1. 何判断分馏塔的分馏效果
分离精度在精馏过程中也叫分馏精确度,用来表示分馏塔的分馏效果。
对二元系来说,指的是轻、重两组分间是否达到有效的分离。对多元系,则是指轻、重关键组分之间的分离程度。
对复杂系来说,两个相邻馏分之间的分馏精确度,通常用这两馏分的馏分组成或蒸馏曲线的相互关系来表示。倘若轻重馏分的初馏点高于较轻馏分的终馏点,则称这两个馏分之间有一定的“间隙”;反之称为“重叠”。重叠意味着一部分较轻馏分进入到重馏分里去了,或者是一部分重馏分进入到轻馏分里去了。其结果,既降低了轻馏分的收率又损害其质量。显然,重叠是由于分馏精确度较差所造成的,而间隙则意味着较高的分离精确度。间隙愈大,说明分馏精确度愈高。
2. 精馏塔进料中轻组分含量增加,塔顶温度如何变化
写答案的是没干活生产,遇到过的。正常生产时,原料变化了但是不知道。这个时候热量都是给定的。会发现塔底温度曲线在上升,如果人员长时间未发现,慢慢塔中温度也会上升。毕竟整个系统过热了。最后体现塔顶温度超了
3. 精馏塔怎么调节温度,液位,压力等,怎么看曲线,我是初学者,
化工精抄馏根据压力划分为三种:常压精馏、减压精馏和加压精馏。对于常压精馏,压来的控制主要通过上升蒸汽的量,所以通过控制塔釜的功率来改变塔内上升蒸汽量,当然塔顶的回流量对塔压也有影响,回流量大,踏板上的液位高,压力降大,塔内压力升高。
对于减压操作,减压装置则对压力起主要影响;
加压装置当然是加压设备影响为主。
不论减压加压,上升蒸汽和回流量对压力都有影响。
4. 蒸馏塔偏流沟流有什么影响
进行了塔板沟流量对塔板效率影响的模拟研究,在计算中采用了新的分区法-将塔分为传质鼓泡区的沟流区,得出了不同参数条件下塔板沟流量与塔板效率的变化关系曲线
5. 塔板理论的简介
马丁(Martin)和欣革(Synge)最早提出塔板理论,将色谱柱比作蒸馏塔,把一根连续的色谱柱设想成由许多小段组成。在每一小段内,一部分空间为固定相占据,另一部分空间充满流动相。组分随流动相进入色谱柱后,就在两相间进行分配。并假定在每一小段内组分可以很快地在两相中达到分配平衡,这样一个小段称作一个理论塔板(theoretical plate),一个理论塔板的长度称为理论塔板高度(theoretical plate height)H。经过多次分配平衡,分配系数小的组分,先离开蒸馏塔,分配系数大的组分后离开蒸馏塔。由于色谱柱内的塔板数相当多,因此即使组分分配系数只有微小差异,仍然可以获得好的分离效果。
根据塔板理论,待分离组分流出色谱柱时的浓度沿时间呈现二项式分布,当色谱柱的塔板数很高的时候,二项式分布趋于正态分布。则流出曲线上组分浓度与时间的关系可以表示为:
c_t=c_0/(σ*√(2π))*e^(-(t-t_R)^2/(2*σ^2))
这一方程称作流出曲线方程,式中c_t为t时刻的组分浓度;c_0为组分总浓度,即峰面积;σ为半峰宽,即正态分布的标准差;t_R为组分的保留时间。
根据流出曲线方程人们定义色谱柱的理论塔板高度为单位柱长度的色谱峰方差:
H=frac{sigma^2}
理论塔板高度越低,在单位长度色谱柱中就有越高的塔板数,则分离效果就越好。决定理论塔板高度的因素有:固定相的材质、色谱柱的均匀程度、流动相的理化性质以及流动相的流速等。
塔板理论是基于热力学近似的理论,在真实的色谱柱中并不存在一片片相互隔离的塔板,也不能完全满足塔板理论的前提假设。如塔板理论认为物质组分能够迅速在流动相和固定相之间建立平衡,还认为物质组分在沿色谱柱前进时没有径向扩散,这些都是不符合色谱柱实际情况的,因此塔板理论虽然能很好地解释色谱峰的峰型、峰高,客观地评价色谱柱地柱效,却不能很好地解释与动力学过程相关的一些现象,如色谱峰峰型的变形、理论塔板数与流动相流速的关系等。
