⑴ 水性聚氨酯的聚合反应是怎么一回事
合成水性聚氨酯的方式还是聚氨酯聚合成。
水性聚氨酯的制备方法通常可分为外乳化法和内乳化法两种.外乳化法是指采用外加乳化剂,在强剪切力作用下强制性地将聚氨酯粒子分散于水中的方法,但因该法存在乳化剂用量大、反应时间长以及乳液颗粒粗、最终得到的产品质量差、胶层物理机械性能不好等缺点,因而目前生产基本不用该法[2]内乳化法又称自乳化法,是指在聚氨酯分子结构中引人亲水基团无需乳化剂即可使自身分散成乳液的方法,因此成为目前水性聚氨酷生产和研究采用的主要方法.内乳化法又可分为丙酮法、预聚体混合法、熔融分散法、酮亚胺/酮联氮法、保护端基乳化法。
(1)丙酮法
首先合成含-NCO端基的高粘度聚氨酯预聚体,加丙酮溶解,使其粘度降低,然后用含离子基团扩链剂进行扩链,在高速搅拌下通过强剪切力使之分散于水中,乳化后减压蒸馏脱除溶剂丙酮,得到水性聚氨酯分散液。
丙酮法易于操作,重复性好,制得的水性聚氨酯分子量可变范围宽,粒径的大小可控,产品质量好,是目前生产水性聚氨酯的主要方法。但该法需使用低沸点丙酮,易造成环境污染,工艺复杂,成本高,安全性低,不利于工业生产。
(2)预聚体混合法
首先合成含亲水基团及端-NCO的预聚体,当预聚体的相对分子量不太高且粘度较小时,可不加或加少量溶剂,高速搅拌下分散于水中,再用亲水性单体(二胺或三胺)将其部分扩链,生成相对分了量高的水性聚氨酯一脉。最终得到水性聚氨酯分散液。为合成低粘度预聚体,通常选择脂肪族或脂环族多异氛酸酷,因为这两种多异氰酸酷的反应活性低,预聚体分散于水中后用二胺扩链时受水的影响小。但预聚体混合分散过程必须在低温下进行,以降低-NCO与水的反应活性;必须严格控制预聚体粘度,否则预聚体在水中分散将非常困难,预聚体混合法避免了有机溶剂的大量使用,工艺简单,便于工业化连续生产。缺点是扩链反应在多相体系中发生,反应不能按定量的方式进行。
(3)熔融分散缩聚法
熔融分散缩聚法又称熔体分散法,是一种无溶剂制备水性聚氨酯的方法。该法把异氛酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。先合成带有亲水性离子基团和-NCO端基的聚氨酯预聚物,预聚物与尿素进行加聚反应得到含离子基团的端脉基聚氨酯双缩二脉低聚物。此低聚物在熔融状态下与甲醛水溶液发生缩聚反应和经甲基化应,形成含经甲基的聚氨酯双缩二脉,用水稀释后,得到稳定的水性聚氨酯分散液。
该方法的特点:反应过程中不需要有机溶剂,工艺简单,易于控制,配方可变性较大,不需要特殊设备,因具广阔的发展前景。但该法反应温度高,生成的水性聚氨酯分散体为支链结构,分子量较低。
(4)酮亚胺/酮联氮法
在预聚体混合法中,采用水溶性二元伯胺作扩链剂时,由于氨基与-NCO基团反应速率过快,难以获得粒径均匀而微细的分散体。扩链阶段若用酮亚胺或酮联氮代替二元伯胺进行水相扩链则能解决此问题。酮亚胺由酮与二胺反应生成,酮联氮由酮与肼反应生成。酮亚胺/酮联氮与含离子基团的端-NCO聚氨酯预聚体混合时不会过早发生扩链反应,但遇水时,酮亚胺/酮联氮与水反应则释放出二胺/腆,对预聚体进行扩链,由于受释放反应的制约,扩链反应能够平稳地进行,得到性能良好的水性聚氨酯一脲分散液。
酮亚胺/酮联氮法适用于由芳香族异氰酸酯制备水性聚氨酯分散液,该法融合了丙酮法、预聚体混合法的优点,是制备高质量水性聚氨酯的重要方法。
(5)保护端墓乳化法
使用酚类、甲乙酮亚胺、毗咯烷酮、亚硫酸氢钠等封闭剂,将带有亲水性离子基团和-NCO封端的聚氨酯预聚物的端-NCO基团保护起来,使-NCO基团失去活性,制成一种封闭式的聚氨酯预聚体,加人扩链剂和交联剂共同乳化后,制成水性聚氨酯分散液。应用时,加热可使预聚物端-NCO基团解封,-NCO基团与扩链剂、交联剂反应,形成网络结构的聚氨酯胶膜。此法对工艺要求颇高,乳液稳定性差,关键在于选择解封温度低的高效封闭剂。
⑵ 丙酮如何处理
加干燥剂过夜,然后减压蒸馏!
