① 水蒸气蒸馏装置主要由几大部分组成
水蒸气蒸馏系指将含有挥发性成分的植物材料与水共蒸馏,使挥发性成分随水蒸气一并馏出,经冷凝分取挥发性成分的浸提方法。该法适用于具有挥发性、能随水蒸气蒸馏而不被破坏、在水中稳定且难溶或不溶于水的植物活性成分的提取。
当水和有机物一起共热时,整个体系的蒸气压力根据分压定律,应为各组分蒸气压之和。即P=PA+PB,其中P为总的蒸气压,PA为水的蒸气压,PB为不溶于水的化合物的蒸气压。当混合物中各组分的蒸气压总和等于外界大气压时,混合物开始沸腾。而混合物的沸点比其中任何一组分的沸点都要低些。因此,常压下应用水蒸气蒸馏,能在低于100℃的情况下将高沸点组分与水一起蒸出来。蒸馏时混合物的沸点保持不变,直到其中一组分几乎全部蒸出(因为总的蒸气压与混合物中二者相对量无关)。
该法适合以下物质: 1.不溶或难溶于水。2.在沸腾下与水长时间共存而不发生化学反应。 3.在100℃左右时必须具有一定的蒸气压。
水蒸气蒸馏装置通常由水蒸气发生器、蒸馏部分、接受部分组成。
如图1-a所示,一般按照水蒸气发生器、长颈圆底烧瓶、直形冷凝管、接引管和接受瓶的次序依次安装。
水蒸气发生器一般是用金属制成,通常其盛水量以其容积的3/4为宜,如果太满,沸腾时水将冲至长颈烧瓶中,太少,则不够用。也可用三口烧瓶代替,其侧口还可安装滴液漏斗,当三口烧瓶中的水减少后,可以及时添加,如图1-b所示。
在发生器的上端插入长1 m、内径约5mm的玻璃管作为安全管。安全管需几乎插到发生器的底部。当容器内蒸气压过大时,水可沿着安全管上升,以调节体系内部压力。如果系统发生阻塞.水便会从安全玻璃管的上口喷出。
长颈圆底烧瓶的容量通常在500mL以上,烧瓶内的液体不超过其容积的1/3。烧瓶的位置应向发生器的方向倾斜45°,防止瓶中的液体因跳溅而冲入冷凝管内。也可以使用圆底烧瓶加上克氏蒸馏头来代替长颈烧瓶。如图1-c所示。
图1 水蒸气蒸馏装置
蒸气导入管的末端应弯曲,使之垂直地正对瓶底中央并伸到接近瓶底的位置。蒸气导出管(弯角约30°)的孔径最好比导入管稍大一些,一端插入双孔木塞,露出约5mm,另一端插入单孔木塞,和冷凝管连接。馏出液通过接引管进入接受瓶,接受瓶可置于冷水浴中冷却。
在水蒸气发生器与蒸气导入管之间应装上一个T形管,并在T形管下端连一个弹簧夹,以便及时除去冷凝下来的水滴。要尽量缩短水蒸气发生器与长颈圆底烧瓶之间的距离,以减少水蒸气的冷凝。
图1中所示的前三种水蒸气蒸馏装置中的水蒸气均来自于水蒸气发生器,属于间接水蒸气蒸馏装置。图1—d所示的装置则属于直接水蒸气蒸馏装置,产生水蒸气的水与被蒸馏物一起放在圆底烧瓶中,加热至沸腾后.水蒸气即把蒸馏物夹带出来。当圆底烧瓶中的水减少后,可通过滴液漏斗及时添加。
② 分液装置示意图
解;(抄1)温度计水银球应袭处在蒸馏烧瓶的支管口附近,冷凝管应从下口进水,上口出水,以保证水充满冷凝管,起到充分冷凝的作用;
故答案为:温度计插入蒸馏烧瓶中部的位置;冷凝管中自来水进入的方向;
(2)A仪器的名称为:蒸馏烧瓶;B仪器的名称为冷凝管;
故答案为:蒸馏烧瓶; 冷凝管;
(3)萃取、分液实验中所用主要玻璃仪器的名称是分液漏斗;静置后应先打开分液漏斗上端活塞使瓶内外气压相等;
故答案为:分液漏斗;打开分液漏斗上端活塞.