6. 影响色谱柱理论塔板高度的因素有哪些
影响柱效的因素较多,载气种类,柱子参数,固定液膜厚等等
由色谱流出曲线方程可知:当t=tR时,浓度C有极大值。Cmax就是色谱峰的峰高。因此:①当实验条件一定时(即σ一定),峰高h与组分的量C0(进样量)成正比,所以正常峰的峰高可用于定量分析。②当进样量一定时,σ越小(柱效越高),峰高越高,因此提高柱效能提高HPLC分析的灵敏度。
塔板理论反色谱柱看作一个蒸馏塔,借用蒸馏塔中“塔板”的概念来描述组分在两相间的分配行为.它的贡献在于解释色谱流出曲线的形状,推导出色谱流出曲线方程,及理论塔板数的计算公式,并成功地解释了流出曲线的形状及浓度极大值的位置,还提出了计算和评价柱效的参数。 速率理论提出,色谱峰受涡流扩散、分子扩散、气液两相间的传质阻力等因素控制,从动力学基础上较好解释影响板高的各种因素,对选择合适的操作条件具有指导意义.根据三个扩散方程对塔板高度H的影响,导出速率理论方程或称Van Deemter方程式: H=A + B/u + Cu 式中u为流动相的线速度;A,B,C为常数,分别代表涡流扩散项系数、分子扩散项系数、传质阻力项系数。
7. 【求助】[求助]精馏塔的温度分布是怎么样的
sucurse(站内联系TA)看你的物料是什么了,塔顶的温度较低,塔底的温度较高,有个气液交换能量传递的过程雄8888(站内联系TA)塔底是最高的,往上越来越低,具体还要看你的物料,还有侧线采出,塔保温情况等doctorkiller(站内联系TA)塔底温度最高,随塔增高温度逐渐降低。通过塔顶回流量可以调整塔温度分布。回流量增大塔顶温度降低。塔底再沸器温度升高塔温升高。marineman(站内联系TA)看进料温度和进料板位置。一般来说,不是一个单调曲线,降低,升高,再降低。eagletsky(站内联系TA)精馏塔内的温度和物料有关,具体说和塔内该段的物料组成有关~tray(站内联系TA)塔顶是馏出物的露点温度,塔底是釜残液的泡点温度gaoshihu(站内联系TA)塔顶的馏出物是相对易挥发性的物质,温度较低,塔底是难挥发性的物质,温度较高,从下往上是温度越来越低的,具体温度看物料的组成!:)zhaojuns(站内联系TA)塔底温度最高,随塔增高温度逐渐降低。通过塔顶回流量可以调整塔温度分布。具体还要看你的物料,还有侧线采出,塔保温情况等chinaseraphic(站内联系TA)普通精馏,塔釜温度高于塔顶,分别是对应组分和压力下的泡点温度,但是如果是萃取精馏,在工业生产中塔中温有可能高于釜温。 可以根据灵敏板的温度变化调节塔的操作,工业上一般就是塔中温力量1935(站内联系TA)普通精馏,塔釜最高,因为有再沸器,塔顶流出物的温度较低。从下往上逐渐减小。侧线才出可能会损害部分热量,另外就是保温材料以及物料性质。
8. 精馏塔压力超出设计狠多如何操作
精馏塔操作及自动控制系统的改进 作品简介:在甲烷氯化物生产过程中,精馏系统经常受外界蒸汽压力波动的影响,特别是在高负荷运行情况下,直接会造成产品纯度下降,导致负荷及产品返回等操作。通过对蒸汽进料量进行自动控制系统及操作方法改进,经过改造使精馏塔操作更简单合理,减轻了劳动强度,确保了系统高负荷操作下的产品质量。 作品全文: 精馏塔操作及自动控制系统的改进 在甲烷氯化物生产过程中,各种产品需要通过精馏操作进行分离,但因公用系统原因,经常受外界蒸汽压力波动的影响,特别是在高负荷运行情况下,直接会造成产品纯度下降,导致负荷及产品返回等操作。为了确保装置稳定高负荷运行,避免产品质量下降,节约能耗及物料损耗。