导航:首页 > 蒸馏问题 > 蒸馏塔的物料衡算可以用kg吗

蒸馏塔的物料衡算可以用kg吗

发布时间:2025-06-26 18:22:01

㈠ 木薯生产乙醇的工艺

年长1万吨无水乙醇的生产工艺及设备方案【摘要】【关键词】燃料乙醇 生产工艺 物料衡算 设备选型【正文】1、前言 无水乙醇是一种应用很广泛的有机溶剂,是一种可再生的生物能源。其中燃料乙醇被认为是替代和节约汽油的最佳原料之一,能和汽油以一定的比例混配成一种车用原料。乙醇的生产有化学合成法和生物发酵法,随着全球石油的缩减,化学合成已受限制,生物发酵生产乙醇受各方推崇和应用。生物发酵法是利用淀粉质原料或糖质原料,在微生物作用下生成乙醇的方法。淀粉质原料生产乙醇过程包括:原料粉碎、蒸煮糖化、酒母制备、发酵及蒸馏精制等工序。2、燃料乙醇2.1乙醇性质 酒精是一种无色透明、易挥发,易燃烧,不导电的液体。有酒的气味和刺激的辛辣滋味,微甘。学名是乙醇, 分子式C2H6O,(酒精燃烧C2H5OH+3O2=2CO2↑+3H2O)因为它的化学分子式中含有羟基,所以叫做乙醇,比重0.7893(20/4°)。 乙醇的分子量:46
外观与性状: 无色液体,有酒香。
燃点:75℃ 熔点:-114.1℃ 沸点(一标准大气压下): 78.3 ℃
相对密度(水=1): 0.79 相对蒸气密度(空气=1): 1.59 饱和蒸气压(kPa): 5.33(19℃)
燃烧热(kJ/mol): 1365.5
临界温度(℃): 243.1 临界压力(MPa): 6.38
辛醇/水分配系数的对数值: 0.32 闪点(℃): 12
引燃温度(℃): 363
爆炸上限%(V/V): 19.0 爆炸下限%(V/V): 3.3 2.2类别和主产品 工业乙醇(该方案的产品是燃料乙醇)工业酒精含乙醇96%以上,还含少量甲醇和其他物质。 甲醇是有害的。它可以挥发,对呼吸系统有害。有人用工业酒精(含甲醇的乙醇)做酒,饮用后可导致失明。 食用乙醇:食用酒精使用粮食和酵母菌在发酵罐里经过发酵后,经过过滤、精馏来得到的产品,通常为乙醇的水溶液,或者说是水和乙醇的互溶体,食用酒精里不含有对人体有毒的苯类和甲醇。 药用乙醇:乙醇含量在75%左右无水乙醇:无水乙醇的酒精含量极高,分为化学纯和分析纯,化学纯的含量大于等于99.5%,分析纯的含量在99.9%以上。 燃料乙醇是指未加变性剂的、可作为燃料用的无水乙醇。燃料乙醇可缓解能源紧张,减少环境污染,促进农业发展。3、生产工艺3.1总流程 双酶糖化间歇(或连续)发教酒精流程示意图a-淀粉酶 糖化酶 ↓ ↓薯干→粉碎机→调浆罐→连续蒸煮器→蒸煮醪→糖化锅 废槽 ↖ ↓酒精←分子筛脱水 ← 蒸馏←成熟发酵醪←发酵醪←糖化醪杂醇油 ↙ ↙ ↓ ↙ ↓ 酵母种→斜面试管→摇瓶培养→小酒母罐→大酒母罐 ↑ ↗ ↓ 空气→空压机→过滤器→无菌空气 酒母醪3.2原料及原料预处理3.2.1原料 薯干:含淀粉68%,水分13%,直接从市场购买。水:包括粉料液化糖化用水、发酵用水、蒸馏车间用水和清洗用水等,都利用城市自来水或是自来水经过一系列灭菌消毒的无菌水。淀粉酶和糖化酶:a-淀粉酶用量为8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。硫酸和硫酸铵等:硫酸铵用量8kg/t(酒精),硫酸用量(调pH用)5.5kg/t(酒精)。乙醇酵母:发酵用的菌种,将糖化醪发酵产生乙醇、CO2和其他副产物。3.2.2原料预处理 薯干预处理示意图原料薯干→筛选→浮选→磁选→破碎→制浆→液化(糊化) ↓ ↓ ↘ ↓纤维、泥沙 石块、砖块 铁杂 糖化 ← 冷却 ↑ 糖化酶3.2.2.1原料除杂和粉碎(1)淀粉质原料在收集时,会混进沙土、杂物,甚至金属夹杂物等。一般采用先振动筛筛选,再磁力除铁器磁选以除去杂质。(2)淀粉质原料中淀粉颗粒常以颗粒状态储存于细胞中,不宜被直接利用。粉碎后有利于增加原料表面积,加快吸水速度,缩短水热处理时间;有利于淀粉酶的作用,提高淀粉的转化率,同时有利于原料在生产过程中的输送。粉碎方法有干式粉碎和湿式粉碎,此次采用湿式粉碎进行生产(3)由粉尘损失造成的淀粉损失率约为0.40%。