① 废气净化技术有哪些
√楼主您好,根据您提出的问题,下面为您做详细解答:
空气废气净化可以通过许多不同的方法实现,比如,废气中的污染物可以通过过滤、重力分离、电沉积、冷凝、燃烧、膜分离、生物降解、吸收、吸附和催化转化等方法从废气中加以去除,z于是降污染物作为资源回收下来,还是将它销毁,这取决于用户的具体情况和污染物的物理、化学和生物性质。
1、吸收净化法
吸收是净化气态污染物z常用的方法。吸收法被定义为:用适当的液体吸收剂进行废气处理,使废气中气态污染物溶解到吸收液中或与吸收液中某种活性组分发生化学反应而进入液相,这样使气态污染物从废气中分离出来的方法;或者说,利用吸收剂将混合气体中一种或数种组分(吸收剂)有选择地吸收分离的过程称作吸收。
吸收常被分为物理吸收和化学吸收,其区别见下表:
2、吸附净化法
吸附是利用多孔性固体吸附剂处理流体混合物,使其中所含的一种或数种组分吸附于固体表面上,以达到分离的目的。吸附过程和吸收的区别在于:吸收后,吸收组分均匀的分布在吸收相中,吸附后,吸附组分聚积或浓缩敷在吸附剂上,只y一个非均相过程。
目前,吸附操作在有机化工、石油化工等生产部门已有较为广泛的应用。该方法在环境工程中的使用也很普遍,主要原因是吸附剂的选择性高,它能分开其他过程难以分开的混合物,有效地清除(回收)浓度很低的有害物质,设备简单,操作方便,净化效率高,且能实现自动控制。
吸附过程是一个动态过程,在这个过程中,吸附质从流体中扩散到吸附剂表面和微孔内表面上,释放热量,而被吸附在吸附剂的表面上。脱附过程是一个与吸附过程相反的过程。
吸附质在吸附剂表面吸附后,吸附质分子的内能因分子运动形式,如扩散、振动、旋转发生改变而降低,从而释放出能量,称之为吸附热。汽化热(或冷凝热)和结合热是吸附热的两个组成部分。吸附热大于物质气化热约1.5倍,不排除特殊情况的存在。总体说来,吸附热收到吸附量、吸附温度、吸附时流体空塔速度等因素的影响,如果不及时将吸附热引出去的话,其中被脱附分子所吸收的一部分热量会对吸附过程造成负面影响。
3、冷凝净化法
冷凝净化法即利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降温、加压方法使处于蒸汽状态的气体冷凝而与废气分离,以达到净化或回收的目的。
冷凝净化对有害气体的去除程度,与冷却温度和有害成分的饱和蒸汽压有关,冷却温度越低,有害成分约接近饱和,其去除程度越高。它特别适用于处理废气浓度在10000*10-6以上的有机溶剂蒸汽,不适宜处理低浓度的废气。在恒定温度的条件下通过提高压力的办法可实现冷凝过程,也可通过恒定压力的下降低温度来进行冷凝。废气通过冷凝可被净化,但室温下的冷却水无法达到高的净化要求,要想净化完q,需要降温、加压,这就使处理难度加大、费用增加。因此,通常将吸附、燃烧等手段与冷凝发联合使用作为净高浓度有机气体的前期处理,以达到实现降低有机负荷、回收有价值的产品的目的。另外,冷凝净化一般只适用于空气中含蒸汽浓度较高时,因此进入冷凝装置的蒸汽浓度可在爆炸极限以上,而且冷凝装置出来时的浓度可在爆炸下限以下,在冷凝中恰好是在爆炸上限与下限之间,这是不利于a全的一个缺点。
4、催化净化法
催化净化法是使气态污染物通过催化剂床层,在催化剂的作用下,经历催化反应,转化为无害物质或是易于处理和回收的物质的净化方法。催化净化法有催化氧化法和催化还原法两种。催化氧化法:是使废气中的污染物在催化剂的作用下被氧化。如废气中的SO2在催化的有机化合物的废气均可通过燃烧的氧化过程分解为H2O与CO2向外排放。催化还原法,是使废气中的污染物在催化剂的作用下,与还原性气体发生反应的净化过程。如废气中的NOx在催化剂(铜铬)作用下与NH3反应生成无害气体N2。催化净化特点是避免了其他方法可能产生的二次污染,又使操作过程得到简化,对于不同浓度的污染物都具有很高的转化率。其主要应用在于将碳氢化合物转化为二氧化碳和水,氮氧化合物转化为氮,二氧化硫转化成三氧化硫而加以回收利用,有机废气和臭气的催化燃烧,以及汽车尾气的催化净化等。其缺点是催化剂价格较高,废气预热要消耗一定的能量。
