,且处理率高;

(3)吹脱时间为3 h左右;

(4)气液比在5 000∶1 左右效果较好,且吹脱温度越高,气液比越小;

(5)吹脱后废水的浓度可降低到中低浓度;

(6)脱氮率基本保持90%以上。尽管吹脱法可以将大部分氨氮脱除, 但处理后的废水中氨氮仍然高达100 mg/L 以上,无法直接排放,还需要后续深度处理。

H. 氨氮废水处理的处理方法

高氨氮废水如何处理,我们着重介绍一下其处理方法: 1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。 传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术——超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。

I. 高浓度氨氮如何处理

氨氮废水处理技术有:高效ZU脱氮菌技术、氨氮循环吹脱回收工艺、厌氧氨氧化技术.
①高效ZU脱氮菌技术:
一般的生物脱氮技术采用A/O、SBR、生物活性炭等工艺对水质水量稳定的低浓度氨氮废水具有良好的效果,但当废水中COD、氨氮和TN含量高时,微生物代谢活性显著降低.对于高COD、高TN的化工废水,利用新型短程硝化技术结合传统成熟的A/O工艺可迅速有效地降解目标污染物,获得比传统工艺更经济、更有效的处理结果.高效生物脱氮技术的难点是高效脱氮菌的培养.其需经历三个过程,首先是从自然生境中获得高效脱氮菌菌源;其次是富集高效脱氮菌培养物,从中分离高效脱氮菌株;最后是复配高效脱氮菌剂,并以目标废水为基质驯化高效脱氮菌群.近年来,我公司联合浙江大学展开了大量研究,经过脱氮群落的结构分析、功能试验和反复筛选,获得了高效ZU脱氮菌,并在相关废水处理工程(氨氮最高达1000mg/L)得到应用,取得了理想的效果,出水氨氮稳定达标(15mg/L以下).
特点:1、环境友好,最终产物为N2,无二次污染.
2、成本低,不需要投加吸附剂或其他化学药剂,尤为适合改造工程.
3、系统稳定,高效ZU脱氮菌具有很强的耐受性和适应性.
4、高效ZU脱氮菌生长增殖性好,一次投加,长期有效.
②厌氧氨氧化技术:
厌氧氨氧化是指在厌氧条件下,厌氧氨氧化菌直接以NH4+为电子供体,以NO2¯为电子受体,将NH4+、NO2¯转变成N2的生物氧化过程.传统生物法脱氮技术通过硝化/反硝化方式去除废水中的氨氮,其对废水氨氮浓度具有一定要求,同时氨氮的硝化消耗大量的氧气,需求动力费用较高,生物脱氮过程需求一定的碳氮比,外加碳源增加了废水处理设施的运行费用.厌氧氨氧化利用独特的生物机体以亚硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源.
特点:1、依托浙江大学科研成果,国际领先的厌氧氨氧化技术.
2、无需外加碳源,节约运行成本.
3、只需将部分氨氧化成NO2¯,节约了供氧所需的动力消耗.
③氨氮循环吹脱回收工艺
高浓度氨氮废水来源甚广且排放量大.如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水.大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用.
我司结合多年的工程经验,针对高浓度氨氮废水处理难度大、处理能耗高、投资较大的情况,开发出一种新型氨吹脱资源化利用的新技术-两级循环吹氨回收技术.新技术采用创新性工艺流程设计高效脱氨技术及设备、节能降耗技术和设备,适用于多种工况的氨氮废水处理技术.不仅有很好的环境效益,而且具有一定的经济效益.
本工艺采用双塔循环吹脱,填料塔吸收吹脱出的氨气,可根据工艺要求,回收氨水或者硫酸铵.处理后废水可排放或进入后续生化系统.
技术特点:双塔循环脱氨更彻底(相较单塔),去除率高;回收硫酸铵或者氨水,循环经济利用,避免二次污染;工艺简单,操作方便,运行稳定

J. 氨氮废水有什么便捷的处理方法吗

氨氮废水现在处理方法有:
1.汽提法,将氨氮蒸出来,适用于氨氮含量较高的废水;
2.精馏法,可以适当加液碱,精馏去除氨氮,适用于中性或碱性含氨氮废水;
3.膜分离法,利用膜的选择透过性,通过适当调碱、加热,使气态的氨选择性透过膜,从而达到处理目的,适用于有机物含量不高的废水;
4.生物法处理,利用硝化和反硝化工艺去除氨氮,适用于氨氮含量低的废水。

阅读全文

与有机胺废水氨氮倒挂相关的资料

热点内容
屠宰污水处理厂设备价格 浏览:89
净化器电压过高应该怎么调 浏览:796
餐饮废水质检测要多少钱 浏览:116
成都污水泵多少钱一台 浏览:542
河南家庭中央净水器多少钱 浏览:997
勺子上有水垢 浏览:660
汉兰达20t机油滤芯怎么更换 浏览:445
新生牌净水器是哪个公司生产的 浏览:665
纸杯子可以做什么饮水机 浏览:383
玻璃钢废水箱是干什么的 浏览:115
太阳能光伏污水处理站竣工验收报告 浏览:315
法百利负离子空气净化器怎么装 浏览:487
顺平肠衣城污水处理 浏览:231
为什么水厂要帮你装净水器 浏览:172
污水厂甲烷的排放量 浏览:510
摩托车分别有什么滤芯 浏览:210
污水处理硫酸用量 浏览:885
水蒸气蒸馏橙油实验报告 浏览:640
沁园净水器电源接哪里 浏览:53
正规中空纤维超滤膜厂家电话 浏览:999