我们对精馏塔运行的各种参数在蒸汽波动时进行了分析与对比,开始寻找最佳的操作方法,并结合实际提出了控制系统改进方案,使精馏塔的操作不断得以完善,操作更为简便、稳定。 一、精馏塔的基本控制方案 精馏塔控制最直接的质量指标是产品的组分,但产品组分分析周期长,滞后严重,因而温度参数成了最常用的控制指标。即通过灵敏板进行控制。 为了控制灵敏板温度在指标范围内,可以通过加热蒸汽量、冷却剂量、回流量、釜液位高度、进料量等条件的变化来进行温度调节。但对设备结构已定,生产负荷和产品比例基本不变的操作过程中,精馏塔的进料量F、组分XF、蒸汽量、冷却剂量、釜液出料量W处于相对稳定状态,往往是通过回流比的调节来控制灵敏板的温度(具体见图1),当灵敏板温度T上升时,通过加大回流量L,来降低灵敏板温度;当灵敏板温度T下降时,通过减少回流量L,来提高灵敏板温度。 图1精馏塔控制图 二、蒸汽压力波动对精馏操作的影响 精馏塔在低负荷或外界影响小的情况下,用回流比调节灵敏板温度基本能控制好产品的质量。但是在高负荷运行情况下,公用系统的蒸汽压力经常波动,而且变化幅度也较大,使塔釜再沸器热量传递很不均匀,造成精馏塔气-液不平衡,使灵敏板温度变化幅度加大,影响产品质量, 1、当外界蒸汽压力突然升高,塔釜难挥发组分蒸发量增加,灵敏板温度上升,必须采取加大回流量来控制灵敏板温度,保证塔顶产品质量;但在实际操作中蒸发量过大,则会造成液沫夹带,结果造成气液两相之间传质效果降低,严重影响产品的质量;严重时还会产生液泛现象;另外蒸汽压力变化是没有规律的,通过回流量控制灵敏板温度有滞后现象,至使产品中难挥发物含量增加,或使易挥发物带入后系统,影响后序产品质量。 2、当外界蒸汽压力突然下降,塔釜难挥发组分蒸发量减少,灵敏板温度下降,若不及时减少回流量,那么灵敏板温度会大幅度下降,易挥发组分很容易带入塔釜,造成后序产品质量下降;另一方面,为了保证灵敏板温度,回流量下降过快,使回流比降低,影响分离效果;同样,蒸发量太小,上升蒸气速度降低,塔内将产生漏液现象,严重影响分离效果。 三、调节蒸汽流量,控制灵敏板温度 鉴于蒸汽压力波动所出现的操作问题,我们决定将蒸汽流量定值变成可调节值,根据蒸汽压力变化情况,手动将蒸汽进料量进行调节,确保塔釜蒸发量相对稳定,来保证灵敏板温度,通过精心操作,及时调整蒸汽进料量及回流量,确保精馏塔进出料平衡,控制好灵敏板温度,从而保证产品质量,避免了液泛现象; 通过调节、控制,虽然有一定效果但仍存在许多问题。 1、在操作过程中表现出比较被动,操作频繁,增加了劳动强度。 2、需要特殊操作技能高,但每个操作人员水平不同,调节幅度不一,难以避免出现灵敏板温度瞬间大幅度波动,使整个塔的温度、进出料量分布曲线变化频率及幅度较大,容易造成产品纯度质量问题。 3、蒸汽流量与回流量同时进行调节灵敏板温度,很难分清主次,操作不档,很容易破坏精馏正常进行和汽-液平衡,导致整个操作恶化。 4、给蒸汽进料量、回流量等工艺指标的制定、执行带来较大困难。 四、蒸汽流量的自动控制,确保汽-液平衡 在精馏塔的连续操作过程中应做到物料平衡、气-液平衡和热量平衡,这3个平衡互相影响,互相制约。蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小,(见图2)。于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。 图2蒸汽总管压力与氯仿塔釜压力比较 以氯仿塔为例,系统改进前后某一段时期工艺指标执行情况见表1。 