③ 求实验室减压蒸馏装置图
实验室减压蒸馏装置图如下图所示:
实验原理
1.减压蒸馏适用对象
在常压蒸馏时回未达沸点即已答受热分解、氧化或聚合的物质
2、减压下的沸点
(1)通常液体的沸点是指其表面的蒸气压等于外界大气压时的温度;
(2)液体沸腾时温度是与外界的压力相关的,即外界压力降低沸点也降低;
(3)利用外界压力和液体沸点之间的关系,将液体置于一可减压的装置中,随体系压力的减小,液体沸腾的温度即可降低,这种在较低压力下进行蒸馏的操作被称为减压蒸馏。
注意事项
1.真空油泵的好坏决定于其机械结构和真空泵油的质量,如果是蒸馏挥发性较大的有机溶剂,其蒸气被油吸收后,会增加油的蒸气压,影响泵的抽真空效果;如果是酸性的蒸气,还会腐蚀泵的机件;
另外,由于水蒸气凝结后会与油形成浓稠的乳浊液,破坏了油泵的正常工作。因此,在真空油泵的使用中,应安装必要的保护装置。
2.测压计的作用是指示减压蒸馏系统内部的压力,通常采用水银测压计,一般可分为封闭式和开口式两种。使用时必须注意勿使水或脏物侵入测压计内。水银柱中也不得有小气泡存在。否则,将影响测定压力的准确性。
④ 蒸馏水的装置
http://www.hxok.net/flash/UploadFile/2007-10/pic_221667.jpg
蒸馏
distillation
利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。广泛应用于炼油、化工、轻工等领域。
其原理以分离双组分混合液为例。将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的汽相直接接触,以进行汽液相际传质,结果是汽相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入汽相,也即同时实现了液相的部分汽化和汽相的部分冷凝。
工业蒸馏的方法有:①闪急蒸馏。将液体混合物加热后经受一次部分汽化的分离操作。②简单蒸馏。使混合液逐渐汽化并使蒸气及时冷凝以分段收集的分离操作。③精馏。借助回流来实现高纯度和高回收率的分离操作 ,应用最广泛。对于各组分挥发度相等或相近的混合液,为了增加各组分间的相对挥发度,可以在精馏分离时添加溶剂或盐类,这类分离操作称为特殊蒸馏,其中包括恒沸精馏、萃取精馏和加盐精馏;还有在精馏时混合液各组分之间发生化学反应的,称为反应精馏。
2.3.1 基本原理
液体的分子由于分子运动有从表面溢出的倾向。这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压。实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关。
将液体加热,它的蒸气压就随着温度升高而增大,当液体的蒸气压增大到与外界施于液面的总压力(通常是大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾,这时的温度称为液体的沸点。显然沸点与所受外界压力的大小有关。通常所说的沸点是在0.1MPa压力下液体的沸腾温度。例如水的沸点为100℃,即是指在0.1MPa压力下,水在100℃时沸腾。在其它压力下的沸点应注明压力。例如在85.3KPa时水在95℃沸腾,这时水的沸点可以表示为95℃/85.3KPa。
将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果。在常压下进行蒸馏时,由于大气压往往不是恰好为0.1MPa,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差2.7KPa,这项校正值也不过±1℃左右,因此可以忽略不计。
