导航:首页 > 污水知识 > 污水中高岭土

污水中高岭土

发布时间:2022-01-28 05:33:07

Ⅰ (急)微生物絮凝剂的制备及其在废水处理中的应用研究

目前广泛使用的絮凝剂主要有两大种类:一、无机盐类物质,例如铝盐、铁盐及其聚合物;二、有机高分子物质,例如聚丙烯酰胺衍生物等。但是,这些传统的无机絮凝剂具有用量大、絮凝效果受水温水质条件影响大,具有一定毒性,对环境造成二次污染,对人类健康与生态环境产生不良影响。例如铝盐系絮凝剂的频繁使用,会导致水中铝离子浓度过高,引起老年痴呆等问题。有机高分子絮凝剂的残留物对人体的健康有很大的危害,对神经具有毒性,并有佷强的致畸、致癌、致突变“三致”效应。
微生物絮凝剂是经过微生物分泌代谢之后产生的,对人体和动植物无任何伤害,并且至今为止,还没有有关有毒性的报道。生物絮凝剂正好克服了这些缺点,有絮凝性好、效果稳定、无二次污染、安全无毒、可显著提高污水处理效率等特性,可以应用于废水处理、饮料工业、生物制药等方面,近些年来一直受到广泛的关注。与常见的无机絮凝剂和有机合成高分子絮凝剂相比,微生物絮凝剂具有许多独特的优点,主要体现在以下几个方面:一、无毒无害,安全性高。微生物絮凝剂被认为是一种天然无毒的有机高分子化合物,对环境和人体均无毒无害。经小白鼠安全性实验证明,微生物絮凝剂能用于食品、医药等行业的发酵后处理,对人体和动物无害。二、易被微生物降解,无二次污染。微生物絮凝剂主要是微生物的次生代谢产物,如糖蛋白、黏多糖、蛋白质、纤维素和DNA等,这些物质都具有很好的可生化性,所以不会像无机絮凝剂和有机合成高分子絮凝剂那样产生二次污染。目前使用的无机盐类絮凝剂会使水体在处理过程中残留一定量的无机盐离子,不仅会影响产品的风味、口感,而且会危害到人类的健康。此类物质不易被降解,而且其单体往往是人类神经的致毒剂和癌症的诱发剂。三、适用范围广,脱色效果独特。微生物絮凝剂对多种废水有理想的絮凝效果,与无机絮凝剂和有机合成高分子絮凝剂相比,微生物絮凝剂处理污水后,更易于固液分离,沉淀物生成量少,而且在污水脱色、污泥脱水等方面效果独特。微生物絮凝剂能絮凝处理的对象较广,有活性污泥、粉煤灰、果汁、饮用水、河底沉积物、细菌、酵母菌以及各种生产废水。四、某些微生物絮凝剂的pH值稳定,热稳定性好,用量小。五、来源广泛,生产周期短。一方面,由于微生物的繁殖速度快,适应范围广,转化能力强,易变异,分布广,并且可以生成絮凝剂的微生物种类繁多,所以微生物絮凝剂的生产周期短而且来源多且廉价,它可以取自天然土壤,亦或是水厂的活性污泥;另一方面,微生物絮凝剂为微生物菌体或有机高分子,它的产生主要是靠生物发酵,这就有可能带来低廉的生产成本。因此,不论是从原材料还是从生产工艺角度考虑,工业开发微生物絮凝剂都有可能降低絮凝成本。从处理费用方面来看,采用微生物絮凝剂处理废水,前段以生物吸附为主,后段以生物降解为主,其费用也将较目前的化学絮凝法费用低。但是,微生物絮凝剂的研究发展尚未成熟,其自身仍存在着一些不足之处。例如:微生物絮凝剂的处理效果容易受到有毒物质的干扰,因此在处理废液时需排除妨碍菌体生长的因素。
平板划线分离法
2.3.2.1 平板的制作
在无菌操作室中,点上酒精灯,打开通风设施,将溶化并冷至约50℃的牛肉膏蛋白胨固体培养基倒入无菌培养皿内,每一个培养皿倒入加琼脂的牛肉膏蛋白胨15ml,使其凝固成平板。
2.3.2.2 操作
用接种环挑取一环实验样品,左手拿培养皿,以中指、无名指和小指拖住皿底,拇指和食指夹住皿盖,将培养皿稍倾斜,左手拇指和食指将皿盖掀半开,右手将接种环伸入培养皿内,在平板上轻轻划线(切勿划破培养基),划线方式可取“Z”字形或“W”形中任何一种。划线完毕盖好皿盖,倒置,恒温30℃培养24h后,观察结果。
培养2~3天后用显微镜镜检是否为单一的微生物,若有杂菌,则需再一次分离、纯化,直到获得纯培养。
2.4 产絮菌种筛选方法
2.4.1 初筛
将100ml的牛肉膏蛋白胨液体培养基(报纸包扎,双层纱布,121℃恒压灭菌30min)装入250ml的三角瓶中,接种自分离平板上纯化出的菌种。转速150r/min,恒温30℃摇床培养,每隔24h,将所得培养液进行絮凝活性的初步测定。测定方法:在100ml量筒中加入0.4g高岭土,5ml氯化钙溶液(1%无水氯化钙水溶液)再加入10ml培养液,用手将量筒均匀摇晃两分钟,在加自来水到刻度线100ml,在磁力转子搅拌器中速搅拌2min。目测,能够使高岭土悬浊液絮凝成较大絮状体的为有絮凝活性的菌株。