⑶ 丙酮如何溶解聚氨酯
丙酮只能溶解纯线型分子结构的聚氨酯,半线性或网状型分子结构的根本溶解不了,只能溶胀。
聚氨酯全称为聚氨基甲酸酯 ,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。聚氨酯材料,用途非常广,可以代替橡胶,塑料,尼龙等,用于机场,酒店,建材,汽车厂,煤矿厂,水泥厂,高级公寓,别墅,园林美化,彩石艺术,公园等。
⑷ 丙酮法做聚氨酯交联的原因是什么
提高水性聚氨酯树脂的硬度,可通过引入三官能度单体形成适当的分支或外加交联剂。
水性聚氨酯树脂的改性:(1)内交联法为提高涂膜的机械性能和耐水性,可直接合成具有适度交联度的水性聚氨酯,通常可采用以下方法加以实现:①在合成预聚物时,引入适量的多官能度(通常为三官能度)的多元醇和多异氰酸酯,常用的物质为TMP、HDI三聚体、IPDI三聚体等。②族水性聚氨酯可以采用适量多元胺进行扩链,使形成的大分子具有微交联结构,常用的多元胺为二乙烯三胺、三乙烯四胺等。③同时采用(1)和(2)两种方法。
对水性聚氨酯进行内交联改性,关键要掌握好内交联度,内交联度太低,改性效果不明显,若太高将影响其成膜性能。
(2)自交联法所谓自交联法是指在水性聚氨酯成膜后,能自动进行化学反应实现交联,提高涂膜的交联度,改善涂膜的性能。因此必须对水性聚氨酯的大分子结构进行改性。例如可以引入干性油酸(双键结构)以及多烷氧基硅单元等方法加以实现,使得其在成膜后能发生自动氧化交联反应和水解缩合反应,提高综合性能。该法应用较广,市场上已有相关产品应市。
(3)外加交联剂法采用自乳化法制备的阴离子型水性聚氨酯成膜后仍含有大量的羧基,使涂膜的耐水性变差。同溶剂型双组分PU一样,水性聚氨酯在施工前可添加外交联剂,成膜后与涂膜中的羧基和外交联剂的可反应基团反应,消除涂膜的亲水基团,可大幅度提高涂膜的耐水性,同时也对涂膜的力学性能有一定改善。常用的交联剂有多氮丙啶、碳化二亚胺,以及水可分散多异氰酸酯、环氧树脂、氨基树脂、环氧硅氧烷等。
水性聚氨酯树脂合成工艺:水性聚氨酯的合成可分为两个阶段。第一阶段为预逐步聚合,即由低聚物二醇、扩链剂、水性单体、二异氰酸酯通过溶液(或本体)逐步聚合生成分子量为103量级的水性聚氨酯预聚体;第二阶段为中和后预聚体在水中的分散和扩链。
早期水性聚氨酯的合成采用强制乳化法。即先制备一定分子量的聚氨酯聚合物,然后在强力搅拌下将其分散于加有一定乳化剂的水中。该法需要外加乳化剂,乳化剂用量大,而且乳液粒径大、分布宽、稳定性差,目前已经很少使用。
现在,水性聚氨酯的乳化主要采用内乳化法。该法利于水性单体在聚氨酯大分子链上引入亲水的离子化基团或亲水嵌段:-COO- +NHEt3、SO3- +Na、-N+ -Ac,-OCH2CH2-等,在搅拌下自乳化而成乳液(或分散体)。这种乳液稳定性好,质量稳定。根据扩链反应的不同,自乳化法主要有丙酮法和预聚体分散法。丙酮法
丙酮法在预聚中期、后期用丙酮或丁酮降低黏度,经过中和,高速搅拌下加水分散,减压脱除溶剂,得到水性聚氨酯分散体。该法工艺简单,产品质量较好,缺点是溶剂需要回收,回收率低,且难以重复利用。目前,我国主要使用该法合成普通型芳香族水性聚氨酯。预聚体分散法即先合成带有-NCO端基的预聚体,通常加入少量的N-甲基吡咯烷酮调整黏度,高速搅拌下将其分散于溶有二(或多)元胺的水中,同时扩链得高分子量得水性聚氨酯。美国等发达国家主要利用该法合成高档族水性聚氨酯。
⑸ 聚氨酯边角料怎样回收利用
聚氨酯(PU)全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团(-NH-COO-)的大分子化合物的统称,是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲、脲基甲酸酯等基团。
聚氨酯的结构变化很多,可在很宽的范围内调节其性能,制品种类也很多。PU制品分为泡沫制品和非泡沫制品2大类。泡沫制品有软质、硬质、半硬质泡沫;非泡沫制品有涂料、胶黏剂、合成革、弹性体和弹性纤维(氨纶)等。
PU由于性能优良和用途广泛,发展十分迅速,但与此同时,生产聚氨酯泡沫的工厂每年产生大量的边角料、 模具溢料、 废品, 以及在聚氨酯的各应用领域中的废弃物如报废汽车中的旧聚氨酯泡沫及弹性体也需进行处理。目前, 聚氨酯的回收利用方法主要分为物理回收法、 化学回收法和能量回收法三大类。