将盛有液体的烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成。溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用。这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由于液柱所产生的压力时,蒸气的气泡就上升逸出液面。因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难。这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”。一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”。因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳。助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等。另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下)。在任何情况下,切忌将助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险。如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入。如果沸腾中途停止过,则在重新加热前应加入新的助沸物。因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效。另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20ºC,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间的温差,而且可使蒸气的气泡不单从烧瓶的底部上升,也可沿着液体的边沿上升,因而可大大减少过热的可能。
纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定的沸点。不纯物质的沸点则要取决于杂质的物理性质以及它和纯物质间的相互作用。假如杂质是不挥发的,则溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是不纯溶液的沸点,而是逸出蒸气与其冷凝平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点)。若杂质是挥发性的,则蒸馏时液体的沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。因此,沸点的恒定,并不意味着它是纯粹的化合物。
蒸馏沸点差别较大的混合液体时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏器内,这样,可达到分离和提纯的目的。故蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作,必须熟练掌握。但在蒸馏沸点比较接近的混合物时,各种物质的蒸气将同时蒸出,只不过低沸点的多一些,故难于达到分离和提纯的目的,只好借助于分馏。纯液态化合物在蒸馏过程中沸程范围很小(0.5~1℃)。所以,蒸馏可以利用来测定沸点。用蒸馏法测定沸点的方法为常量法,此法样品用量较大,要10 mL以上,若样品不多时,应采用微量法。
蒸馏操作是化学实验中常用的实验技术,一般应用于下列几方面:(1)分离液体混合物,仅对混合物中各成分的沸点有较大的差别时才能达到较有效的分离;(2)测定纯化合物的沸点;(3)提纯,通过蒸馏含有少量杂质的物质,提高其纯度;(4)回收溶剂,或蒸出部分溶剂以浓缩溶液。
2.蒸馏操作
加料:将待蒸馏液通过玻璃漏斗小心倒入蒸馏瓶中,要注意不使液体从支管流出。加入几粒助沸物,安好温度计。再一次检查仪器的各部分连接是否紧密和妥善。