Ⅱ 高岭土模拟生活污水里的SS会增加COD么

您好,在环保检测过程中,根据国标是要计算水中的悬浮物在内的,我们进行COD检测前,需要将待测样品摇匀之后再进行取样检测,静置后的水样,也需要进行摇匀后再进行检测,有些悬浮物携带大量的还原性有机物,因此正常情况下SS会增加COD的检测值,也就是说悬浮物对COD有着直接的影响。

Ⅲ 用高岭土处理污水处理方法

高岭土可以用做制备混凝剂,有很多人在做,我以前也做过,要是想发表论文还可以,实际应用的话效果不是很理想...

Ⅳ 高岭土,混合聚合氯化铝处理铜矿污水cod吗

楼主你好!聚合氯化铝的生产原料是铝矾土、高岭土这些东西!可以用来处理铜矿污水的COD、BOD这些东西!

Ⅳ 污水氨氮超标,用哪种方法

污水氨氮超标,第一要暂停或控制污水源氮元素的排入量,因为氨氮超标说明,污水池处理能力超负荷了。
第二要查看污水池处理用的细菌如厌氧菌和耗氧菌是否整常。

Ⅵ 中国核废水怎么处理

工业废水:主要为冷却剂相关系统(设备、管道和阀门)的疏水和引漏水。根据其放射性水平和盐含量的不同,可采用预过滤离子交换、蒸发等方法处理。

设备去污废水。主要为放射性设备去污产生的去污废水,其盐含量较高,一般采用蒸发处理。

地面冲洗废水、淋浴水和洗衣房水。这类废水的放射性水平很低,可经过滤后排放,或采用蒸发处理或膜过滤(反渗透纳滤超滤等)处理。如废水含有洗涤剂,蒸发时则需添加消泡剂,或预先分解洗涤剂。

(6)污水中高岭土扩展阅读:

注意事项:

需要注意日本用于储存核废水的废水罐多达一千多个,而到了2022年,这些废水罐可能就会全部存满,到时候,日本恐怕只能将这些核废水全部倒入大海。

要知道核废水中含有很多放射性物质,还有很多残留的有害物质,如果日本真的将百万吨核废水全部都排入大海,那么无论是人类还是海洋生物,都会受到严重危害,这种灾难可是会殃及全人类的。

Ⅶ 含高岭土的水质能饮用吗

一般的泥土中多少都含有高岭土的成份,纯高岭土属酸性土,PH值在4-6左右,越纯的高岭土越酸,一般植物无法生长,如果植物能生长的地方,其水质都可以饮用;至於生产高岭土的地方,只要不是使用化学法生产,其水质也不会有多大变化,都可以饮用,只要将水过虑漂白消毒就可以了