3.2.2.2水热处理(液化)和连续蒸煮糖化(1)淀粉的液化:是利用淀粉液化酶使糊化的淀粉黏度降低,并水解成糊精和低聚糖的过程。 使用耐高温的a-淀粉酶,采用95℃的处理温度,使用普通a-淀粉酶,采用85℃处理温度。现采用低压喷射液化器来完成淀粉的液化。调浆温度为50℃,喷射液化器使粉浆迅速升温至105 ℃,进入维持管保温液化5~8min,真空闪急蒸发冷却至95 ℃进入液化罐反应约60min后,进真空冷却器冷却至63 ℃后糖化30min。低压喷射液化处理工艺 粉料→加水制浆→喷射液化→保温液化→冷却糖化 ↑ ↑ a-淀粉酶 蒸汽 (2)淀粉的糖化:是利用糖化酶将淀粉液化的产物进一步水解成葡萄糖的的过程,并为发酵提供含糖适量并保持一定酶活力的无菌或极少杂菌的醪液。 糖化温度一般根据糖化酶的最适作用温度进行控制,即58~60℃为宜,糖化酶作用的最适pH为4.2~5.0。醪液的pH太高或太低都将破坏酶的活力,不利于糖化。 糖化酶用量一般为每克淀粉使用80~150U,视原料品种、糖化方式等定量。 糖化时间不宜过长,一般在15~25min的范围,也可以根据糖化醪进行调控,即以产生25%~35%的还原糖的时间为宜。蒸煮糖化中由于淀粉残留及糖分破坏造成的淀粉损失约为0.40%。3.2.2.3乙醇酵母的培养 麦芽汁 麦芽汁 麦芽汁 糖化醪琼脂 →↓ ↓ ↓ ↓酵母→斜面试管→液体试管→三角瓶培养→卡氏罐培养→小酒母罐培养→大酒母罐培养→发酵罐 ↖ ↗ 糖化醪 乙醇酵母的培养(酒母1:10扩大培养)(1)原菌种斜面培养:麦芽汁琼脂,25~30℃培养3~5天(冰箱4℃保存备用)。(2)液体试管:10°Bx麦芽汁,灭菌冷却至25~30℃,无菌接种置25~30℃培养20h。(3)三角瓶培养:1/3麦芽汁和2/3糖化醪, 25~30℃培养12~14h,pH4~6(4)卡式罐培养:糖化醪,25~30℃培养12~14h,pH4~6(5)小酒母罐、大酒母罐培养:糖化醪,25~30℃培养12~14h,pH4~63.3乙醇发酵 ——菌种:乙醇酵母; 培养基:薯干糖化醪→发酵醪; pH:4.2~4.5;(1)前发酵期:醪液中酵母密度小,酵母进行适应,发酵作用不强。实际生产时,酒母量在10%左右,前发酵期时间为6~8h,连续发酵时,前发酵期基本不存在。(2)主发酵期:酵母不再大量繁殖,而主要进行乙醇发酵,发酵作用强烈,糖分消耗迅速,乙醇逐渐增加。主发酵温度控制在30~34℃ 不得高于34~35℃,发酵时间一般为12~15小时。(3)后发酵期:醪液中的糖分已大部分被发酵,但醪液中残存的糊精等多糖成分继续被转化为可发酵性糖,酵母把它转化为乙醇。后糖化作用速度比糖发酵速度要慢得多,乙醇和CO2生产量减少,表观看来气泡不断产生,但醪液不再翻动。后发酵期一般需40小时左右才能完成,保持醪液温度在30℃±1℃ 。(4)发酵过程中的淀粉损失率:发酵残糖——1.3%巴斯德效应——4.0%酒气自然蒸发与被CO2带走——0.30% (若有酒精捕捉器,损失为0.30%)3.4分离纯化和蒸馏精制分离纯化工艺流程图发酵罐→泵→醪塔→浓缩塔→粗酒精→分子筛塔A、B→冷凝↖ ↗ ↑ ↓蒸汽 蒸汽 无水乙醇过程中的淀粉损失率:(1)废槽带走等——1.60%
(2)脱水损失——1.0%3.5副产品利用和废水废渣处理酒精槽→固液分离→滤液→处理→澄清液→回用及生物处理 ↓ ↓ 滤渣→饲料 ← 泥浆4、物料衡算(1)生产方法:双酶糖化、间歇发酵、塔蒸馏。(2)生产天数:每年300d。 (3)燃料酒精日产量:344t。(4)燃料酒精年产量:100200t。(5)产品质量:国际燃料酒精,乙醇含量99.5%以上(体积分数)(6)主原料:薯干原料含淀粉68%,水分13%。(7)酶用量:a-淀粉酶用量为8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。(8)硫酸铵用量8kg/t(酒精),硫酸用量(调pH用)5.5kg/t(酒精)。