加热:用水冷凝管时,先由冷凝管下口缓缓通入冷水,自上口流出引至水槽中,然后开始加热。加热时可以看见蒸馏瓶中的液体逐渐沸腾,蒸气逐渐上升。温度计的读数也略有上升。当蒸气的顶端到达温度计水银球部位时,温度计读数就急剧上升。这时应适当调小煤气灯的火焰或降低加热电炉或电热套的电压,使加热速度略为减慢,蒸气顶端停留在原处,使瓶颈上部和温度计受热,让水银球上液滴和蒸气温度达到平衡。然后再稍稍加大火焰,进行蒸馏。控制加热温度,调节蒸馏速度,通常以每秒1~2滴为宜。在整个蒸馏过程中,应使温度计水银球上常有被冷凝的液滴。此时的温度即为液体与蒸气平衡时的温度,温度计的读数就是液体(馏出物)的沸点。蒸馏时加热的火焰不能太大,否则会在蒸馏瓶的颈部造成过热现象,使一部分液体的蒸气直接受到火焰的热量,这样由温度计读得的沸点就会偏高;另一方面,蒸馏也不能进行得太慢,否则由于温度计的水银球不能被馏出液蒸气充分浸润使温度计上所读得的沸点偏低或不规范。
观察沸点及收集馏液:进行蒸馏前,至少要准备两个接受瓶。因为在达到预期物质的沸点之前,带有沸点较低的液体先蒸出。这部分馏液称为“前馏分”或“馏头”。前馏分蒸完,温度趋于稳定后,蒸出的就是较纯的物质,这时应更换一个洁净干燥的接受瓶接受,记下这部分液体开始馏出时和最后一滴时温度计的读数,即是该馏分的沸程(沸点范围)。一般液体中或多或少地含有一些高沸点杂质,在所需要的馏分蒸出后,若再继续升高加热温度,温度计的读数会显著升高,若维持原来的加热温度,就不会再有馏液蒸出,温度会突然下降。这时就应停止蒸馏。即使杂质含量极少,也不要蒸干,以免蒸馏瓶破裂及发生其他意外事故。
蒸馏完毕,应先停止加热,然后停止通水,拆下仪器。拆除仪器的顺序和装配的顺序相反,先取下接受器,然后拆下尾接管、冷凝管、蒸馏头和蒸馏瓶等。
⑤ 下图装置中也可用于少量蒸馏水的制取(加热及固定仪器略)
(1)左边大试管中要加入几片碎瓷片,其作用是防止液体暴沸;
故答案为:防止液体暴沸;
(2)该装置中使用的玻璃导管较长,其作用是冷凝水蒸气;
故答案为:冷凝水蒸气;
(3)课本所讲的实验室制取蒸馏水的装置有:铁架台(带铁圈)、石棉网、酒精灯、蒸馏烧瓶、温度计、冷凝管、牛角管、锥形瓶,其中玻璃仪器为:酒精灯、蒸馏烧瓶、温度计、冷凝管、牛角管、锥形瓶,
故答案为:酒精灯、冷凝管、锥形瓶,
⑥ 蒸馏装置由哪几部分组成在安装时应注意什么
蒸馏装置由三个部分组成:加热气化部分、冷凝部分、接收部分。
注意:
①减内压蒸馏时容应用克氏蒸馏头,带支管的接液管或使用多头接液管。
②需用毛细管代替沸石,防止暴沸。
③要求用热浴加热,需使用厚壁耐压的玻璃仪器。
原理
利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。广泛应用于炼油、化工、轻工等领域。
其原理以分离双组分混合液为例。将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。
两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的气相直接接触,以进行汽液相际传质,结果是气相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入气相,也即同时实现了液相的部分汽化和汽相的部分冷凝。
⑦ 蒸馏装置的用途有哪些
常压蒸馏:(一般用于自来水制蒸馏水)
1)主要仪器(针对完整装置)
a蒸馏烧瓶(液体体积在⅓到⅔之间)
b直形冷凝管:若使用球形冷凝管或蛇形冷凝管,会有馏分残留在冷凝管中
c牛角管:也叫尾接管、接引管。
d锥形瓶(每阶段馏分要用个新的锥形瓶盛接):锥形瓶是接收器的种
e温度计
f酒精灯
g石棉网(2)温度计的位置:水银球位于蒸馏烧瓶的支管口(与下沿相平)处,以测量蒸汽的温度(此处温度即为馏分的沸点)。(3)加入沸石(碎瓷片)的目的:防止暴沸。
若忘加沸石应停止加热,冷却后补加再继续实验。(4)冷凝管中冷凝水进、出水的方向:下口进上口出,与蒸汽形成逆向热交换。
(5)锥形瓶处不能加塞子,否则容易造成压强过大产生危险。
减压蒸馏:部分高沸点的有机化合物常压下蒸馏往往发生分解、氧化或聚合的物质,对这类物质通常采用减压蒸馏以降低其沸点。