废气中污染物含量通常较低,用催化净化法处理时,往往有下述特点:1)由于废气污染物含量低,过程热效应小,反应器结构简单,多采用固定床催化反应器。2)要处理的废气量往往很大,要求催化剂能承受流体冲刷和压力降的影响。3)由于净化要求高,而废气的成分复杂,有的反应条件变化大,故要求催化剂有高的选择性和热稳定性。
5、生物法
在Genf-Villette(地名,1964年建起s个生物净化装置)d一次用生物净化装置净化废气。生物法处理废气技术在20世纪80~90年代得到了快速发展,荷兰和德国成为s批大规模应用生物技术处理废气的g家。随后,生物技术在废气处理中的应用也越来越广泛,目前使用的生物净化气体装置在欧洲已c过7500座,其中一半装置都用来处理污水以及堆肥臭气,关于可生化气体的净化原理和工程应用经验的一套重要体系也已经形成。生物净化技术弥补了传统物化处理技术的不足,传统方法需要专门的安q运行程序管理(如化学吸收),并且耗能高,经济投入高,相较之下,生物净化法属于清洁型的治理方法,成为废气治理特别是可生化废气治理的前沿和热点。
生物法废气净化技术是多学科交叉的环保高新技术。具体说来是一项低浓度工业废气净化前沿热点技术,它建立在已成熟的采用微生物处理废水方法上。国内已有的研究表明,低浓度工业废气已无法通过常规技术进行经济、有效地净化处理,但使用生物法废气净化技术处理低浓度工业废气却行之有效的,具有明显的技术和经济优势。
6、膜分离净化
膜净化法是混合气体在压力梯度作用下,透过特定薄膜时,不同气体具有不同的透过速度,从而使气体混合物中的不同组分达到分离的效果。压力差、浓度差以及电位差推动着膜分离过程的进行,膜分离技术是根据混合物中各组分的选择渗透性能的差异利用膜来分离、提纯和浓缩混合物的新型分离技术。能以特定形式限制和传递流体物质的分隔两相或两部分少有两个界面,这两个界面是两侧流体接触以及传递的桥梁。对流体来说,分离膜可以半透明也可以完q透过,但绝不能w全不透过。
膜分离的主要特点是实现混合物以及物质分子尺寸的分离,它将选择透过性的膜作为分离的手段。相变化不会发生在膜分离过程中(渗透蒸发膜除外),因此操作可在常温下进行,这就避免了浓缩和富集物质的性质因高温而改变的不利,在食品、医药等行业膜分离因此优点而被广泛使用。能耗少、成本低、效率高、无污染并可回收有用物质是膜分离的共有优点,对于同分异构体组分、性质相似组分,热敏性组分、生物物质组分等混合物的分离,膜分离方法十分适用,有时可以代替蒸馏、萃取、蒸发、吸附等化工单元操作。实践表明,若常规分离不能通过经济的方法实现,膜分离会成为一项非常有用的技术。将常规分离与膜分离相结合的技术更加经济有效。综合上述优点,膜科学和膜技术在近二三十年得到快速的发展,目前已成为工农业生产、国防、科技和人民日常生活中不ke缺少的分离方法,越来越广泛地应用于化工、环保、食品、医药、电子、电力、冶金、轻纺、海水淡化等ling域。
7、燃烧净化法
用燃烧方法来销毁有毒气体、蒸汽或烟尘、使之变成无毒、无害物质,叫做燃烧净化。燃烧净化仅能销毁哪些可燃的或在高温下能分解的有毒气体与烟尘,其化学作用主要是燃烧氧化,个别情况下是热分解。燃烧净化,可以广泛地应用于有机溶剂蒸汽及碳氢化合物的净化处理,这些有毒物质在燃烧氧化过程中浓度较高、发热量较大的可燃性有害气体(主要是含碳氢的气态物质),燃烧温度一般在600~800。C。燃烧法简便易行,可回收热能,但不能回收有害气体,易造成二次污染。
希望此次回答对您有所帮助!