一 、原料计算①糖化:(C6H12O5)n + nH2O → n C6H12O6 (1-1) 162 18 180发酵:C6H12O6 → 2 C2H5OH + 2CO2 (1-2) 180 46×2 44×2②生产1000kg燃料酒精的理论淀粉消耗量由(1-1)和(1-2)求得:1000×99.18%×162÷92=1746.5(kg)燃料酒精体积分数99.5%换算成质量分数为99.18%。③生产1000kg燃料酒精的实际淀粉消耗量 表(3-1) 生产过程各阶段淀粉损失率生产过程损失原因淀粉损失率%备注原料处理粉尘损失0.40蒸煮糖化淀粉残留及糖分坏0.40发酵发酵残糖1.3发酵巴斯德效应4.0发酵酒气自然蒸发与被CO2带走0.30加酒精捕集器0.30%蒸馏废槽带走等1.60脱水脱水损失1.0总计损失9.01746.5÷(100%-9.0%)=1919.2(kg)④生产1000kg燃料酒精的薯干原料消耗量薯干原料含淀粉68%,水分13%1919.2÷68%=2822.4(kg)⑤a-淀粉酶消耗量应用酶活力为20000u/g的a-淀粉酶液化酶用量:2822.4×1000×8÷20000=1.29(kg)⑥糖化酶耗量糖化酶活力为100000u/g。使用量为100u/g原料2822.4×1000×100÷100000=2.82(kg)此外,酒母糖化酶用量按200u/g(原料)计,且酒母用量为10%2822.4×10%×70%×200÷100000=0.395(kg)式中70%为酒母的糖化液占70%。其余为稀释水与糖化剂。两项合计,糖化酶用量为3.215kg。⑦硫酸铵耗用量作为补充氮源,其用量为酒母用量的0.1%。二、蒸煮醪量的计算淀粉原料连续蒸煮的粉料加水为1:2,故粉浆量为:2822.4×(1+2)=8467.2(kg)经喷射液化连续蒸煮,最终蒸煮醪液量为8597.4kg。三、糖化醪与发酵醪量的计算设发酵结束后成熟醪量含酒精10%(体积分数),相当于8.01%(质量分数)。并设蒸馏效率为98.4%,而且发酵罐酒精捕集器回收酒精洗水和洗罐用水分别为成熟醪液的5%和1%,则生产1000kg99.18%(质量分数)酒精成品计算如下:① 需蒸馏的成熟发酵醪量为:F=1000×99.18%÷98.4%÷8.01%×(100+5+1)÷100=13338.4(kg)② 若不计酒精捕集器和洗罐用水,则成熟发酵醪量为:13338.4÷106%=12583.4(kg)③ 入蒸馏塔的成熟醪乙醇浓度为:1000÷98.4%÷13338.4=7.62%(质量分数)④ 相应发酵过程放出CO2总量为991.8÷98.4%×44÷46=964.1(kg)⑤接种量按10%计,则酒母醪量为m:(2583.4+964.1)÷【(100+10)÷100】×10%=1231.6(kg)⑥酒母醪的70%是糖化醪,其余为糖化剂和稀释水,则糖化醪量为:(2583.4+964.1)÷【(100+10)÷100】+1231.6×70%=13178.0(kg)四、10000t/a薯干原料酒精厂总物料衡算① 酒精成品日产燃料酒精量为:10000÷300=33.3(t),取整数位34t/d实际年燃料酒精总产量为:34×300=10020(t/a)② 主要原料薯干用量日耗量为:2822.4×34=95961.6(kg/d)年耗量为:95961.6×300=2.879×106(kg)=282885(t/a)表(4-1) 10000t/a薯干原料酒精厂物料衡算表物料﹨数量生产1000kg燃料酒精物料量/kg每天数量/t每年数量/t燃料酒精10003410020薯干原料2822.495.961628788.48a-淀粉酶1.1290.0383911.5158糖化酶3.2150.1093132.793硫酸铵1.2320.0418912.5664硫酸5.50.18756.1蒸煮粉浆8467.2287.88586365.44成熟蒸煮醪8597.4292.31287693.48糖化醪13178448.052134415.6酒母醪1231.641.874412562.32蒸馏发酵醪13338453.506136051.7二氧化碳964.132.77949833.82废醪13550460.697138209