Ⅷ 生活污水中的主要有机污染物是什么

1.病原体污染:生活污水、医院污水、畜禽饲养场污水等,常含有病原体,如病毒、病菌和寄生虫.这类污水如不经过适当的净化处理,流入水体后,即会通过各种渠道,引起痢疾、伤寒、传染性肝炎及血吸虫病等.
2.需氧性污染物:生活用水,造纸和食品工业污水中,含有蛋白质、油脂、碳水化合物、木质素等有机物.这类物质随污水进入水体后,在微生物对它们的分解过程中,需要消耗水体中的溶解氧,使水体含氧减少,从而影响鱼类和其它生物的生长繁殖.当水中的溶解氧耗尽后,水中的有机物即产生厌氧消化,生成甲烷、硫化氢等,使水体出现臭味,危害水生生物的生存.
3.植物营养污染物:造纸、皮革、食品、炼油、合成洗涤剂等工业污水和生活污水以及施用磷肥、氮肥的农田水,含有氮、磷、钾等营养物,如果大量的这类污水排入水体,使营养物质增多,引起藻类及其它浮游生物暴发性繁殖.这类物质多呈红色,称“赤潮生物”.赤潮生物的大量繁殖,会覆盖水面,附在鱿类肋上,使它们呼吸困难.死亡的赤潮生物被微生物分解,消耗掉水中的溶解氧.有些赤潮生物体内及其代替产物含有生物毒素,常常引起鱼贝类中毒死亡,并能通过食物链,危害人体健康.
4.石油污染物:多发生在海洋中,主要来自油船的事故泄露、海底采油、油船压舱水以及陆上炼油厂和生化工厂的废水.
5.剧毒污染物:主要是重金属、氰化物、氟化物和难分解的有机污染物,它们大都来自矿山、冶炼废水,它们都富集在生物体中,通过食物链,危害人类健康.此外,水体的污染还有放射性污染,这是由于放射性物质进入水体造成的.盐类污染,各种酸碱盐无机化合物进入水体,使淡水含盐量增加,影响水质.热污染,发电站等的冷却水是热污染的主要来源,大量热水排入水体,使水温增高,水体中溶解氧减少,影响鱼类的生存与繁殖.

Ⅸ 高岭土漂白废水该如何处理

(1)中和+沉淀处理法
①高岭土漂白废水经收集后进入初淀池中,沉淀池中的沉淀高岭土再经压滤机压滤后为高岭土产品;
②压滤废水经由初沉池沉淀后,送至污水处理站的防腐处理的中和池中和处理。在中和池中投加石灰溶液、聚合氯化铝PAC,将废水中的Fe2+以沉淀物的形式Fe(OH)3沉淀出来,同时把废水中的硫酸根以硫酸钙的形成沉淀出来。
③废水经中和池中经中和后进入经防腐处理的沉淀池絮凝沉淀;沉淀池中的沉淀物经压滤机压滤,压滤出来的废水送三级沉淀池。
④三级沉淀池中的尾水就即可循环利用。
采用中和+沉淀处理法处理高岭土漂白废水,对固体悬浮物SS的去除效率可达到95%以上,对铁离子的去除率可达99.9%以上。
(2)中和回调法
①以生石灰作为中和剂,并采用湿法进行投加,通过搅拌的方式加快中和反应的进行,增加了反应的接触面积,中和反应在pH为10-11达到最佳效果;
②搅拌约15min时,中和反应已基本进行完全,混合液沉淀10min后进行固液分离;
③回调分离后的上清液pH值至6-8,得到的混合溶液用空气进行氧化曝气,曝气15min;
④加入PAM溶液作为絮凝剂,搅拌混合1min,再静置反应10min,反应后的出水pH为6-8,Fe含量在2mg/L左右。
采用“中和-沉淀-pH回调-氧化-絮凝”工艺处理高岭土漂白废水,铁离子的去除率能可达到98%以上。

Ⅹ 在传统活性污泥法中解决污泥膨胀的有效方法有哪些

活性污泥法的关键技术是活性污泥沉降性能的好坏,它直接影响了出水水质,而污泥膨胀是恶化处理水质的重要原因。

1 污泥膨胀的概念及测定指标
1.1 污泥膨胀的概念
活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。
一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于1×104 m/g。
1.2 污泥膨胀的理论
Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的 Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。
选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。
1.3 测定指标
污泥沉降比:取活性污泥反应器中的混合液静置30 min后所形成的沉淀污泥的容积占原混合液容积的百分比。正常的活性污泥静置沉淀30 min后,一般可接近其最大密度,反映出二沉池中活性污泥的浓缩情况。