表1改进前、后工艺指标与质量比较 蒸汽压 kpa 塔釜压 kpa 回流量 m3/h 采出量 m3/h 灵敏板 温度℃ 产品优级品率% 改 进 前波 动 偏 差 120 12.4 4.8 3.5 13.7 85 改 进 后波 动 偏 差136 1.1 1.5 1.1 4.2 99 五、结论 1、改进后的控制系统投运后,精馏塔的各点温度曲线基本在一直线上,灵敏板温度变化范围也大大缩小,进出料量也很稳定,完全不受外界蒸汽压力波动影响,从操作曲线及分析结果看,整个精馏塔在自动调节过程中,完全达到了物料、气-液、热量三个平衡,而且操作方便、简单,大大减轻了操作人员负担,确保产品质量稳定。 2、操作稳定后,避免了受蒸汽压力波动使产品返回操作或不合格品的处理,减少了动力、蒸汽能耗及物料损耗。同时也避免了因产品质量不好而降负荷操作。 3、改进了自动控制系统后,操作人员思维也要进行更新,如塔釜是否液泛,不能通过塔釜压力升高来判断。回流量的控制更为重要,必须防止回流量过大或过小,破坏塔内物料平衡,影响正常操作。必须要避免塔压差过大或过小,使蒸汽调节阀自动关小或开大来减少或增大蒸汽量,造成塔内气-液不平衡,降低传递效果,影响产品质量。 4、精馏塔的操作仍较为复杂,操作中的一个参数变化,可能会波及整个塔的正常工作,操作人员必须仔细地检查和分析产生变化的原因,然后有针对性地进行调节。随着自动化程度提高,精馏塔操作也应该多采用仪表自动化控制,使产品的质量和精馏塔操作的稳定性大大地提高
麻烦采纳,谢谢!
9. 如何用aspen 作精馏塔水力学分析曲线图
用tray sizing/rating或者packing sizing/rating,然后profile里就有这些数据了,再用绘图功能做曲线就是
10. 当蒸馏塔的产品不合格时,可以考虑
塔板效率:精馏塔在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,塔板效率还不能精确地预测。塔板效率一般是根据经验来确定的。常用的经验关联式是基于一些工业装置的数据,分析归纳成为经验式求取塔的效率,适用于一般烃类物系和化学物系的大多数设计。如德里卡默和布罗德福(Drickarner,H.G.和Bradford,J.R.)经验关系曲线、奥康奈尔(0’Connell,H.E.)经验关系曲线等。对于丙烯精馏塔来说,一般塔的操作压力在2.0御a左右,塔顶塔底平均温度在53℃左右,该温度下其进料粘度为0.055~0.065rnPa·S,丙烯一丙烷相对挥发度为1.2。影响塔板效率因素理论分析:丙烯精馏塔板效率经验关系曲线和实际运行结果均可达到95%,文献报道的数据甚至高达100%以上。从物系分析来看,丙烯精馏操作压力高,意味着操作温度高,液相粘度和相对挥发度均较小,均对提高塔板效率有利。随着装置规模日趋大型化,精馏塔直径随之增大,塔内液流长度增加,减少了液流的轴向返混,增加了液体与汽体的接触传质时间,也对提高塔板效率有利。文献。J分析认为:“塔内液体流过塔板时,不起返混作用,故液体进入塔板时含低沸物较多,经过两相汽液接触,离开此塔板时,则含量变低,上升蒸气与进入塔板的液体接触,致使蒸汽离开塔板时的组成,较离开塔板的液体的平衡蒸气组成高”。又认为:“在C2~C4烃类的加压普通精馏时,应用浮阀塔全塔效率经常在100%左右,有时可超过100%,若在加压下进行丙烯一丙烷的分离,则塔板效率超过100%”。改进措施:(1)采用PR0/Ⅱ,选用正确的热力学方法和丙烯一丙烷二元交互作用参数,模拟计算结果与实际情况符合良好。(2)通过模拟计算与实际情况的对比和理论分析认为.丙烯精馏塔板效率可达100%甚至100%以上。(3)气体分馏装置新建和扩建改造,应根据实际情况确定合理的丙烯收率和丙烷纯度;丙烯精馏塔的设计可选取较高的塔板效率,兼顾考虑原料变化情况,建议塔板效率选取范围为93%~98%。