㈡ 苯-甲苯混合物分离精馏塔设计

第一章 概 述 1.1精馏塔的简单介绍 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
1.2本设计的目的和意义 通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题的能力。主要体现在以下几个方面:
(1)资料、文献、数据的查阅、收集、整理和分析能力。要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料。因此,资料、文献和数据的查找、收集是工程设计必不可少的基础工作。
(2)工程的设计计算能力和综合评价的能力。为了使设计合理要进行大量的工艺计算和设备设计计算。本设计包括塔板结构和附属设备的结构计算。
(3)工程设计表达能力。工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格的形式表达出来。只有完整、流畅、正确地表达出来的工程设计的内容,才可能被他人理解、接受,顺利付诸实施。
通过本设计不仅可以进一步巩固学生所学的相关啊知识,提高学生学以致用的综合能力,尤其对精馏、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实的品格。

第二章 设计计算 2.1确定设计方案 本设计任务是分离苯-甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用中间泡点进料,将苯和甲苯混合液经原料预热器加热至泡点后送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品,经冷却器冷却后送至贮槽。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品冷却后送至储罐。
2.2精馏塔的物料衡算 1.原料及塔顶、塔底产品的摩尔分率
苯的摩尔质量 MA=78.11 kg/kmol
甲苯的摩尔质量 MA=92.13 kg/kmol
xF = =0.541
xD = =0.992
xW = =0.012
2.原料液及塔顶、塔底产品的平均摩尔质量
MF=0.541×78.11+(1-0.541)×92.13=84.55 kg/kmol
MD=0.992×78.11+(1-0.992)×92.13=78.22 kg/kmol
MW=0.012×78.11+(1-0.012)×92.13=91.96 kg/kmol
3.物料衡算
原料处理量 F= =131.41 kmol/h
总物料衡算 D+W=131.41
苯物料衡算 0.992D+0.012W=131.41×0.541
联立解得 D=70.93 kmol/h
W=60.48 kmol/h
2.3塔板数的确定 常压下苯-甲苯的气液平衡与温度关系
温度t
110.6
106.1
102.2
98.6
95.2
92.1
89.4
86.8
84.4
82.3
81.2
80.2
x(摩尔分数)