一、物理回收法
物理回收法是在不破坏聚合物本身的化学结构、 不改变其基本组成的情况下改变废旧料的物理形态后直接利用的方法。
①掩埋法
掩埋法是垃圾处理最原始的方法。它是利用掩埋的方法,使垃圾在土壤中于一定的温度、 湿度下,经过一段时间,产生分解而逐渐转变成无害物质,但是聚氨酯类废弃物使用掩埋法很难使其分解。 随着可用掩埋处理空间的减少和资源再生利用的需要,掩埋处理已不适用。
②粉碎法
聚氨酯边角料及旧废料在应用前首先切割或者粉碎、 筛分得到所需粒度的小块或者细粉。 一般说来硬质的聚氨酯泡沫粉碎比较容易,所以其粉碎技术也比较成熟,大多已经投入商品化,如:精密切割技术、 Flachmatritsen 挤压等技术。都能够将其粉碎为粒度小于1mm的颗粒。 这废聚氨酯粉碎后的细片或粉末多作为填料混入原料中回收重用。据美国道化学公司报道,废聚氨酯作为填料重用于生产 RIM制品比用新原料成本低。 在日本已将废硬质聚氨酯泡沫塑料用作灰浆的轻质骨料。
③粘合加工成型
此法是废旧聚氨酯回收利用中最普遍的方法。其要点是:先将废旧聚氨酯硬质泡沫粉碎成细片状,涂撒聚氨酯粘合剂等,再直接通入水蒸气等高温气体,使聚氨酯粘合剂熔融或溶解后对粉状的废旧聚氨酯粘接,然后加压固化成一定形状的泡沫。
④挤出成型
粘合加工的另一种方法就是挤出成型,挤出成型是通过热力学作用把分子链变成中等长度链,将PU材料转变成软塑性材料,这种材料适合作强度高、 硬度高,但对断裂伸长率要求不高的塑料件。对于软质微孔 PU泡沫废料,可以将其粉碎成粉末,掺混到热塑性聚氨酯中,在挤出成型机中造粒,采用注射成型方法制造鞋底等制品,德国 Bayer公司曾做过这方面的研究。
⑤其它
将生产中产生的边角废料切割成小块, 直接作为包装缓冲充填物或垫材等。聚氨酯泡沫塑料还可做人造土壤和天然土壤覆盖物。在开孔性软质聚氨酯泡沫塑料中, 加入水和化肥,可对多种植物进行栽培, 植物在其中生长快, 无病虫害和杂草。
二、化学回收法
化学回收法是指在化学试剂、 催化剂、 热和空气存在的条件下,将聚氨酯降解成可重新利用的液体低聚物甚至是小分子有机化合物,从而实现原料的循环使用。其优点是可回收不熔不溶的热固性聚氨酯废弃物。
化学法回收废旧聚氨酯的一般工艺流程: PU 废旧料分检、 洗涤、粉碎成颗粒——投入反应釜——约200℃ 加降解剂——减压蒸馏并分离提纯——检验、存储。
①醇解法
目前,醇解法是研究和应用最广泛的一种方法, 主要目的是回收可以重新用来合成聚氨酯材料的多元醇。一般采用低分子醇作降解剂,在一定催化剂作用下, 在 150~ 250℃ 的温度范围内,常压下就可以将聚氨酯降解成低聚物,并且通过这种方法获得的降解产物可以直接使用。对于醇解机理, 大多数人认为醇解过程发生的主要反应是在醇和催化剂的作用下,聚氨酯中的氨基甲酸酯基断裂, 被短的醇链取代, 释放出长链多元醇和芳香族化合物:
R1NH COOR2 + HOR3OH R1NHCOOR3OH+ R2OH
由于在降解过程中参与反应的基团比较多, 还会发生许多副反应,主要的副反应是在醇解剂的作用下, 脲基断裂生成胺和多元醇:
R1NH CONH R2 + HOR3OHR1NHCOOR3OH + R2NH2
②胺解法
聚氨酯泡沫很容易在胺中分解,其反应与酯交换反应十分相似,从聚氨酯或聚氨酯-脲中分解生成相对分子量较低的含羟基及胺基的化合物和非取代的脲。此反应的特点是温度低,可在 150℃下进行。在适当的条件下,生成的多元醇可以从胺中分离出来。 1997 年俄国人 Anon 用己二胺做胺解剂对交联脲烷橡胶进行研究,得到的胺解产物被用来作为半硬聚氨酯泡沫的催化剂。
聚氨酯泡沫在含有胺基的化合物中很容易分解成含有羟基及胺基的化合物。
③醇胺法
在 80-190℃下,利用链烷醇胺如单乙醇胺、 二乙醇胺和二甲基乙醇胺等能够使聚氨酯降解成低聚体,NaOH、Al (OH)3 和甲醇钠等催化剂可以促进聚氨酯的降解反应速度。 醇胺法的主要反应为氨基甲酸酯基断裂和脲基断裂。
④碱降解法
碱降解法是以 MOH(M为 Li、K、Na、Ca之一或多种混合物)为降解剂,在 160~200℃左右下将聚氨酯硬泡降解成低聚物。当在降解产物中加入非极性溶剂酯类或卤代烃和水时,降解产物分成两层,上层经蒸馏得多元醇,可直接用于再次生产聚氨酯泡沫,下层经浓缩、结晶、重结晶或真空蒸馏的二胺,加光气可生成异氰酸酯。 缺点是由于反应是在高温强碱条件下进行,对设备要求高,生产成本高,工业化较为困难。