污泥容积指数:曝气池出口处的混合液,在经过30 min静沉后,每克干污泥所形成的沉淀污泥所占有的容积。可表示活性污泥中菌胶团结合水率的高低。

污泥成层沉降速度:混合液静置一段时间后,形成清晰的泥水分界线,此后进入成层沉淀阶段,分界线匀速下降的速度即为污泥成层沉降速度。

丝状菌长度:活性污泥单位体积内丝状菌的长度,该指标用来表示丝状菌含量。
2 污泥膨胀的类型
污泥膨胀分丝状菌膨胀和非丝状菌膨胀两类。其中90%是由丝状菌引起的,只有10%左右是由非丝状菌引起的。活性污泥系统中的生物处于动态平衡之中,理想的絮凝体沉淀性能好,丝状菌和菌胶团细菌之间相互竞争,相互依存,絮体中存在的丝状菌有利于保护絮体已经形成的结构并能增加其强度。但是在污泥膨胀诱因的诱发下,丝状菌在和菌胶团的竞争中占优,大量的丝状菌伸出絮凝体,破坏其稳定性。

可辨识的污泥膨胀絮体有两种类型:第一类是长丝状菌从絮体中伸出,此类丝状菌将各个絮体连接,形成丝状菌和絮体网;第二类具有更开放的结构,细菌沿丝状菌凝聚,形成细长的絮体。
3 污泥膨胀的原因
3.1 丝状菌污泥膨胀的原因
3.1.1 进水水质
(1)原水中营养物质含量不足。活性污泥法处理污(废)水的过程,就是污泥中的微生物种群不断地吸收、利用水中污染物,在自身增殖的同时,将污染物加以降解的过程。随反应的进行需要多种营养物质保证其正常的新陈代谢活动,并维持生物的动态平衡和活动。若微生物的食物不足,会使低营养型微生物丝硫细菌、贝氏硫细菌过度繁殖,在与菌胶团细菌的竞争中占优。
(2)原水中碳水化合物和可溶性物质含量高。丝状菌与其它菌种相比有其自身的一些特点,它对高分子物质的水解能力弱,较难吸收不溶性物质。所以,当废水中含有较多量的可溶性有机物时,有利于底物中丝状菌的繁殖。此外,废水中含过多量的糖类碳水化合物时,诸如球衣菌属的丝状菌能直接将葡萄糖、乳糖等糖类物质作为能源加以吸收利用,同时分泌出高粘性物质覆盖在菌胶团细菌表面,从而大大提高了污泥的水结合率。
(3)硫化物含量高。正常的活性污泥中硫代谢丝状菌含量不多,若污水中硫化物含量偏高(这种情况多存在于工业废水中),容易引起诸如硫化菌、021N型菌、贝氏硫化菌等硫代谢丝状菌的过量增殖,致使引发污泥膨胀。
(4)进水波动。进水波动是指进入活性污泥反应器的原水在流量以及有机物浓度、种类方面的改变。如果曝气池中有机物浓度突然增加,就会因微生物呼吸迅速致使溶解氧含量降低,此时丝状菌在争夺氧中占优,大量繁殖,引起污泥膨胀。
3.1.2 反应器环境
(1)温度。反应器底物中每种细菌都有自己的最适宜生长温度,在最适宜生长温度下,其繁殖旺盛,竞争力强。如果温度较低,污水中微生物代谢速度较慢,会积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值增高,从而可能会引起污泥膨胀。温度对丝状菌的影响也是很普遍的,丝状菌膨胀对温度具有敏感性,在其它条件等同的情况下,10℃时产生严重的污泥膨胀现象;将反应器温度提高到22℃,不再产生污泥膨胀。这也是大多数活性污泥在冬季时会产生污泥膨胀或者污泥膨胀更加严重的原因之一。
(2)溶解氧。溶解氧作为构成活性污泥混合液三要素(气、水、泥)之一,是许多生物降解反应的必要条件。菌胶团细菌和浮游球衣菌等丝状菌对溶解氧需要量差别比较大,菌胶团细菌是好氧菌,而绝大多数丝状菌是适应性强的微好氧菌。因此,若溶解氧含量不足,菌胶团菌的生长受到抑制,而丝状菌仍能正常利用有机物,在竞争中占优。
(3)pH值。pH值较低,会导致丝状真菌的繁殖而引起污泥膨胀。活性污泥微生物最适宜的pH值范围是6.5~8.5;pH值低于6.5时利于真菌生长繁殖;pH值低至4.5时,真菌将完全占优,活性污泥絮体遭到破坏,所处理的水质恶化[9]。
(4)BOD-污泥负荷。BOD污泥负荷是设计活性污泥反应池和控制其运行的重要指标。
3.2 非丝状菌污泥膨胀的原因