y

0

0
0.088

0.212
0.2

0.37
0.3

0.5
0.397

0.618
0.489

0.71
0.592

0.789
0.7

0.853
0.803

0.914
0.903

0.957
0.95

0.979
1.0

1.0
1.理论塔板数NT的求取
苯-甲苯属理想物系,可采用图解法求理论塔板数。
①由上表查得苯-甲苯物系的气液平衡数据,绘出下面x-y图

②求最小回流比及操作回流比。
采用作图法求最小回流比。在上图中对角线上,子点e(0.542,0.542)做垂线ef即为进料线(q线),该线于平衡线的交点坐标为
yq=0.756 xq=0.542
故最小回流比为
Rmin=1.103
取操作回流比为
R=2Rmin=2.206
③求精馏塔气、液相负荷
L=RD=156.47 kmol/h
V=(R+1)D=234.47 kmol/h
L′=L+F=289.94 kmol/h
V′=V=234.47 kmol/h
④求操作线方程
精馏段操作线方程为
y= x+ XD=0.667x+0.301
提馏段操作线方程为
y′= ’- Xw =1.237x’-0.003
5图解法求理论塔板层数
采用图解法求理论踏板层数,如上图所示。求解结果为
总理论塔板层数 NT=12.5
进料板位置 NF=6
2.实际塔板层数的求取
精馏段实际塔板层数 N精=6/0.56≈11
提留段实际塔板层数 N提=6.5/0.56≈12

2.4精馏塔工艺条件的计算 1.操作压力计算
塔顶操作压力 PD=101.3+4=105.3 kPa
每层塔板压降 ΔP=0.7 kPa
进料板压力 PF=112.3 kPa
精馏段平均压力 Pm=108.8 kPa
2.平均摩尔质量计算
塔顶平均摩尔质量计算
由xD=y1=0.992,查平衡曲线,得
x1=0.956
MVDm=0.992×78.11+(1-0.992)92.13=78.22 kg/kmol
MLDm=0.956×78.11+(1-0.956)92.13=79.66 kg/kmol
进料板平均摩尔质量计算
由图解理论板,得
yF=0.720
查平衡曲线,得
xF=0.497
MVFm=0.720×78.11+(1-0.720)92.13=82.04 kg/kmol
MLFm=0.497×78.11+(1-0.497)92.13=85.16 kg/kmol
精馏段平均摩尔质量
MVm=(78.22+82.04)/2=80.13 kg/kmol
MLm=(79.66+85.16)/2=82.41 kg/kmol
3.平均密度计算
(1)气相平均密度计算
由理想气体状态方程计算,即
рVm= =2.88 kg/m3
(2)液相平均密度的计算
液相平均密度计算依下式计算,即
1/рVm=∑ai/рi
塔顶液相平均密度的计算
由tD=82.1℃,查手册得
рA=812.7 kg/m3 рB=807.9 kg/m3
рLDm= =812.6kg/m3
进料板的平均密度计算
由tF=99.5℃,查手册得
рA=793.1 kg/m3 рB=790.8 kg/m3
进料板液相的质量分率
aA=0.456
рLFm= =791.8 kg/m3
精馏段液相平均密度为
рLm=(812.6+791.8)/2=802.2 kg/m3

2.5精馏塔塔体工艺尺寸计算 1.塔径的计算
精馏段的气、液相体积流率
Vs= =1.812 m3/s
Ls= =0.0045 m3/s
由 umax=C
=0.0413

取板间距HT=0.40 m,板上液层高度hL=0.06 m,则
HT-hL=0.40-0.06=0.34 m
查资料可得 C20=0.075
C= C20 =0.0753
Umax =0.0753 =1.254 m/s
取安全系数为0.7,则空塔气速为
u=0.7 umax=0.878 m/s
D= =1.66 m
按标准塔径圆整后为 D=1.5 m
塔截面积为
AT=2.16 ㎡
实际空塔气速为
u=0.839 m/s
2.精馏塔的有效高度计算
精馏段有效高度为
Z精=(N精—1)HT=4 m
提馏段有效高度为
Z提=(N提—1)HT=4.4 m
在进料板上开一人孔,其高度为0.8 m
故精馏塔的有效高度为
Z=Z精+Z提+0.8=9.2 m