⑤水解法
20 世纪 70 年代,人们发现用热水蒸汽在一定压力下可以将聚氨酯软泡降解成二胺和聚醚型多元醇。但是聚氨酯的水解与聚酯的水解不同,它不是聚合的逆反应,水解产物除了二胺和多元醇,有时还会有CO2 的放出。在水解反应过程中,提高温度和压力或有溶剂存在的情况下可以使反应加快。 水解产物经过分离和提纯,多元醇可以作为原材料重新用来合成聚氨酯,二胺也转化成异氰酸酯。 由于水解是在高温高压下进行,对条件和设备要求很高,而且水解产物的提纯技术难度很大,所以这种方法并没有得到广泛的应用。
⑥氢降解法
氢降解法理论上适用于所有有机化合物的回收利用。 将废料粉碎后放入加氢反应器中,在 40MPa 和 500℃下反应,能够得到炼油厂产品相似的降解产物。但由于经济因素,只有当有大量的 PU废料需要处理时,氢解法才适用。
⑦热降解法
热降解法一般是在惰性气体或氧化气氛及高温 250~1200℃下破坏废料的结构,得到气态与液态馏分的混合物。目前,这种方法主要适用于回收废弃塑料的混合物和废弃橡胶轮胎,对于聚氨酯废弃物的回收利用来说还处于早期开发阶段。
⑧磷酸酯法
磷酸酯法是一种降解聚氨酯的新理论,在磷酸二甲酯、磷酸二乙酯和三( 1-甲基-2 -氯乙基) 磷酸盐作用下, 聚氨酯会发生降解。用磷酸酯降解聚氨酯得到的产物中含有磷, 可以用作非反应性的添加剂来改善阻燃性能, 也可以经含有羟基的化合物、 胺或金属盐处理后用来合成阻燃聚氨酯。
三、能量回收法
聚氨酯燃烧时发热量约 7000kcal/ kg , 其所能提供的热量相当于同等重量的煤所提供的能量。当物理回收与化学回收废旧聚氨酯受到技术、 经济等因素的影响而无实际意义时, 可将废料粉碎成颗粒, 作为燃料替代煤、 油和天然气回收能量,应用于焙烧水泥或发电。由于化学方法处理聚氨酯材料进行的回收利用需要花费很高的代价, 所以目前日本几乎所有的聚氨酯泡沫的回收处理方法均采用了焚烧处理。
美国聚氨酯工业联盟( API)进行了一系列实验,并指出在城市固体废物中添加废旧聚氨酯弹性体和其他组分的固体塑料废弃物(最多占比重 20%) , 可明显提高其的燃料热值。虽然烧结以后,聚氨酯的体积将减少到初始体积的 1%,使聚氨酯废料“减容”, 但是却带来了二次污染, 在回收能量的过程中,同时还大量生成了对环境十分有害的 NOX、 HCl以及痕量的 CHCl3 等气体。所以,若需采用能量法回收聚氨酯,就必须严格控制反应产物的排放。
⑹ 关于丙酮利用的问题~~着急
乙酰乙酰硫激酶
酮体的利用肝外许多组织具有活性很强的利用酮体的酶。
(1)琥珀酰CoA转硫酶:心、肾、脑及骨骼肌的线粒体具有较高的琥珀酰CoA转硫酶活性。在有琥珀酰CoA存在时,此酶能使乙酰乙酸活化,生成乙酰乙酰CoA。
(2)乙酰乙酰CoA硫解酶:心、肾、脑及骨骼肌线粒体中还有乙酰乙酰CoA硫解酶,使乙酰乙酰CoA硫解,生成2分子乙酰CoA,后者即可进入三羧酸循环彻底氧化。
(3)乙酰乙酰硫激酶:肾、心和脑的线粒体中尚有乙酰乙酰硫激酶,可直接活化乙酰乙酸生成乙酰乙酰CoA,后者在硫解酶的作用下硫解为2分子乙酰CoA。
β-羟基丁酸在β-羟丁酸脱氢酶的催化下,脱氢生成乙酰乙酸;然后再转变成乙酰CoA而被氧化。部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。这是脂酸的碳原子转变成糖的一个途径。
总之,肝是生成酮体的器官,但不能利用酮体;肝外组织不能生成酮体,却可以利用酮体。
⑺ 求聚氨酯白料配方及配方原理
聚氨酯浇注成型工艺中习惯称呼硬泡类的聚醚多元醇为白料
1. 低聚物多元醇
水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。
聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。
聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。
2. 异氰酸酯