毛细管的作用是导入空气,不断形成小气泡作为气化中心,避免液体过热而产生暴沸。
克氏蒸馏头的主要用途是作减压蒸馏的蒸馏头,便于同时安装毛细管和温度计,并防止减压蒸馏过程中液体因暴沸而冲入冷凝管。
蒸出液接受部分(尾接管+接收器)通常用多尾接液管连接两个或三个厚壁梨形或圆形烧瓶,在接受不同馏分时,只需转动接液管,使不同的馏分流入指啶的接受器中,而不中断蒸馏。
水蒸气蒸馏:水蒸气蒸馏法是将水蒸气通入含有难溶或微溶于水但有定挥发性的有机物形成的混合物中,使该有机物在低于100℃的温度下,随着水蒸气起蒸馏出来的种分离方法(与水形成共沸物)。
注意事项
①水蒸气发生器上的安全管不宜太短,其下端应接近器底,盛水量约为其容量的1/2,多不超过2/3,常在发生器中加进沸石。
②混合物的体积不超过蒸馏烧瓶容量的1/3,导入蒸气玻璃管下端伸到接近瓶底。
③蒸馏前将T形管上的活塞打开,当T形管的支管有较多水蒸气冲出时关闭活塞并通冷凝水。
④在蒸馏过程中,要经常检查安全管中的水位是否合适,如发现其突然升高,意味着有堵塞现象,应立即打开T形管上的活塞,移去热源,待故障排除后再行蒸馏。
⑤如发现T形管支管处水积聚过多,超过支管部分,也应打开T形管上的活塞,将水放掉,否则将影响水蒸气通过。
⑥如果随水蒸汽挥发馏出的物质熔点较高,在冷凝管中易凝成固体堵塞冷凝管,可调小冷凝水或停止通冷凝水,还可以考虑改用空气冷凝管。
⑦当馏出液澄清透明,不含有油珠状的有机物时,即可停止蒸馏,这时也应先打开T形管上的活塞然后移去热源以防止倒吸。
⑧ 怎么在家自制简单的蒸馏装置
在家自制简单的蒸馏水的具体制备步骤及材料如下:
材料:你需要准备18L左右容积的不锈钢锅、自来水、玻璃碗、圆形烘焙架、锅盖、冰块
1、把一个18L容积左右的不锈钢钢锅装满一半左右的自来水。
拓展资料:
蒸馏水是指经过蒸馏、冷凝操作的水,蒸二次的叫重蒸水,三次的叫三蒸水 。低耗氧量的水,加入高锰酸钾与酸工业蒸馏水是采用蒸馏水方法取得。
蒸馏是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、过滤结晶等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。
自然界中的水都不纯净,通常含有钙、镁、铁等多种盐,还含有机物、微生物、溶解的气体(如二氧化碳)和悬浮物等。用蒸馏方法可以除去其中的不挥发组成。用蒸馏法,并配合以下一些措施,可以获取质量较高的蒸馏水。
1、排去初始馏分(约占原水的20%),因为挥发组分主要集中在初始馏分中。
2、排去残留部分(约占原水的20%),因为很多不挥发组分集中在残留水中。
3、添加某些物质以利于蒸馏。例如,添加NaOH,使水中的CO2变成难挥发组分,添加KMnO4可氧化水中的有机物。
⑨ 总有机碳的测定
仪器分析法
方法提要
海水试样经酸化通氮气除去无机碳后,用过硫酸钾将有机碳氧化生成二氧化碳气体,用非色散红外二氧化碳气体分析仪测定。
本方法适用于河口、近岸以及大洋海水中溶解有机碳的测定。
仪器装置
二氧化碳测定装置(见图78.12)。
图78.12 二氧化碳测定装置
非色散红外二氧化碳气体分析仪。
玻璃转子流量计量程0~500mL/min。
聚四氟乙烯密封通气夹具。
全玻璃回流蒸馏装置。
玻璃滤器。
玻璃纤维滤膜于450℃灼烧4h。
安瓿瓶10mL,于450℃灼烧4h。
酒精喷灯。
水浴锅。
试剂
无碳水将蒸馏水盛于全玻璃回流装置中,并按每升水加入10gK2S2O8和2mLH3PO4投入少许沸石,加热回流4h后,换上全玻璃磨口蒸馏接收装置,蒸出无碳水,收集中间馏分于充满氮气的玻璃具塞瓶中。蒸馏装置需接一个内装活性炭和钠石灰的吸收管,以吸收外界进入二氧化碳和有机气体。无碳水应在临用时制备。
高氯酸镁。
氯化汞。
磷酸。
盐酸。
过硫酸钾溶液(40g/L)称取4g经重结晶处理的K2S2O8溶于100mL无碳水中,加几滴H3PO4,通氮气(99.999%)除二氧化碳。临用时配制。
