导航:首页 > 污水知识 > 石灰中和法处理重金属废水的不足

石灰中和法处理重金属废水的不足

发布时间:2021-03-19 05:42:22

A. 重金属废水的处理方法

可分为两类:一是使废水中呈溶解状态的重金属转变成不溶的重金属化合物或元素,经沉淀和上浮从废水中去除,可应用中和沉淀法、硫化物沉淀法、上浮分离法、离子浮选法、电解沉淀或电解上浮法、隔膜电解法等;二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用反渗透法、电渗析法、蒸发法、离子交换法等。第一类方法特别是中和沉淀法、硫化物沉淀法和电解沉淀法应用最广。从重金属废水回用的角度看,第二类方法比第一类优越,因为用第二类方法处理,重金属是以原状浓缩,不添加任何化学药剂,可直接回用于生产过程。而用第一类方法,重金属要借助于多次使用的化学药剂,经过多次的化学形态的转化才能回收利用。一些重金属废水如电镀漂洗水用第二类方法回收,也容易实现闭路循环。但是第二类方法受到经济和技术上的一些限制,目前还不适于处理大流量的工业废水如矿冶废水。这类废水仍以化学沉淀为主要处理方法,并沿着有利于回收重金属的方向改进。
电解法:比较广泛地用于处理含氰的重金属废水。以电解氧化使氰分解和使重金属形成氢氧化物沉淀的方式去除废水中的氰和重金属。硫化汞废渣用电解法处理能高效地回收纯汞或汞化物。
上浮法:废水中的重金属氢氧化物和硫化物还可用鼓气上浮法去除,其中以加压溶气上浮法最为有效。电解上浮法能有效地处理多种重金属废水,特别是含有重金属络合物的废水。这是因为在电解过程中能将重金属络合物氧化分解生成重金属氢氧化物,它们能被铝或铁阳极溶解形成的活性氢氧化铝或氢氧化铁吸附,在共沉作用下完全沉淀。废水中的油类和有机杂质也能被吸附,并借助阴极上产生的细小氢气泡浮上水面。此法处理效率高,在电镀废水处理中往往作为中和沉淀处理后的进一步净化处理措施。
离子浮选法:往重金属废水中投加阴离子表面活性剂,如黄原酸钠、十二烷基苯磺酸钠、明胶等,与其中的重金属离子形成具有表面活性的络合物或螯合物。不同的表面活性剂对不同的金属离子或同一种表面活性剂在不同的pH值等条件下对不同的重金属离子具有选择络合性,从而可对废水中的重金属进行浮选分离。此法可用于处理矿冶废水。
离子交换和吸附:废水中的重金属如果以阳离子形式存在,用阳离子交换树脂或其他阳离子交换剂处理;如果以阴离子形式存在,如氯碱工业的含汞废水中的氯化汞络合阴离子(HgCl4)-2,氰化电镀废水中的重金属氰化络合阴离子Zn(CN)厈、Cd(CN)+、Cu(CN),含铬废水中的铬酸根阴离子CrO-,则用阴离子交换树脂处理。
活性炭能在酸性(pH值2~3)条件下从低浓度含铬废水中有效地去除铬。含硫活性炭能有效地去除废水中的汞。活性炭还可用于处理含锌和铜的电镀废水。活性炭能吸附CN-,并在有Cu2+和O2存在的条件下使CN-氧化,从而使吸附CN-的部位得到再生。
膜法:主要有电渗析和反渗透法。电渗析的特点是浓缩倍数有限,须经多级电渗析处理,才能把废水中有用物质浓缩到可回用的程度。反渗透法用于处理镀镍、镀铜、镀锌、镀镉等电镀漂洗废水。对镍、铜、锌、镉等离子的去除率大都大于99%。因此重金属废水通过反渗透处理就能浓缩和回用重金属,反渗透水(产水)质量好时也可回用。
纳米重金属水处理技术:
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白 。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。若以铜冶炼厂的废水处理为例,其回收的纳米铜泥品位已达到20%,完全可以作为铜矿资源再生利用。

B. 含重金属废水处理的处理方法

含重金属废水处理使用膜处理技术:

  1. 膜处理技术主要是微滤、超滤纳滤和反渗透

  2. 其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。

  3. 含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。

  4. 本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。

重金属废水来源及其处理原则:

  1. 重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。

  2. 例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。

  3. 因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。

C. 酸性矿山废水为什么用石灰石进行治理的效果不理想

石灰中和及其衍生方法是处理矿山酸性废水最常用的方法,但该法对 废水中微量版有害重金属元素的去除权作用通常不被了解.该文用石灰石、石灰中和处理某硫铁矿露天采场的酸性废水,考察了废水中微量有害重金属元素的沉淀去除效 果.结果表明:对大多数重金属离子而言,pH值越高,重金属离子的去除效果越好,但若重金属离子生成两性化合物沉淀,则存在一个最适宜的pH值.石灰石中 和法对在酸性条件下生成沉淀的重金属离子去除效果及沉渣的沉降性能较好,但最高pH值为6,对其他的重金属离子的去除效果有限;石灰法的pH值有较大的调 节范围,处理效果明显优于石灰石;石灰石-石灰二段中和法的处理效果在总体上与石灰法相当,在达到与石灰相同的处理效果时,能够降低约1/3的石灰投加量 和沉渣的产生量,沉渣的含水率相比石灰法更低,沉降性能更好.废水中微量有害重金属元素的中和沉淀去除效果与pH值密切相关,因此在工艺的选择之外,中和 剂的投加量和投加方式,处理设施更为精准的掌控和运作非常关键,研究可为确立石灰石-石灰法处理矿山酸性废水的最佳工艺和过程控制条件提供依据.

D. 处理含重金属酸性废水的石灰中和法有哪几种

石灰中和法一般有一次中和法、二次中和法和三次中和法内:
(1)一次中容和法
这种一次中和法目前国内采用的较多。优点是设备较少,操作方便;缺点是加药量难以控制,处理效果较差。最好用pH值自控加药量。
(2)二次中和法
这种方法一般适用于pH值很低,含二价铁盐较多的酸性废水。二次中和法的优点是石灰乳分两次加入,pH值容易控制,一次中和槽控制pH值为4~5,二次中和槽pH值控制在6.5~8.5;废水中二价铁盐与石灰乳反应后,生成Fe(OH)2。再经曝气,氧化生成Fe(OH)3,易于沉淀析出,出水水质可达到排放标准。缺点是设备较多,基建投资大。
(3)三次中和法
这种方法多用于pH值较低,变化较大,含有多种金属离子的酸性废水。为了使废水中的金属离子能沉淀出来,在一次中和槽将pH值调节在7~ 在二次中和槽中pH值调节至9.5~11。经沉淀分离后,再在三次中和槽中调节pH值在6.5~8.5,达到排放标准后外排。

E. 石灰如何去除重金属

石灰中和法处理重金属酸性废水是一种较为古老的方法。因为石灰中的氢氧根离子可以沉降出汞以外的大部分重金属离子,而且沉降率较高,石灰的成本低,石灰中和沉降发流程短。缺点,像矾花这种比重小,易碎的,沉降速度慢,处理后的重金属废水含水率高,废水处理后回收有困难。流程如下。

F. 石灰法处理矿山重金属废水,加入絮凝剂后水澄清了,但是静置一段时间后水变黄是什么原因

二价铁被氧抄化成三价铁了。另外,在袭碱性条件下,有些碱性金属化合物容易被氧化,或者不稳定分解,也会变黄,实际过程可能非常复杂,可以做水质分析,就会准确知道什么原因了。
做水质分析,差溶度积表,是非常重要的工作,可以让你把有些组分处理到0.02ppm,几乎可以达到饮用水水质浓度的要求。处理过程很重要。

G. 用石灰处理重金属怎么能看出来过量

石灰中和法处理重金属酸性废水是一种较为古老的方法。因为石灰中的氢氧根离子可以沉降出汞以外的大部分重金属离子,而且沉降率较高,石灰的成本低,石灰中和沉降发流程短。缺点,像矾花这种比重小,易碎的,沉降速度慢,处理后的重金属废水含水率高,废水处理后回收有困难。流程如下。用石灰处理主要含小于毫米级悬浮物颗粒、胶体颗粒和以真溶液形式存在的有机污染物,CODcr值大于120,需要排放、回用、进一步生化处理或化学处理的城市污水和工业废水的方法,除按化学计量向污水或废水中投加使其pH值提高到9的石灰外,其特征在于还包括下述步骤:(1)继续投加石灰并充分搅拌,继续投加石灰的量为:K↓〔1〕×SS+K↓〔2〕×CODcr+C,其中,K↓〔1〕的值=0.1~1;K↓〔2〕的值=0.1~3;C为石灰的溶解度;SS为废、污水中的总悬浮物;(2)将沉淀固体与液体分离。上述方法就能将废、污水中小于毫米级的悬浮颗粒、胶体颗粒和某些以真溶液形式存在的有机污染物与水分离。

H. 加石灰处理重金属废水再加絮凝剂很难沉降怎么办

加石灰处理重金属废水再加絮凝剂很难沉降怎么办
加的絮凝剂的量是多少 加的太多或太少效果都不好

I. 用化学沉淀法如何处理重金属废水具有什么优点

化学沉淀法是指向重金属废水中投放药剂 通过化学反应使溶解状态的重金属生成沉版淀而去除的方法权 包括中和沉淀法 硫化物沉淀法 钡盐沉淀法等 中和沉淀法应用比较广泛 向重金属废水中投放药剂(如石灰石)使废水中重金属形成沉淀而去除 化学沉淀法处理重金属废水具有工艺简单 去除范围广 经济实用等特点 是目前应用最为广泛的处理重金属废水的方法