制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及IPDI、HDI、H12MDI等脂肪族、脂环族二异氰酸酯。由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。
多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。
3. 扩链剂
水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了 类特种扩链剂外,经常还使用1,4-丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。
4. 水
水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、Mg2+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯的水一般是蒸馏水或去离子水。除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯-脲乳液(分散液),聚氨酯-脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。
5. 亲水性扩链剂
亲水性扩链剂就是能引入亲水性基团的扩链剂。这类扩链剂是仅在水性聚氨酯制备中使用的特殊原料。这类扩链剂中常常含有羧基、磺酸基团或仲胺基,当其结合到聚氨酯分子中,使聚氨酯链段上带有能被离子化的功能性基团。
(1)羧酸型扩链剂
二羟甲基丙酸 简称DMPA,全称2,2-二羟甲基丙酸,又称α,α-双羟甲基丙酸,在国内外是聚氨酯乳液常用的一种亲水性扩链剂,早在六、七十年代在德国、美国等国家就用于制备聚氨酯乳液。90年代初我国成都某厂已能小批量生产。该扩链剂为白色结晶,熔点较高,贮存稳定,因其分子量小(Mw134),较少的用量就能提供足够的羧基量。DMPA的一种制备方法是:由甲醛和丙醛合成二羟甲基丙醛,再用过氧化氢氧化成二羟甲基丙酸。
二羟基半酯 半酯是醇与二元酸酐反应的产物,一般醇与酸酐的摩尔比为1:1,酸酐的一个羧基被酯化,而保留另一个羧基。用于聚氨酯乳液的半酯类扩链剂制备中,所用的醇类化合物一般为小分子三醇或低聚物三醇,例如甘油、低分子量聚醚三醇。这样就能生成含羧基的二羟基化合物。三醇的分子量一般在约100~2000之间。可用于制备半酯的酸酐有顺丁烯二酸酐(顺酐)、邻苯二甲酸酐(苯酐)、丁二酸酐、戊二酸酐等。半酯一般需自制。
羧酸型扩链剂还有氨基酸如H2N (CH2)4 CH (COOH) NH2、二氨基苯甲酸等。
(2)磺酸盐型扩链剂 乙二胺基乙磺酸钠、1,4-丁二醇-2-磺酸钠及其衍生物等可用作磺酸型水性聚氨酯的扩链剂。1,4-丁二醇-2-磺酸钠由2-烯-1,4-丁二醇与亚硫酸氢钠加成而得,同样,2-烯-1,4-丁二醇的氧化乙烯或氧化丙烯缩聚物与亚硫酸氢钠的加成物也可用作扩链剂。
(3)阳离子型扩链剂 含叔胺基的二羟基化合物是一类常用的阳离子型聚氨酯乳液扩链剂,通过季铵化反应或用酸中和,链段中的叔胺基生成季铵离子,具有亲水作用。其中以N-甲基二乙醇胺最为常用。
二亚乙基三胺与环氧氯丙烷的反应产物也是一种特殊的阳离子型扩链剂:
6. 成盐剂
广义地讲,凡是能形成离子基团的化合物都可称为成盐试剂。成盐剂是一种能与羧基、磺酸基团、叔胺基或脲基团反应、生成聚合物的盐或者说生成离子基团的试剂。阴离子型聚氨酯乳液的常见的成盐剂有氢氧化钠、氨水、三乙胺。成盐反应如下:
阳离子型聚氨酯乳液的成盐剂有HCI、CH3COOH等酸、CH3I、 (CH3)2SO4、环氧氯丙烷等烷基化试剂。
脲基与环状内酯、磺内酯、酸酐在碱性条件下反应时能在聚氨酯链中接上磺酸盐基团或羧基。还可通过磺甲基化反应或氨甲基化作用制得带有离子基团的聚氨酯。
7. 溶剂
在聚氨酯乳液制备中,有时预聚体粘度很大,以致搅拌困难,而预聚体在水中的乳化需剧烈搅拌,粘度低有利于快速搅拌。提高预聚体的温度虽可降低粘度,但在乳化时预聚体的高温不利于得到稳定的微细粒径乳液。故为了降低粘度,利于预聚体的分散,可加入适量有机溶剂。可采用的溶剂有丙酮、甲乙酮、二氧六环、N,N-二甲基甲酰胺、N-甲基吡咯烷酮等水溶性(亲水性)有机溶剂和甲苯等憎水性溶剂。考虑到成本、操作性等因素,最常用的是丙酮和甲乙酮。一般来说,在制备出稳定的乳液后,还可以用减压蒸馏方法将低、中沸点溶剂从乳液中除去,以减少水性聚氨酯的气味,可以做到使溶剂的残留量很小,小到几乎没有机溶剂之臭味。若溶剂用量很少,可不必除去。水性聚氨酯干燥时,残留的少量低沸点溶剂的挥发可加快胶膜的干燥时间,而少量高沸点溶剂的存在可使胶膜平滑,这在涂料工业中较常用。