2.6塔板主要工艺尺寸的计算 1.溢流装置的计算
因塔径D= 1.5m,可选用单溢流弓形降液管,采用凹形受液盘。各项计算如下:
(1)堰长lW
取 lW=0.66D=0.99 m
(2)溢流堰高度hW
由 hW=hL-hOW
选取平直堰,堰上液层高度hOW,近似的取E=1得
hOW= E =0.019 m
取板上清液层高度 hL=0.06 m
故 hW=0.06-0.019=0.041 m
(3)弓形降液管宽度Wd和截面积Af
由 lW/D=0.66 得
Af/AT=0.0722 Wd/D=0.124
故 Af=0.198 ㎡
Wd=0.186 m
验算液体在降液管中停留的时间
θ= =17.6 s>5 s
故降液管设计合理。
2.7筛板流体力学的验算 1.液面落差
对于筛板塔,液面落差很小,且塔径和液流量不是很大,故可忽略液面落差的影响。
2.液沫夹带
液沫夹带量eV计算,即
eV= ( ) =0.042 kg<0.1 kg
hf=2.5 =0.15 m
故在本设计中液沫夹带量eV在允许范围内。
3.漏液
对筛板塔,漏液点气速u0,min计算,即
u0,min=4.4
=6.0276 m/s
实际孔速
u0= Vs/A0=16.23 m/s>u0,min
稳定系数为
K=u0 /u0,min=2.692>1.5
故在本设计中无明显漏液。

第三章 设计结果汇总

序号 项目 数值
1 平均温度 ,℃ 90.8
2 平均压力Pm,kPa 108.8
3 气相流量Vs (m3/s) 0.872
4 液相流量Ls (m3/s) 0.0022
5 实际塔板数 23
6 有效段高度Z,m 9.2
7 塔径,m 1.0
8 板间距,m 0.4
9 溢流形式 单溢流
10 降液管形式 弓形
11 堰长,m 0.66
12 堰高,m 0.051
13 板上层液高度,m 0.06
14 堰上层液高度,m 0.009
15 空塔气速,m/s 1.111
16 液沫夹带eV,(kg液/kg气) 0.042
17 稳定系数 2.69
18 筛孔直径,m 0.005
19 孔中心距,m 0.015
20 筛孔直径,m 0.005

㈢ 应用化学开题报告

应用化学开题报告

论文题目:苯-氯苯分离过程连续精馏塔的工艺设计

一 文献综述与调研报告 :(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)

1. 课题的背景

设计是工程建设的灵魂,对工程建设起着主导和决定性的作用,决定着工业现代化的水平。工程设计是科研成果转化为现实生产力的桥梁和纽带,工业科研成果只有通过设计,才能转化为现实的工业化生产力。化工设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业及多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。在化工设计中,化工单元设备的设计是整个化工过程和装置设计的核心和基础,并贯穿于设计过程的始终,因此作为化工类的本科生,熟练掌握化工单元设备的设计方法是十分重要的。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。

本次设计任务为设计一定处理量的精馏塔,实现苯-氯苯的分离。鉴于设计任务的处理量不大,苯-氯苯体系比较易于分离,待处理料液清洁的特点,设计决定选用筛板塔。本课程设计的主要内容是过程的物料衡算、热量衡算,工艺计算,结构设计和校核。限于作者的水平,设计中难免有不足和谬误之处,恳请老师和读者批评指正。

筛板塔是生产中最常用的板式塔之一。板式塔具有结构简单,制造和维修方便,生产能力大,塔板压降小,板效率较高等优点。其早在1832年问世,长期以来,一直被误以为操作范围狭窄,筛孔容易堵塞而收到冷遇。但是筛孔板结构结构简单,造价低廉,在经济上有很大的吸引力。因此,从20世纪50年代以来,许多研究者对筛孔板塔重新进行了研究。研究结果表明,造成筛板塔操作范围狭窄的原因是设计不良(主要是设计点偏低、容易漏液),而设计良好的筛板塔是具有足够宽的操作范围的。至于筛孔容易堵塞的问题,可采用大孔径筛板一得到圆满的解决。

20世纪60年代初,美国精馏研究公司(FRI)又以工业的规模,使用不同物系,在不同操作压强下,广泛地改变了筛孔直径、开孔率、堰高等结构参数,对筛板塔进行了系统研究。这些研究成果,使筛板塔的设计更加完美善,其中关于大孔径筛板的设计方法属于专利。国内对大孔径筛板也做过某些研究。