② 石油蒸馏物的成份及用途
石油蒸馏物的成份有汽油、柴油、煤油、石蜡、石油沥青、润滑油、石油焦等等。
经过加工石油而获得的各类石油产品在不同的领域内有着广泛的,不同的用途。
1、燃料
各类石油产品中用量最多的动力燃料类各种牌号的汽油,柴油,煤油和燃料油,广泛用于各种类型汽车、轮船、飞机、火箭等动力机械。
2、润滑油
润滑油使各类滑动、转动、滚动机械,仪器减少磨损、保证速率,起到润滑、散热、密封、绝缘等作用,保护机件以延长它们的使用寿命并节省动力。
3、沥青
沥青具有良好的黏结性,抗水性和防腐性,广泛用于铺筑路面,作防腐防水涂料及制造油毛毡和碳素材料等。
(2)蒸馏回收烟气扩展阅读
历史发展
19世纪20年代主要石油产品为灯用煤油,原油加工量较少,原油蒸馏用釜式蒸馏法(原油间歇送入蒸馏釜,在釜下加热)进行。
19世纪80年代,随着原油加工量逐渐增加,将4~10个蒸馏釜串联起来,原油连续送入。
1912年,美国M.T.特朗布尔应用管式加热炉与蒸馏塔等加工原油,形成了现代化原油连续蒸馏装置的雏形,原油加工量越来越大。
近30年来,原油蒸馏沿着扩大处理能力和提高设备效率的方向不断发展,逐渐形成了现代化大型装置。
原油蒸馏是石油炼厂中能耗最大的装置,采用化工系统工程规划方法,使热量利用更为合理。此外,利用计算机控制加热炉燃烧时的空气用量以及回收利用烟气余热,可使装置能耗显著降低。
③ 低温多效蒸馏海水淡化成本分析
目前,我国是联合国公认的世界13个最贫水国家之一。世界性的淡水危机,为海水淡化技术发展提供了广阔的市场,海水淡化技术的应用成为解决淡水资源危机的有效方法。低温多效蒸馏(LT-MED)是海水淡化技术目前的主流技术之一,其原料海水的最高蒸发温度一般低于70℃,其特征是将一系列的水平管降膜蒸发器或垂直管降膜蒸发器串联起来并被分成若干效组,用一定量的蒸汽输入,通过多次的蒸发和冷凝,从而得到多倍于加热蒸汽量的蒸馏水的海水淡化技术。淡化后的水含盐量小于5 mg/L。因其具有产品水水质好、预处理简单、腐蚀和结垢风险小、单机制水能力大以及技术经济性好等特点,得到了越来越多的应用,市场占有率逐步提高;但LT-MED技术的推广受成本限制极大,因此,降低制水成本是LT-MED技术研究的热点,也是进一步推广应用LT-MED技术的必要条件。
1工程概况
某发电厂一期安装2-600 MW国产亚临界燃煤发电机组,二期安装2-660 MW国产超临界燃煤发电机组,循环水系统采用海水直流供水系统。电厂利用4台机组抽汽,采用海水淡化工艺制取淡水,实施水电联产。日产25000 m3淡水的海水淡化装置所需蒸汽由电厂一、二期工程汽轮机中压缸末级抽汽提供,原料海水由循环水供水管取水。采用配置蒸汽热压缩器(TVC)的横管降膜低温多效蒸馏 (LT-TVC-MED)海水淡化工艺,装置可以在40%~100%工况下运行。主设备由串列式水平布置的10效蒸发器组成,在第7效的末端抽汽。蒸发器采用多支座卧式直列布置在钢架上。装置主要参数见表1。
2低温多效蒸馏技术成本分析
低温多效蒸馏海水淡化的成本是一个比较复杂的问题,受多种因素的影响,如项目地理位置、气候条件、海水水质、海水随季节的温度分布及可利用的能源等诸多因素均影响着海水淡化的制水成本。本文针对特定项目的具体方案进行成本分析。
海水淡化工程单位水量成本费用可分解为固定成本和可变成本。固定成本指成本总额不随产量变化的各项费用,主要包括工资或薪酬、固定资产折旧费、长期借款利息和其他费用等。变动成本指成本总额随产品产量变化而发生同向变化的各项费用,主要包括蒸汽费、耗电费用、化学药品消耗费用、人工费用以及维修费用等。本文以日产25000 m3淡水的低温多效蒸馏海水淡化方案为基础进行成本计算和分析,定量揭示海水淡化成本的变化规律及影响因素。
成本计算基本数据:蒸汽参数0.55 MPa(a),320 ℃;机组在额定工况下运行,日产淡水25000m3,按年制水量进行计算得出单位水量成本;装置静态投资约为2.2亿元,贷款金额按执行概算静态投资的80%计取,贷款利率按同期银行贷款利率;设备使用寿命30 a,折旧年限20 a,残值率5%;设备年利用率为98%;按标煤价640元/t计算蒸汽费用2.65元/m3;耗电量1.2 kW-h/m3,电价0.28元/(kW-h);药剂费用按0.28元/m3;造水比13.5进行成本计算。