8. 乳化剂
有的聚氨酯乳液采用外乳化法制备,使用乳化剂、高剪切力将聚氨酯或预聚体溶液分散于水中。用于聚氨酯乳液制备的乳化剂有非离子型乳化剂及阳、阴离子型乳化剂,而以非离子型表面活性剂为主,如氧化乙烯-氧化丙烯共聚物、双酚A-环氧氯丙烷-聚氧化乙烯二醇加成物等。从稳定性及乳化剂残留影响考虑,乳化剂的分子量以1万~2万为宜,PEO含量在60%以上,末端可为羟基,它可与异氰酸酯基团反应。
⑻ 从水和丙酮的混合物中将丙酮分离出来应用什么方式
装入分液漏斗,先静置,待溶液分层明显后旋开分液漏斗旋塞,待到液面进入旋塞小孔中时,拧紧旋塞将分液漏斗中液体倒出,即为丙酮。
原因是:丙酮属于小分子有机化合物,低级酮类,不与水互溶,可用分液的办法将两种物质分离,丙酮密度比水小,浮在水上面,因此由分液漏斗下端放出的液体是水,上面的是丙酮。
望采纳
某人说它与水混溶?那请用分馏方法,利用它与水沸点差较大的特性可以通过蒸馏获得含水蒸气杂质的丙酮,然后投入生石灰或无水碳酸钠,使其与水反应或生成结晶水合物,然后过滤或者再蒸馏即可得到基本上不含杂质的丙酮
⑼ 聚氨酯合成方法
巨型水性聚氨酯乳液[1]以水作溶剂或者作分散介质,体系中不含或含很少量的有机溶剂,异氰酸酯和多元醇缩合生成聚氨酯的乳液。 这是一类非常重要的缩聚物,水性聚氨酯乳液具有无毒、不污染环境、节能、易操作等优点,在工业上(包括黏合剂和涂料等)有着广泛的应用。因此,它正逐步成为当今聚氨酯领域发展的重要方向。从20世纪60年代水性聚氨酯被用做涂料开发出来到80年代,美、德、日等国的一些聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司如德国的Bayer公司、Hoechst公司、美国Wyandotle化学公司、日本的Dic公司走在前列。国内水性聚氨酯产品品种少、性能不佳,每年仍需大量进口,因此需开发高质量的产品以满足国内的迫切需要。由于聚氨酯的疏水性很强,必须采用新的合成方法制备PU乳液,水性聚氨酯的合成过程主要为:①由低聚物多元醇、扩链剂、二异氰酸酯形成中高相对分子质量的PU预聚体;②中和后预聚体在水中乳化,形成分散液。各种方法在于扩链过程的不同。聚氨酯乳液的制备方法有两大类:外乳化法和内乳化法。
1.外乳化法
该方法是使用最早的制备水性聚氨酯的方法,外乳化法就是在乳化剂、高剪切力存在下强制乳化的方法,最早为Pschlack发明,1953年杜邦公司的W.yandott采用此法合成了PU乳液。其合成工艺是先将聚醚二醇和有机异氰酸酯合成PU预聚体,再以小分子二元醇或二胺扩链,得到PU的有机溶液,然后于强烈搅拌下,逐渐加入适当的乳化剂的水溶液,形成一种粗粒乳液,最后送入均化器,形成粒径适当的乳液。但因该方法存在反应时间长,乳化剂用量大以及乳液颗粒粗而导致储存性差,胶层物理机械性能不佳等缺点,目前生产基本不用该方法。后来发展起来的一种叫做低温封蔽法制备PU乳液的方法,可减少乳化剂的用量且制得稳定性好的乳液。该方法是将端-NCO预聚体用肟、内酰胺、NaHSO3、乙酰乙酸酯等封端剂封端后,与多元胺一起分散于含乳化剂的水溶液中,形成一种稳定的PU乳液。
2.自乳化法
制备稳定的PU乳液主要是通过自乳化法,其关键是在聚氨酯的分子骨架中引入亲水基团。亲水基团是通过亲水单体扩链而进入PU分子骨架的,它由成盐基团和成盐试剂组成。根据亲水基团的类型用该法制得的水性PU乳液可分为阴离子型、阳离子型、两性型和非离子型4种,其中以阴离子型占主导地位。自乳化型PU乳液的制备工艺有很多种,制备方法主要分为丙酮法、预聚物分散法、热熔法、酮亚胺/酮连氮法,其共同特点是首先制备相对分子质量适中、端基为NCO或封闭NCO的PU预聚体,区别主要在扩链过程中。目前工业生产中最为重要的方法为丙酮法和预聚体分散法(或称预聚体混合法)。其合成工艺如下。
2.1丙酮法