盐酸羟胺溶液称取17.4gNH2OH·HCl溶于500mL0.5mol/LHCl中。
邻苯二甲酸氢钾标准储备溶液1.00mL含1.00mg碳称取106.3mg邻苯二甲酸氢钾(KHC8H4O4,基准试剂,预先在110℃烘2~3h)溶于水后移入50mL容量瓶中,用水稀释至刻度,加入少许HgCl2,摇匀。置于冰箱保存。
邻苯二甲酸氢钾标准溶液1.00mL含10.0μg碳移取1.00mL邻苯二甲酸氢钾标准储备溶液1.00mg/mL于100mL容量瓶中,用水稀释至刻度,摇匀。此溶液有效期一周。
活性炭在氮气氛下,于700℃活化4h。
分子筛5A。
碱石棉。
氮气纯度99.999%。
校准曲线
分别取0.00mL、1.25mL、2.50mL、5.00mL、7.50mL、10.0mL邻苯二甲酸氢钾标准溶液于6个25mL容量瓶中,用水稀释至刻度,摇匀。加1滴H3PO4,通氮气5min除去CO2,去除溶液无机碳的通氮管应插入液体底部。
移取4.00mL上述溶液于10mL安瓿瓶中,加1mLK2S2O8溶液,通氮气(200mL/min)半分钟(去除盛有待测溶液安瓿瓶顶部空间无机碳的通氮管口应稍高于液面),立即于酒精喷灯焰上封口(安瓿瓶封口时应将安瓿瓶口与一装有碱石棉的玻璃三通管连接,避免外部二氧化碳气体沾污)。于沸水浴中加热氧化2h后取出,冷却至室温。
将安瓿瓶与聚四氟乙烯密封夹具连接(见图78.12),待二氧化碳分析仪基线稳定后,用尖嘴钳夹破安瓿瓶口,立即将不锈钢导管插入瓶底,通入氮气(200mL/min)把CO2气体带入分析仪,测定相对读数Ai。其中零浓度吸光度为标准空白A0。
以相对读数(Ai-A0)为纵坐标,相应碳含量(mg/L)为横坐标,绘制校准曲线。
分析步骤
用玻璃或金属采样器采集海水样,贮存于硬质玻璃瓶中。采集后应立即用whatmanGF/C玻璃纤维滤膜过滤并立即分析。若不能立即分析,试样应添加少许HgCl2并置于冰箱保存。
量取25mL上述处理的海水样于25mL样品瓶中,加几滴H3PO4,使水样pH值小于或等于2,通氮气鼓泡5min,除去样品中的无机碳。去除溶液无机碳的通氮管应插入液体底部。
以后按绘制校准曲线步骤测定相对读数Aw。
量取25mL水,按海水操作步骤测定试样空白Ab。
根据(Aw-Ab)值从校准曲线上查得海水样中有机碳的浓度(mg/L)。
注意事项
1)所用玻璃器皿使用前须用H2SO4-K2Cr2O7洗液浸泡1~2d,自来水冲洗后用蒸馏水洗涤,最后用无碳水洗净。
2)每次测定前需更换盐酸羟胺溶液和Mg(ClO4)2,以防水气和氯气进入分析仪干扰测定。
3)测定时要保持载气流量恒定。夹安瓿瓶和插入不锈钢导管的动作应迅速,以免影响测定精密度。
⑩ 挥发性酚的测定
4-氨基安替比林-三氯甲烷萃取光度法
方法提要
被蒸馏出的挥发酚类在pH10.0±0.2和以铁氰化钾为氧化剂的溶液中,与4-氨基安替比林反应形成有色的安替比林染料。此染料的最大吸收波长在510nm处,颜色在30min内稳定,用三氯甲烷萃取,可稳定4h并能提高灵敏度,但最大吸收波长移至460nm。
本方法不能区别不同类型的酚,而在每份试样中各种酚类化合物的组成是不确定的。因此,不能提供含有混合酚的通用标准参考物,本方法用苯酚作为参比标准。
方法适用于海水及工业排污口水体中低于10mg/L酚含量的测定。酚含量超过此值,可用溴化滴定法。检出限为1.1μg/L。
仪器和装置
分光光度计。
蒸馏装置全玻璃,包括500mL玻璃蒸馏器和蛇形冷凝管。如图78.3所示。
锥形分液漏斗(250mL)。
微量蒸馏烧瓶(100mL)。
空气冷凝管(可用玻璃管自行弯制)。
水银温度计(250℃)。
棕色容量瓶(100mL)。
试剂瓶(125mL),棕色。
试剂
无酚水普通蒸馏水置于全玻璃蒸馏器中,加NaOH至强碱性,滴入KMnO4溶液至深紫红色,放入少许无釉瓷片(浮石或玻璃毛细管亦可),加热蒸馏。弃去初馏分,收集无酚水于硬质玻璃瓶中,或于每升蒸馏水中加入0.2g经280℃活化4h的活性炭粉末,充分振摇后用0.45μm滤膜过滤。
磷酸。
盐酸。
三氯甲烷或二氯甲烷。