经过对基本方案的分析计算,单位水量淡水成本费用约合人民币5.39元/m3。海水淡化单位水量各项成本计算结果见表2。
蒸汽费是海水淡化装置最主要的成本费用,占总成本费用的49%;其次为固定资产折旧费和财务费用,分别为22%和12%;修理费、药剂费、电费、工资及福利费用共占17%。其中蒸汽费与年利用率、装置的造水比相关;修理费、固定资产折旧费以及财务费用以静态投资额为基础进行取费计算,药剂费、电费及人工福利费所占比例较小,且费用相对恒定,对总成本的变化影响不大。
根据以上分析,确定对成本的影响主要因素为:工程静态投资、蒸汽费用、造水比以及年利用率,次要因素为用电费、药剂费和人工福利费。下面以基本方案为基础,分析当单一变量改变而其他变量保持不变时各项因素对单位水量成本的独立影响。
2.1工程静态投资
海水淡化工程的动态投资由静态投资(包括设备购置费、安装工程费、建筑工程费及其他费用)和建设期贷款利息构成。1/2 12下一页尾页由图1可看出,当静态投资由基准额的-20%增加到20%时,单位水量成本由4.98元/m3上升至5.79元/m3,增加了16%。因此控制静态投资尤为重要。静态投资中的设备购置费(含主设备及辅助系统)成本约占工程静态投资的47%,因此必须通过控制主设备及辅助设备成本来降低工程的静态投资,从而降低制水成本。
2.2蒸汽费
由于蒸汽费用占总成本49%,是占制水成本比例最大的单项成本。低温多效蒸馏海水淡化蒸汽成本主要体现在煤耗上,通过单位水量吨标煤耗的变化,来分析制水蒸汽成本变化的情况。基本方案利用汽轮机抽汽进行制水,成本的分摊较复杂,不同的计算方法蒸汽费用差别较大。由于热量法未考虑蒸汽的品质,采用此方法进行成本计算不科学,作功能力法以及焓降法均考虑了蒸汽的品质,计算方法较合理,且作功能力法和焓降法两者计算结果是近似的。因此本文以作功能力法作为海水淡化蒸汽成本的计算方法,结果见图2。
由图2看出,当其他因素不变时,蒸汽费用分别从基准值的-20%变化到 20%时,单位水量成本相应从4.86元/m3升到5.92元/m3,增加率达到21.8%。因此要想降低海水淡化成本,根本上需要从汽源方面采取降低成本的措施。如果制水蒸汽为乏汽或废热时,蒸汽费用就可忽略不计,制水成本就会很低。对于电水联产系统,充分利用电厂的余热和机组抽汽,可有效降低造水成本。计算表明同样的海水淡化工程当采用四段抽汽进行制水,单位水量蒸汽成本约为2.49元/m3;而采用乏汽制水单位水量蒸汽成本约为1.18元/m3,成本节约效果明显。
2.3年利用小时数
由图3看出,年利用率由60%变化到100%时,即年利用小时数由5256 h增加到8760 h时,制水成本下由6.73元/m3下降至5.35元/m3,下降了26%。因此在工程应用中,加强设备管理、提高设备健康水平,是提高设备利用率的基础,更是提高装置经济效益、降低制水成本重要途径之一。低温多效蒸馏装置由于低温蒸馏的技术特点,比其他海水淡化技术具有更多优势,使设备结垢及腐蚀降低到最小限度,为装置在稳定工况下能长时间的运行提供基础保障,从而提高海水淡化装置的利用率。只有当整套装置年可用率大于95%时,才能有效降低制水成本。2.4造水比
装置的造水比定义为蒸馏装置产品水和外部输入总蒸汽的质量流量之比(kg/kg)。造水比体现了装置运行费用的高低,通常造水比越高,单位淡水产量的能源成本将越低,即消耗蒸汽量越少。由图4看出,当造水比由12.15提升到14.85时,海水淡化单位水量成本由5.68元/m3降低到5.15元/m3,成本降低了10%。
2.5其他费用
考虑到海水淡化装置与电厂项目耦合方案,电费采用成本电价,计算结果用电费用占单位水量总成本的6%。蒸馏法海水淡化系统运行过程中电耗波动较小,可以通过优化设计降低用电成本。
药剂费占单位水量总成本的5%,海水淡化系统正常运行时加入阻垢剂、消泡剂以及还原剂,加药量根据入料海水量按比例进行添加,因此同样的水质及产水量,通过改变进料方式,提高浓缩倍率降低原海水量,加药成本会相应下降。
3降低成本的措施