丙酮法是由德国Bayer公司Ddieterich研究成功的。Ddieterich首先将聚醚或聚酯二元醇与异氰酸酯制成预聚体,加入适量的丙酮降低粘度后,用N-甲基二乙醇胺扩链,再加入丙酮降低粘度,然后加入离子化试剂,搅拌离子化。将离子化的PU分散到含80%丙酮、20%水的介质中,最后蒸除丙酮,即可制得粒径为0.03~100μm的水乳型聚氨酯。丙酮法先制得含NCO端基的高粘度预聚体,再加入丙酮以降低粘度,然后用亲水单体扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散在水中,乳化后减压蒸馏回收溶剂即可制得PU水分散体系。
安徽大学齐正旺[2]以丙酮法制备了WSPU。WSPU是一种形状聚氨酯,一种新型的功能材料。它具有形变量大、容易加工、转变度可调控、可降解及生物相容性好等一系列优点。制备工艺如下:在四口瓶中依次加入聚已内酯二醇(PCL)和2,4-甲苯二异氰酸酯(TDI),搅拌通氮下于80℃下反应3h,加入少量丙酮溶剂,搅拌10min后,再加入催化剂、二羟甲基丙酸(DMPA)和交联剂三羟甲基丙烷(TMP)反应4h,即制得PU预聚体。将聚氨酯预聚体在快速搅拌下加入三乙胺5min,随后加入计算量水乳化,10min后减压抽去丙酮,制得固含量为30%WSPU乳液。对WSPU处理加工进行样品测试。最后得出合成PCL分子量在5000时,乳液性能稳定,它的形状记忆恢复率达到95%。
四川理工学院张发兴,卫晓利[3]先合成亲水扩链剂DHPA,然后制备磺酸型WPU微乳液。其合成工艺为:将一定量的Ng210和IPDI加入装有冷凝回流管、电动搅拌和温度计的四口烧瓶中,加适量催化剂二月桂酸二丁基锡,升至所需温度反应一定时间,用二正丁胺(已标定)滴定法测定预聚体中NCO-的含量是否达到理论值(若达到理论值则停止预聚反应,未达到理论值则继续反应直到达到理论值为止),降至合适的温度,加入一定量的N-甲基-2-吡咯烷酮溶解的DHPA反应一定时间,加入少量丙酮稀释,经三乙胺中和,在快速搅拌条件下加去离子水进行分散,最后减压蒸馏除去丙酮,得到稳定的磺酸型WPU微乳液。相对于常规的羧酸型WPU微乳液,磺酸型WPU微乳淮具有更高的固含量和更低的表面张力,且具有较好的低温、高温及室温稳定性。
山东大学王翠,吴佑实,吴莉莉[4]采用丙酮法制备了水性聚氨酯乳液。其合成工艺如下:在装有电动搅拌器、回流冷凝管、温度计、氮气进出口的500ml四口烧瓶中,加入110℃真空脱水的聚酯二元醇,在60℃是加入计量的MDI丙酮溶液反应10~20min,然后加入DMPA的DMF溶液,搅拌5~10min后向其中加入剩余MDI,滴加催化剂,继续保温反应50~90min,待反应至—NCO含量达理论值时(正丁胺滴定法测定),加入TEA成盐。待体系中异氰酸酯含量少于0.2%时反应结束,取出降温至30℃以下,然后将一事实上量的水快速加入体系中并高速搅拌1h。若要再度进行扩链,则在加水前加入乙二胺。最后,减压蒸馏脱去低沸点溶剂(丙酮)即得水性聚氨酯成品。
丙酮法制备水性PU的优点是反应易于控制,重复性好,乳液粒径易控制,乳液质量高,是目前使用最多的方法之一,尤其是PU分子量大时耗费大量的有机溶剂且难以回收,工艺复杂、成本高。危险性大。
.2预聚体分散法
该方法是近年来发展起来的。它是先将亲水单体引入到聚合物中,离子化,制得含离子键的PU预聚物,然后将其分散到水中,形成预聚物乳液,最后用二胺在水相中进行扩链而制得PU乳液。该方法工艺简单,无需大量的有机溶剂,可制得有支化度的PU乳液,但仅限于特殊的端-NCO预聚物,此预聚物主要由低活性的脂肪族异氰酸酯制得的预聚体。
德国Bayer公司的一项专利里报道,将丙氧基化2-烯-1,4-丁二醇与亚硫酸氢钠的加成物(Mw301)15.2g于80℃加入到聚乙二醇酯二醇(Mw2143)429g中,混合物均匀加入87.5gMDI,80℃反应至NCO含量为1.6%得到含磺酸钠基团的聚氨酯预聚体,将该预聚体在浓度为2.3%的乙二胺基异磺酸钠水溶液842g乳化得到固含量为38%粘度为8pa·s的聚氨酯乳液。
陕西科技大学吴雄虎,杨承杰,丁绍兰[5]采用异佛尔酮二异氰酸酯(IPDI)、聚环氧丙烷二醇(PPG)、聚已二酸丁二醇酯多元醇(PTAd)、四氢呋喃聚醚多元醇(PTMG)和二羟甲基丙酸(DMPA)等为原料,采用预聚体分散法,合成了水性聚氨酯皮革光亮剂。合成工艺如下:在装有电动搅拌器、回流冷凝器、温度计、氮气装置的四口烧瓶中,加入低聚物多元醇、IPDI和少量的催化剂,在氮气的保护下于一定温度下反应2h左右,至NCO含量接近理论值时,加入DMPA、TMP继续反应2h左右,至NCO含理达理论值,得到预聚体,降温至50℃,加入计量的TEA和适量的丙酮,充分搅拌后,倒出预聚体,在高速剪切下,加水乳化后,加入乙二胺扩链,得到阴离子水性聚氨酯分散液。最后减压蒸出丙酮。