J. 怎样解决酸性废水用石灰中和法管道结垢问题

纯酸碱污水是可以的,如果还有其它污染物(主要是重金属离子等)就须另行处理了。


酸碱废水处理:

(一)处理方法及其选择

  1. 酸性废水处理方法: (1)酸碱废水相互中和;(2)投中和;(3)过滤中和;(4)离子交换(5)电解。一般是前三种方法应用较广。

  2. 2. 碱性废水处理方法:

  3. (1) 酸碱废水相互中和;(2)加酸中和;(3)烟道气中和。

  4. 3. 选择酸碱废水处理方法的注意事项:

  5. (1) 废水中所含酸类的性质、浓度、水量及其变化情况。

  6. (2) 本或附近工况在生产过程中是否排出碱性废料(或酸性废液)及其利用的可能性。

  7. (3) 当地剂供应情况。

  8. (4) 废水排入城市管道的条件。

  9. (5) 酸性废水中和方法。

  10. (二)酸碱废水处理的设计与计算

  11. 1. 酸性废水中和

  12. (1) 酸碱废水相互中和

  13. 1)中和能力计算

  14. 根据化学基本原理,酸碱中和应符合一定的当量关系。为使酸性废水与碱性废水混合后呈中性反应,可按下式进行计算:

  15. ∑QzBz≥∑QxByaK

  16. 式中 Qz—碱性废水流量(升/小时);

  17. Bz—碱性废水浓度(克当量/升);

  18. Qx—酸性废水流量(升/小时);

  19. By—酸性废水浓度(克当量/升);

  20. a—剂比耗量,即中和1公斤酸所需碱量(公斤);

  21. K—考虑中和过程不完全的系数,一般采用1.5~2.0。

  22. 酸(碱)当量值R可按表7-5进行换算{见给水排水设计手册(第六册【室外排水与工业污水处理】)330页}。

  23. 如已知酸(碱)浓度为C(克/升)或P(%)时,则当量浓度为B=C/R=10P/R(克当量/升)。 2)中和池设计

  24. 中和池有效容积可按下式计算: V=(Qz+Qx)t(升)

  25. 式中Qz—碱性废水流量(升/小时);

  26. Qx—酸性废水流量(升/小时);

  27. t—中和反应时间,与排水情况及水质变化情况有关,一般采用1~2小时。

  28. 当生产过程中,如酸及碱性废水排出的很均匀,酸碱含量能互相平衡时,亦可不单独设中和池,而在吸水井及管道内进行混合反应。如数量及浓度有波动时,则应设中和池。酸性废水经进水管进入中和池,在通过池底穿孔管使之得到更充分混合再由出水管排出。

  29. 中和池搅拌强度为中强,一般采用机械和压缩空气搅拌,机械搅拌常用桨式搅拌机,搅拌功率在0.2~0.5kW/m3污水左右;若采用压缩空气搅拌,空气压力为0.1~0.2MPa,空气量为0.2 m3/(min* m3污水) 。

  30. 絮凝反应槽设计

  31. 絮凝反应停留时间应由试验确定,一般取3~9min,不宜太长。反应搅拌强度为弱,机械搅拌常选用框式搅拌机;若采用水力涡流式反应槽,槽上部圆柱部分上升流速为4~5mm/s,进水管流速在0.7m/s左右。

  32. (2) 投中和

  33. 投中和可处理任何性质,任何浓度的酸性废水。当投加石灰乳时,氢氧化钙对废水杂质具有凝聚作用,因此又适用于处理杂质多及高浓度的酸性废水。

  34. 1)中和剂选择与中和反应式

  35. 酸性废水中和剂有石灰、石灰石、大理石、白云石、碳酸钠、苛性钠、氨或氧化镁等,常用者为石灰。

  36. 2)处理流程

  37. 当酸性废水中含有重金属离子,或经投中和后产生沉渣时,需设置沉淀池。 当酸性废水经投中和后,其所生成的盐类不产生沉渣时,则无需设置沉淀池。 处理系统中还需设置清洗管道。

  38. 3)处理构筑物

  39. Ⅰ、混合反应池

  40. 当废水量较大时,可设置单独的混合池。

  41. 混合、反应可在同一个池内进行,石灰乳液应在混合、反应前投入废水当中,当采用池底进水、池顶出水的水流方式时,要求在混合、反应过程中连续搅拌,使其得到充分混合反应和防止石灰或电石渣沉淀。