硫酸铜溶液(100g/L)称取10g硫酸铜(CuSO4·5H2O)溶于水中并稀释至100mL。
淀粉溶液(10g/L)称取1.0g可溶性淀粉,盛于200mL烧杯中,加少量水调成糊状,加入100mL沸水搅拌,冷后加入0.4gZnCl2或0.1g水杨酸防腐。
缓冲溶液(pH=9.8)称取20g氯化铵(NH4Cl)溶于100mL浓氨水中,此溶液pH为9.8。
4-氨基安替比林溶液(20g/L)称取2g4-氨基安替比林溶于水中,并稀释至100mL,贮存于棕色瓶中,置于冰箱内,有效期一周。
铁氰化钾溶液(80g/L)称取8g铁氰化钾[K3Fe(CN)6]溶于水中,并稀释至100mL。贮存于棕色瓶中,置于冰箱内,可稳定一周。颜色变深时,应重新配制。
溴酸盐-溴化物溶液c(1/6KBrO3)=0.100mol/L称取2.784g无水溴酸钾(KBrO3)溶于水中,加10g溴化钾(KBr)溶解后稀释至1000mL。
硫代硫酸钠标准溶液c(Na2S2O3)=0.0250mol/L。
精制苯酚将苯酚置于50~70℃热水浴中溶化,小心地移入100mL蒸馏瓶中,用包有铝箔的软木塞塞紧,其中插有一支250℃水银温度计,蒸馏瓶的支管与空气冷凝管连接,用一干燥的锥形烧瓶接受器。蒸馏装置示意图78.3所示。电炉加热蒸馏,弃去带色的初馏出液,收集182~184℃馏分(无色)密封避光保存。
酚标准储备溶液ρ(C6H5OH)≈1.00mg/mL称取1.000g精制苯酚溶于水中,并稀释至1000mL。
图78.3 苯酚蒸馏装置示意图
通常直接称取精制苯酚即可配标准溶液,若为非精制苯酚可按下法标定:
移取10.00mL待标定的酚标准储备溶液,注入250mL碘容量瓶中,加入50mL水、10.00mL0.100mol/LKBrO3-KBr溶液及5mLHCl,立即盖紧瓶塞,摇匀。避光放置5min后用0.0250mol/LNa2S2O3标准滴定液滴定,至呈淡黄色时,加入1mL10g/L淀粉溶液,继续滴定至蓝色刚好消失为止,记下Na2S2O3标准溶液滴定体积V2。同时用水做试剂空白滴定,消耗Na2S2O3标准溶液体积为V1。
按下式计算酚标准储备溶液的浓度:
岩石矿物分析第四分册资源与环境调查分析技术
式中:ρf标为酚标准储备溶液的质量浓度,μg/mL;V1为试剂空白消耗硫代硫酸钠溶液的体积,mL;V2为酚储备溶液消耗标准硫代硫酸钠溶液的体积,mL。
酚标准中间溶液ρ(C6H5OH)=10.0μg/mL移取10.0mL(或相当于10.0mg酚的体积)酚标准储备溶液(1.00mg/mL),用水稀释至1000mL,摇匀。当天配制。
酚标准溶液ρ(C6H5OH)=1.00μg/mL移取10.0mL酚标准中间溶液(10.0μg/mL),用水稀释至100mL,摇匀。临用时配制。
甲基橙指示液(2g/L)。
水样保存及处理
酚类化合物易被氧化,应在采集后4h内进行分析。否则,按下述措施予以保护:①水样收集在玻璃瓶中。②用磷酸将水样品酸化到pH4.0,以防止酚类化合物分解。③向每升水样中加入2.0g硫酸铜(CuSO4·5H2O)抑制生物对酚的氧化作用。④在4℃的条件下冷藏水样,并在采样后24h之内分析样品。
校准曲线
分别移取0mL、0.50mL、1.00mL、2.00mL、4.00mL、7.00mL、10.00mL、15.00mL酚标准溶液(1.00μg/mL),于一系列预先盛有100mL水的250mL分液漏斗中,最后加水至200mL。系列各点含酚浓度分别为0μg/L、2.50μg/L、5.00μg/L、10.0μg/L、20.0μg/L、35.0μg/L、50.0μg/L、75.0μg/L。
向各分液漏斗内加入1.00mLpH=9.8的缓冲溶液混匀。再各加1.0mL20g/L4-氨基安替比林溶液,混匀,加1.0mL80g/L铁氰化钾溶液,混匀,放置10min。加10.0mL三氯甲烷,振摇2min,静置分层,接取三氯甲烷提取液于比色皿中,在波长460nm处,用三氯甲烷作参比,测量吸光度(Ai)。