中国科学院杜辉,赵雨花,王军威[6]等采用预聚体分散法制备了一系列聚碳酸酯二醇(PCDL)型水性聚氨酯(WPU)胶粘剂。其合成方法如下:将PCDL和含磺酸基的聚酯二醇加入到装有机械搅拌器、温度计和回流冷凝管的四口烧瓶中,于100~120℃真空脱水至含水量低于0.5%;然后在50~60℃条件下加入计量的异氰酸酯和溶剂丙酮,并维持此温度反应一段时间后,加入1,2-二羟甲基丙酸(DMPA)和1,4-丁二醇(BDO)继续反应;待反应液中-NCO含量与设计值基本相符时,加入TEA中和羧基,之后加入蒸馏水强烈搅拌进行乳化分散,并加入乙二胺进一步扩链;最后,减压脱除丙酮,即制得PCDL型WPU乳液胶粘剂。
四川大学成丰,向玲,于剑昆[7]等预聚体分散法,以二羟甲基丙酸(DMPA)、蔗糖为亲水链剂和交联剂制备了一种种鞋用水性聚氨酯胶黏剂(WBPU)。WBPU合成工艺如下:将已脱水的聚乙二醇(PEG-1000)、二羟甲基丙酸的N-甲基-2-吡咯烷酮溶液(DMPA/NMP,1/1W/W),加入到装有搅拌机、回流冷凝管、水银温度计、氮气进出口的四口烧瓶中,温度调至60℃后,再加入异佛尔酮二异氰酸酯(IPDI)及不得催化剂-M,在氮气保护下,待体系混匀反应0.5h后,加热升温至80℃均匀搅拌反应2h,然后,温度降低至60℃,再逐步加入1,4丁二醇以及蔗糖,反应1h后,加入计量的γ-氨丙基三乙氧基硅烷(KH-550),反应过程中视体系粘度大小加入适量乙酸乙酯,当NCO值达到理论值终止反应(二正丁胺滴定法判断反应终点),得到聚氨酯预聚体。将降温至(255℃)的聚氨酯预聚体加入到三乙醇胺(TELA)的水溶液剪切乳化,整个乳化过程在冰水浴进行,待搅拌均匀后,另入三乙胺进行中和成盐,剪切乳化反应40min,最后减压蒸馏脱除溶剂,得到固含理为50%左右的水性聚氨酯乳液。
综上所述采用预聚物混合法制备的水性聚氨酯其工艺相比丙酮法简单,是无须使用有机溶剂。使成本降低,但产品质量不如丙酮法,且只适用于脂肪族水性聚氨酯的合成。
2.3熔融分散法
这是无溶剂制备水性聚氨酯的方法。熔融分散法[8]是指把异酸酯的加聚反应和氨基的缩聚反应紧密地结合起来,先合成含亲水基团的端异氰酸酯的预体,然后在高温下(130℃)和过量的脲反应生成缩二脲,再在甲醛水溶液中反应进行羟甲基化,得到高分子量的聚氨酯。该法能耗较高。
2.4酮亚胺和酮连氮法
酮亚胺和酮连氮法[9]是指预聚体与被酮保护了的二元胺(酮亚胺体系)或肼(酮连氮体系)混合后,再用水分散,分散过程中酮亚胺、酮连氮以一事实上速率水解,释放出游离二元胺或肼与分散的聚合物微粒反应,得到的水性聚氨酯-脲具有良好的性能。该法制备的涂膜较好。
3.结语
此外,PU乳液的合成方法还有与水直接混合法、固体自发分散法等。以上各种方法都有各自的优缺点,相比较而言,丙酮法成熟一些,由于预聚体分散法合成工艺简单,所以预聚体分散法的前景更好。水性PU的发展日新月异,总的发展趋势是向高性能、低成本方向发展。国外各大公司对PU乳液产品的品种、数量、性能等都作了大力地开发。国内PU乳液的研制开发水平相对较低,主要是受到国内化工基础薄弱的限制。我们应该在基础原料生产和产品研制开发上向国外靠拢,大力研制开发新品种,提高国内PU乳液生产的能力和合成工艺水平。
⑽ 废丙酮如何进行无害化处理
一、处理方法:
1、简便的方法是放在酒精炉里面烧掉;
2、量大的话有专门回收废丙酮的地方。
二、丙酮的简单介绍:
丙酮(acetone,CH3COCH3),又名二甲基酮,为最简单的饱和酮。是一种无色透明液体,有特殊的辛辣气味。易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂。易燃、易挥发,化学性质较活泼。目前世界上丙酮的工业生产以异丙苯法为主。丙酮在工业上主要作为溶剂用于炸药、塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸甲酯、氯仿、环氧树脂等物质的重要原料。