  42. PH值的控制应按重金属氢氧化物的等电点考虑,一般为7~9。

  43. 当石灰乳液投加在水泵吸水井中时,则可不设混合、反应池,但应满足混合反应所需的时间。

  44. 混合反应池的容积按下式确定: V=Qt/60(米3)

  45. 式中 Q—污水设计流量(米3/小时);t —混合、反应时间(分钟)。

  46. 为保证剂和废水再池内充分混合,池内一般采用压缩空气搅拌,也可用机械搅拌。

  47. 4)用石灰中和酸性污水的一些数据

  48. Ⅰ、混合反应时间 一般采用1~2分钟,但废水中和含重金属盐或其他有毒物质时,混合反应时间,尚应根据除盐和解毒要求确定。当石灰乳液在水泵集水井中投加时,可不设混合设备,但反应设备宜根据管道长度和废水水质而定。 Ⅱ、沉淀时间 一般采用1~2小时

  49. Ⅲ、污泥体积 约为处理污水体积的10~15% Ⅳ、污泥含水率 一般为90~95%

  50. Ⅴ、石灰仓库储存量 一般按10日左右计算,并应根据运输和供应情况确定,石灰仓库不应与石灰乳液制备和投配装置设在同一房间内。

  51. 5)投量计算

  52. 剂的总耗量按下式计算:

  53. Gz=100GsaK/α(公斤/小时)

  54. 式中 Gs—废水中的酸含量(公斤/小时);

  55. a —剂比耗量,见表7-4{见给水排水设计手册(第六册【室外排水与工业污水处理】)330页}

  56. α— 剂纯度(以%计),应按当地产品纯度计算。

  57. K— 反应不均匀系数,一般采用1.1~1.2。但以石灰乳中和硫酸时,采用1.05~1.10;一干粉或石灰浆投加时,由于反应不彻底和缓慢,其值采用1.4~1.5;中和盐酸、硝酸是采用1.05。

  58. 6)中和剂的制备

  59. 如采用石灰作中和剂时,投配有干法和湿法之分。一般采用湿法投配。

  60. Ⅰ、石灰量在1吨/日以内时,可用人工栽消化槽(池)内进行搅拌和消化,一般在槽(池)内制成40~50%的乳浊液。消化槽的有效容积按下列公式计算:

  61. V=KV1(米3)

  62. 式中 K — 容积系数,一般采用2~5;

  63. V1 — 一次配置的剂量(米3)。

  64. Ⅱ、经过消化的石灰乳排至溶液槽,溶液槽的有效容积按下式计算: V=GCaO/αca

  65. 式中 GCaO — 石灰消耗量(吨/日);

  66. α— 石灰的容量,一般采用0.9~1.1吨/米3;

  67. c —石灰溶液的浓度(%);

  68. a — 每天搅拌的次数,用人工搅拌时按3次计算,用机械搅拌时按6次计算。

  69. 石灰乳的浓度按5~10%计算。溶液槽至少设置2个,轮换使用。为了防止石灰的沉积,应设置搅拌装置。采用机械搅拌时,其搅拌机的转速一般为20~40转/分钟,线速度一般为3m/s;如用压缩空气搅拌,一般采用8~10升/秒/米2。亦可用水泵搅拌,首先考虑耐磨性能,泵扬程大于25米,流量按储槽横断面内的流速不小于29m/h计算。

  70. 投量大时,可设置单独投装置,一般则由溶液槽直接用管道投,如条件允许应设置自动酸度计,即将调节阀安在投管上,并有浸在处理后废水中的酸度发送器进行控制,以确保处理效果和提高机械化管理水平。

  71. 7)沉淀池设计

阅读全文

与石灰中和法处理重金属废水的不足相关的资料

热点内容
ft021u是什么车的空气滤芯 浏览:323
瑞恒pvc树脂粉厂家 浏览:507
江岸区塔子湖准备建污水处理厂 浏览:104
厨房便携净水器哪个牌子好 浏览:886
苯酚与甲醛比例对酚醛树脂影响 浏览:606
瓦斯抽采泵酸洗除垢安全技术措施 浏览:727
国家规定含Cr的废水中 浏览:698
速锐空调滤芯怎么选 浏览:802
bjd树脂过了三年还可以吗 浏览:326
三轮电动车油烟净化器价格多少钱一台 浏览:42
德国污水处理厂除臭 浏览:630
2021帝豪空气滤芯怎么换 浏览:592
商用逆渗透纯水机怎么保养 浏览:736
净水机装滤芯哪个牌子好 浏览:369
污水处理中的三相处理工艺是什么 浏览:732
污水蓄池怎么处理 浏览:319
纳米过滤 浏览:76
福岛核污水2022年存满 浏览:985
兰州盐场堡污水处理厂改扩建项目 浏览:235
焦作景观水处理设备 浏览:451