对于非丝状菌膨胀的研究较少,一般认为非丝状菌膨胀是由于絮凝体生理活动的异常而发生的。
3.2.1 进水中含有毒物质
由于进水中含有较多的有毒物质,导致细菌中毒不能分泌出足够的粘性物质,难以形成絮体,或即使形成絮体,但结构松散,沉降性能不好。
3.2.2 营养物质缺乏或不平衡
进水中营养物质缺乏或不平衡,除引发丝状菌膨胀外,还会导致非丝状菌污泥膨胀。由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的 N、P或溶解氧不足,细菌很快把大量有机物吸入体内,又不能及时代谢分解,向外分泌过多的糖类物质,这类物质中所含的羟基具有很强的亲水性,可以使活性污泥结合水率高达400%,呈粘性的凝胶状
4 丝状菌引起污泥膨胀的控制方法
4.1 投加药剂法控制污泥膨胀
污泥膨胀的早期控制方法主要是靠外加药剂(如消毒剂)直接杀死丝状菌或投加无机或有机混凝剂增加污泥絮体的密度来改善污泥絮体的沉降性能。目前此类方法仍运用于某些污水处理厂。
4.1.1 投加氧化剂
(1)投加Cl2或漂白粉。控制污泥膨胀采用的传统氧化剂是Cl2。Jenkins等人的研究表明,具有氧化能力的Cl2、HOCl和次氯酸根渗入细胞后,能破坏菌体内的酶系统,导致细胞死亡。绝大程度上说的丝状菌都可通过加氯气加以控制。一般投加在回流污泥中,加氯点的 Cl2、浓度应控制在小于35 mg/L,加氯量最适宜控制在10~20 mg/L·d,投加量过大反而会杀死菌胶团菌,造成絮体解体。当SVI值逐渐降低、膨胀不断缓解时,应逐渐减少投药量。
(2)投加H2O2。双氧水在控制污泥丝状菌膨胀中的应用也相当广泛。Keller等人的研究发现,控制丝状菌的最少投量是0.1 g/kg·d(H2O2/MLSS)时,将会破坏脱磷作用,投加一段时间后(大概10天)脱磷作用会慢慢恢复。H2O2的毒性对脱氮作用只有少量的影响,在检测中没有发现氨、氮和硝酸盐氮有明显变化。
(3)投加O3。投加臭氧也可以控制丝状菌引起的污泥膨胀,臭氧还能有效地改善硝化作用和提高难降解有机物的去除率,臭氧的投加量在4 g/kg·d(H2O2/MLSS)左右,一般投加在好氧区。
4.1.2 投加凝聚剂
投加合成的有机聚合物、铁盐、铝盐等混凝剂均可以通过其凝聚作用来提高污泥的压密性增加污泥的比重;投加高岭土、碳酸钙、氢氧化钙等也可以通过提高污泥的压密性来改善污泥的沉降性能。实践证明,不设初沉池的污水厂,其SVI值都比较低,所以设有初沉池的污水厂发生污泥膨胀时,将部分污水直接送到曝气池也是一种控制污泥膨胀的方法。
当污泥膨胀发生时,采用上述方法能较快地降低SVI值,但是没有从根本上控制住丝状菌的繁殖。一旦停止加药,污泥膨胀可能又会出现。加药改变了微生物的生长环境,无疑会对污水处理厂的稳定运行产生负面影响,因此只能作为临时应急只用。
4.2 改善环境法控制污泥膨胀
通过对污泥膨胀机理不断深入的研究和对丝状菌作用的进一步了解,对于污泥膨胀的控制方法也随之由简单的投药等方法发展到应用生态学的原理调节处理工艺运行条件及反应器环境条件,通过协调菌胶团菌微生物与丝状菌共生关系,从根本上消除污泥的丝状菌膨胀问题。
4.2.1 增设生物选择器
早在上世纪70年代人们就发现,当曝气池中混合液呈推流状态并形成一个明显的底物浓度梯度时,不易发生污泥膨胀。生物选择器的设计原理就是使曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制控制丝状菌的过度增殖,从而控制污泥膨胀。我们可在曝气池之前设一个小池,局部地提高F/M值,或把曝气池前端设置成高负荷接触区,选择性地培养菌胶团细菌,使其成为优势菌种。