FRI研究工作表明,设计良好的筛板是一种效率高、生产能力大的塔板,对筛板的推广应用起了很大的促进作用,目前,筛板已发展成为应用最广的通用塔板。在我国,筛板的应用也日益普通。

可以说,筛板精馏塔是一种传统的精馏塔。早期由于设计方面的原因,曾一度被工业生产所忽视。但由于计算技术的发展,设计水平的提高,筛板塔越来越受到厂家的关注和使用,其优点是设备简单,操作简便,维修方便,制造成本低。

2. 课题研究的现状及发展趋势

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。

筛板塔是板式塔的一种,其设计意图是一方面使汽液两相在塔板上充分接触,以减小传质阻力,另一方面是在总体上使两相保持逆流流动,而在塔板上使两相呈均匀的错流接触,以获得更大的传质推动力。其内装若干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。操作时,液体由塔顶进入,经溢流管(一部分经筛孔)逐板下降,并在板上积存液层。气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因而两相可以充分接触,并相互作用。泡沫式接触气液传质过程的一种形式,性能优于泡罩塔。为克服筛板安装水平要求过高的困难,发展了环流筛板;克服筛板在低负荷下出现漏液现象,设计了板下带盘的筛板;减轻筛板上雾沫夹带缩短板间距,制造出板上带挡的的筛板和突孔式筛板和用斜的增泡台代替进口堰,塔板上开设气体导向缝的林德筛板。筛板塔普遍用作H2S-H2O双温交换过程的冷、热塔,应用于蒸馏、吸收和除尘等。

筛板塔是传质过程常用的塔设备,它的主要优点有:

(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2)处理能力大,比同塔径的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:

(1)塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3)小孔筛板容易堵塞。

目前应用比较广泛的是林德筛板,它由美国联合碳化物公司的林德子公司开发 ,最早应用于要求低压降的空分装置的精馏塔 ,1963 年后开始应用于乙苯-苯乙烯等精馏装置中。20 世纪70 年代有多家公司的120余台减压蒸馏塔采用了林德筛板,其中超过5.0 m 塔径的就有45 台,最大的塔径为11.5 m。林德筛板在普通筛板上有2 点重要改进:一是在降液管液体出口处将塔板向上凸起,二是在塔板上增设了百叶窗导向孔(国内称之为导向筛板)。这种改进增大了有效鼓泡面积,使塔板操作由鼓泡型变为喷射型,在降低液面梯度的同时使气体分布均匀,从而使干板压降减小、雾沫夹带减少、传质效率提高。目前,国内已有10余套装置使用了中运行林德筛板。

精馏是应用最广的传质分离操作,其广泛应用促使其技术已相当成熟,但是技术的成熟并不意味着今后不再需要发展而停滞不前。成熟技术的发展往往要花费更大的精力,但由于其应用的广泛,每一个进步,哪怕是微小的,也会带来巨大的经济效益。正因为如此,蒸馏的研究仍受到广泛的重视,不断取得进展。

提高精馏过程的热力学效率、节省能耗是一贯受到重视的研究领域,分离序列的合成,在用热集成概念和夹点分析方法开发节能的分离过程和优化换热网络,在具体分离过程中合理地应用热泵、多效精馏、中间再沸器和中间冷凝器等实现节能,一直是得到广泛重视的活跃的研究领域。

对于普通精馏难以(或不能)分离的物料,开发萃取精馏和恒沸精馏的分离工艺,将精馏与反应结合开发反应精馏也是个值得重视的研究领域,这对于拓宽精馏的应用范围,提高经济效益有较大意义。

随着精细化工的发展,间歇精馏应用也更加广泛,其研究也得到了应有的重视。开发各种新的操作模式,对于节省能耗和缩短操作时间有明显的效果。塔中持液量的间歇精馏膜模拟计算研究有一定进展,对于设计和指导操作有较大意义。

为开发更可靠的效率和压降等的模型,当前应强调实测数据,尤其是工业规模的测试数据,这是建立和验证模型的基础。六七十年代,美国精馏研究公司等进行了一系列工业规模试验,取得了十分有价值的实测数据,为各种模型的建立和现象认识的深化奠定了重要基础。