以吸光度Ai-A0(标准空白)为纵坐标,酚浓度为横坐标,绘制校准曲线。
分析步骤
水样前处理。量取200mL水样(若酚量高可少取水样),记下体积V,加无酚水至200mL,置于500mL全玻璃蒸馏器中,用(1+9)H3PO4调节pH至4.0左右(以2g/L甲基橙作指示剂,使水样由橘色变为橙红色)。加入5mL100g/LCuSO4溶液,放入少许无釉瓷片(浮石或玻璃毛细管),加热。蒸出150mL左右时,停止蒸馏,在沸腾停止后,向蒸馏瓶内加入50mL左右水,继续蒸馏,直到收集馏出液(D)大于或等于200mL为止。若样品已加入H3PO4和CuSO4酸化保存,则可直接蒸馏(若水样经稀释则须补加H3PO4和CuSO4)。
试样的测定。将馏出液(D),全量转入250mL分液漏斗中,按校准曲线工作步骤加入1.00mLpH=9.8的缓冲溶液等,测量吸光度Aw。
同时量取200mL无酚水,按上述步骤操作,测定分析空白吸光度Ab。
由(Aw-Ab)查校准曲线或用线性回归方程计算水样中挥发酚的浓度。
若是经稀释后再蒸馏的水样,则按下式计算其含酚质量浓度:
岩石矿物分析第四分册资源与环境调查分析技术
式中:ρf样为水样中酚质量浓度,μg/L;ρfD为查标准曲线得酚质量浓度,μg/L;V1为馏出液(D)体积,mL;V为量取水样体积,mL。
注意事项
1)将水样蒸馏,馏出液清亮,无色,从而消除浑浊和颜色的干扰。铁(Ⅲ)能与铁氰酸根生成棕色产物而干扰测定,蒸馏将排除这一干扰。
2)为了防止芳香胺(苯胺、甲苯胺、乙酰苯胺)的干扰,以pH9.8~10.2最合适,因为此范围内20mg/L苯胺所产生的颜色仅相当于0.1mg/L酚的颜色。
3)游离氯能氧化4-氨基安替比林,还能与酚起取代反应生成氯酚。
4)NH4OH-NH4Cl体系的缓冲液比较稳定,由于增大了溶液NH3的浓度,可以抑制4-氨基安替比林被氧化为安替比林红的反应。
5)主试剂在空气中易变质而使底色加深,此外4-氨基安替比林的纯度越高,灵敏度越高。如配制的4-氨基安替比林溶液颜色较深时,可用活性炭处理脱色。
6)过硫酸铵[(NH4)2S2O8]可代替铁氰化钾[K3Fe(CN)6]。
7)测定酚的水样必须用全玻璃蒸馏器蒸馏,如用橡皮塞、胶皮管等联接蒸馏烧瓶及冷凝管,都能使结果偏高和出现假阳性而产生误差。
8)各种试剂加入的顺序很重要,不能随意更改。
9)停止蒸馏时,须防电炉余热引起的爆沸,以免将瓶塞冲起砸碎或沾污冷凝管。
10)比色槽在连续使用过程中,宜用氯仿荡洗,蒸发至干。
11)水样干扰物质的消除。来自水体的干扰可能有分解酚的细菌、氧化及还原物质和样品的强碱性条件。在分析前除去干扰化合物的处理步骤中可能有一部分挥发酚类被除去或损失。因此,对一些高污染海水,为消除干扰和定量回收挥发酚类,需要较严格的操作技术。
a.氧化剂。水样中的氧化剂能将酚类氧化而使结果偏低。采样后取一滴酸化了的水样于淀粉-碘化钾试纸上,若试纸变蓝则说明水中有氧化剂。采样后应立即加入硫酸亚铁溶液或抗坏血酸溶液以除去所有的氧化性物质。过剩的硫酸亚铁或抗坏血酸在蒸馏步骤中被除去。
b.油类和焦油。如水样中含有石油制品等低沸点污染物,可使蒸馏液浑浊,某些酚类化合物还可能溶于这些物质中。采样后用分液漏斗分离出浮油,在没有CuSO4存在的条件下,先用粒状NaOH将pH调节至12~12.5,使酚成为酚钠,以避免萃取酚类化合物。尽快用四氯化碳(CCl4)从水相中提出杂质(每升废水用40mL四氯化碳萃取两次),并将pH调到4.0。用三氯甲烷萃取时,须用无酚水作一试剂空白,或先用1g/LNaOH溶液洗涤三氯甲烷,以除去可能存在的酚。二氯甲烷可代替三氯甲烷,尤其在用NaOH提纯三氯甲烷溶液形成乳浊液时。
c.硫的化合物。酸化时释放出H2S能干扰酚的测定,用H3PO4将水样酸化至pH4.0,短时间搅拌曝气即可除去H2S及SO2的干扰。然后加入足够的CuSO4溶液(100g/L),使样品呈淡蓝色或不再有CuS沉淀产生。然后将pH调到4.0。铜(Ⅱ)离子抑制了生物降解,酸化保证了铜(Ⅱ)离子的存在并消除样品为强碱性时的化学变化。