选择器可分为好氧、缺氧和厌氧三种类型。好氧选择器的工作原理是利用菌胶团细菌能在高负荷底物浓度中迅速繁殖并贮存这些底物,而此时丝状菌的增长速率并不能明显地提高。高负荷接触之后的曝气反应中,菌胶团细菌利用贮存的底物大量繁殖生长,丝状菌因食物缺乏而使其生长收到抑制。缺氧选择器的工作原理是大部分菌胶团细菌能够利用硝酸盐中的化合态氧作氧源生长繁殖。而丝状菌此功能较弱,所以生长受到抑制。J.Wanner等人通过对厌氧选择器的实验分析证实,菌胶团细菌由于放磷反应而获取的能量得以能在厌氧条件下利用有机物进行繁殖并贮存,后续的曝气反应中基质浓度底,使丝状菌受到抑制,从而阻止了污泥膨胀的发生。
4.2.2 采用SBR工艺
从SBR法的反应阶段其底物浓度的变化可以看出,SBR法不易发生污泥膨胀。如果把普通活性污泥法中混合液的流态用“离散度”表示,那么它在完全混合时为无穷大,在理想推流时为零。SBR法反应阶段的底物浓度变化相当于普通污泥曝气池分格数为无穷多时的情况(因为普通污泥处理法曝气池分格数越多越接近推流式)。这就有利于菌胶团细菌在竞争中处于优势。此外,SBR法的优点还有:进水和反应开始阶段的反应器处于厌氧状态,有利于抑制丝状菌的过量生长; SBR法的污泥龄短,比增值速率较小的丝状菌不能很好地繁殖;可以省去初沉池相对减少废水中溶解性底物的比例,同时增加了总悬浮固体量。由此可见,SBR本身就是一个很好地防止污泥膨胀的选择器。
4.2.3 回流污泥再生法
此法主要应用在脱氮除磷工艺中,将二沉池排出的回流污泥排入一单独设置的曝气池内进行曝气,将微生物体内贮存物质氧化,从而使菌胶团细菌具有最大吸附和贮存能力,使污泥得到充分再生并恢复活性,所以可以在与丝状菌的竞争中获得优势,抑制丝状菌的过量繁殖。
5 非丝状菌引起污泥膨胀的控制方法
非丝状菌膨胀又称高粘度膨胀,在国内的研究报道很少。营养物缺乏是导致污泥膨胀的一个重要因素。高春娣等人的研究表明投加充足的氮源和磷源,并适当提高污泥负荷可以控制污泥膨胀的发生。如果是由痕量金属的缺乏造成的,可以通过补充污水中的痕量金属的量来消除污泥膨胀。此外,投加酶也可以控制污泥膨胀的发生。
6 结语
随着实践的日益深入,人们对污泥膨胀这一问题的研究不断加深,并不断地有新的研究成果发表,但就污泥膨胀的原因这一问题,没有统一绝对的答案。许多研究者通过实验得出的结论不相一致甚至相反。在工程实际中,引发污泥膨胀的诱因不可能是单一的,只有分析其产生的主要原因,才能找到解决问题的关键办法。

阅读全文

与污水中高岭土相关的资料

热点内容
环氧树脂玻璃钢防水施工方案 浏览:257
饮水机用什么方法除水垢 浏览:268
宁德市空气净化器多少钱 浏览:667
反渗透化学清洗到什么时候合格 浏览:62
费森尤斯和劳尔水处理 浏览:766
扁鹊怎么用技能给队友回血 浏览:563
gsx600r多少钱全新纯水 浏览:293
钠离子交换器树脂水含银吗 浏览:435
现代空气净化器有什么不足 浏览:95
请问高的食材净化器的价格是多少 浏览:330
离子交换滤芯好还是活性炭滤芯好 浏览:219
净水机出纯水少怎么回事 浏览:320
常压过滤减压过滤 浏览:203
纯水机上up代表什么 浏览:616
长期吸入加热后的聚氯乙烯树脂 浏览:998
简述蒸发蒸馏干燥的含义及原理 浏览:882
老铁壶是不是更容易养出来水垢 浏览:226
市场上卖的蒸馏水有什么牌子的 浏览:164
奉贤区工业废水处理怎么样 浏览:182
超滤膜如何有效清洗 浏览:974