精馏的研究工作一直十分活跃,而且不断取得成果。在各种新分离方法得到不断开发和取得工业应用之际,在石油、天然气、石油化工、医药和农产品化学等工业中所起的重要作用不会改变,作为主要分离方法的地位不会动摇。正如费尔在1987年国际精馏会议上指出的:“如果混合物可以应用精馏分离,那么经济上可能有吸引力的方法是精馏。”随着科学技术和工业生产水平的提高,精馏的应用天地十分广阔,重要的通过不断努力,使其技术水平得到进一步提高,使其日趋完善。

3 课题研究的意义和价值

本设计采用连续精馏分离苯-氯苯二元混合物的方法。连续精馏塔在常压下操作,被分离的苯-氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯,其中氯苯纯度不低于99.5%。

高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。常见的可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。因此,塔设备的设计和研究,受到化工炼油等行业的`极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。

事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处。

根据设计任务书,此设计的塔型为筛板塔。筛板塔是很早出现的一种板式塔。五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。从而一反长期的冷落状况,获得了广泛应用。近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分。工业塔常用的筛孔孔径为3-8mm,按正三角形排列,空间距与孔径的比为2.5-5。近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

该课题使理论教学与实际应用相结合,有助于提高处理实际问题的能力。通过对该课题的研究,可以加深对精馏过程基本原理的理解,熟练筛板精馏塔的工艺设计方法,培养设计能力。

该过程构造简单,造价低廉,具有足够操作弹性,且具有较强的工程使用价值。该过程的推广和普及,将加速我国工业生产过程节能技术的进步,带动一大批的相关技术和产业的发展。

参考文献:

[1] 蒋维钧,雷良恒,刘茂林.化工原理(下册) [M].北京:清华大学出版社,1993,264-340

[2] 陈敏恒,从德滋,方图南,齐鸣斋.化工原理(下册)[M].北京:化学工业出版社,2006,49-104

[3] 柴诚敬等。化工原理课程设计[M].天津:天津科学技术出版社,1994,75-109

[4] 吴俊生,邵惠鹤.精馏设计、操作和控制[M].北京:中国石化出版社,1997,3-4

[5] 史贤林,田恒水,张平.化工原理实验[M].上海:华东理工大学出版社,2005,121-122

[6] 刘兴高.精馏过程的建模、优化与控制[M].北京:科学出版社,2007,1-2

[7] 林爱娇,王良恩,邱挺,黄诗煌,李南芳,邓友娥. 甲醛吸收塔填料层高度的计算[M]. 福州:福州大学学报(自然科学版)1996年2月,第24卷第1期

[8]董谊仁,张剑慈.填料塔液体再分布器的设计[M].化工生产与技术,1998年第3期

[9] 张前程, 简丽.填料吸收塔中适宜液气比的确定[M]. 内蒙古工业大学学报,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料层高度的解析计算[M].化工设计,1998 年第 5 期

[11] 董谊仁,侯章德.现代填料塔技术(三)填料塔气体再分布器和其他塔内件[M].化工生产与技术,1996年第四期

[12] Torbjgrn Pettersen,http://www.51lunwen.com/benkekaiti/ Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

;
阅读全文

与蒸馏塔的物料衡算可以用kg吗相关的资料

热点内容
曰泰净水器是什么牌子 浏览:50
高效除垢剂产品报价表 浏览:986
废水中铅分析国标法 浏览:832
中空纤维超滤膜技术参数 浏览:608
车内空调滤芯如何更换 浏览:709
难降解废水含哪些东西 浏览:696
小污水泵一小时抽多少水 浏览:389
格兰富提升泵拆机 浏览:215
PBT加纤可以回用吗 浏览:496
九牧花洒除垢方法 浏览:796
空气净化器划分等级什么意思 浏览:228
工厂不要乱排放废水什么意思 浏览:644
什么叫污水提升器 浏览:384
半透膜渗透压计算公式 浏览:937
反渗透式清水器 浏览:416
上海行艺y型过滤器34 浏览:81
dnf韩械计算器伤害提升多少 浏览:422
壁挂式的空调滤芯怎么拆开 浏览:872
蒸馏与萃取教学的反思 浏览:938
iam净化器怎么清洗 浏览:261