3.1寻求低成本的热源,合理使用能源
低温多效蒸馏海水淡化的成本中蒸汽费用所占的比例最高,低温运行的特性使低温多效蒸馏海水淡化装置可以使用低等级的热源,寻求低成本的热源,将蒸馏工艺的能量成本降到最小,避免能量在质量和数量上的损失,是降低成本的主要措施。
对于电水联产系统,采用高参数蒸汽对整个系统的效率是不利的,最佳的抽汽参数应该通过水电联产系统整体优化确定。新建机组可采用焓值较低的汽轮机六抽蒸汽作为制水加热蒸汽,降低蒸汽费用,从而降低海水淡化成本。同时,利用汽轮机抽汽制水时,选择经济工况运行对于制水成本。
3.2采用余热利用新工艺,实现能源的梯级利用
能源的梯级利用包括按质用能和逐级利用两个方面,可以根据设备的能级需求构成能量的梯级利用关系,使总的能源利用率达到最高水平。低温多效蒸馏装置加热蒸汽压力宜为0.025~0.032 MPa(a),温度低于70℃,具备利用余热的有利条件。采用海水淡化与余热回收利用耦合方案,需根据余热的种类、参数、数量和利用的可能性,进行综合热效率及经济可行性分析,确定利用方案。
(1)在火力发电厂中,排烟损失在锅炉热损失中所占比例最大,降低排烟温度,减少排烟损失,对提高锅炉热效率起到了决定性作用。由此可见,降低锅炉的排烟温度,可以节约煤耗。如果锅炉排烟与海水淡化相耦合进行烟气余热回收利用,可同时降低制水成本。
(2)在电水联产模式下,利用电站凝汽器循环冷却水排放的热量提升海水淡化装置冬季物料海水温度,在降低制水成本的同时可减少电厂排放的废热量及废水量。
(3)其他余热利用:电厂大型汽动辅机排汽余热与低温多效蒸馏海水淡化装置相结合;炼钢厂或化工厂工艺废热与海水淡化技术相结合。
3.3优化工艺参数,提高装置造水比
(1)采用压力较高的汽轮机四抽抽汽作为加热蒸汽汽源,为了利用抽汽的有效能量,降低蒸发装置末效蒸汽的凝结热损失,可采用带蒸汽热压缩器(TVC)的低温多效蒸馏海水淡化装置(LT-TVC-MED),提高系统热效率的同时提高装置造水比,降低制水成本。
(2)在海水淡化蒸发装置总传热温差一定时,降低效间传热温差,增加效数可提高造水比;另一方面由于造水比随蒸汽热压缩器吸入温度的增加而升高,合理确定TVC引射参数,优化TVC在装置中的引射位置,可以提高造水比。
3.4进行合理设备选型,降低设备静态投资
设备购置费用占静态投资的47%左右,其费用决定了修理费、固定资产折旧费以及财务费用等成本,因此,可以通过合理设置备用设备、采用新型低成本材料以及采用优化工艺降低静态投资,从而降低单位水量成本。
3.5注重运行维护,提高设备利用率
通过控制运行参数在合理范围内,降低主设备结垢的风险以减少酸洗停运时间;对主要辅机设备进行状态监测,减少故障停机时间;加强所有设备日常维护保养来提高设备利用率。
3.6进行合理的设计及设备选型,降低用电成本
选取合理的参数使海水淡化装置运行在高负荷工况;优化系统流程和辅助设备选型及配置,选择合适的设备容量安全裕度以及采用变频设备等措施降低设备电耗,从而降低海水淡化单位水量用电成本。
4结论
低温多效蒸馏海水淡化的成本受多种因素的影响,是一个复杂的问题,根据成本的构成分析,蒸汽费是构成低温多效蒸馏海水淡化系统可变成本的最主要的因素,占总成本费用的49%左右;其次为固定资产折旧费和财务费用,分别为22%和12%;用电费用和药剂费用占比较少,分别占总成本的6%和5%。
低温多效蒸馏海水淡化工程的投资费用分析表明:工程静态投资中设备购制费约占47%,因此必须通过装置大型化研究、设备国产化研究、以及新材料研发等措施控制主设备及辅助设备成本来降低工程的静态投资,从而降低制水成本。
成本的影响因素还与设备的可用率以及一些设计参数相关,制水成本随年利用率的增加而降低,只有当整套装置年利用率大于95%时,才能有效控制制水成本,而工程设计参数对单位水量成本的影响主要表现为海水淡化单位水量成本随造水比的增加而降低。
降低低温多效蒸馏海水淡化工程的制水成本必须从设计、制造、运行以及维护等各方面进行控制,以达到最佳的设备性能和较低的制水成本,从而推进低温多效蒸馏海水淡化技术的应用。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd