导航:首页 > 蒸馏问题 > 质粒dna提取蒸馏水调零

质粒dna提取蒸馏水调零

发布时间:2022-06-27 07:42:48

『壹』 DNA的粗提取与鉴定实验第一步骤加入蒸馏水的目的和第三步骤加入蒸馏水的目的

第一步加蒸馏水是为了促进血细胞破裂,使DNA从细胞核中释放出来。第三部加蒸馏水降低NaCl溶液浓度,使DNA析出。关键要理解实验原理。

『贰』 质粒DNA提取时为什么洗脱液在60度水浴加热更好呢

有利于提高洗脱效率。
洗脱时将灭菌蒸馏水或洗脱缓冲液加热至60℃后使用,有利于提高洗脱效率。

『叁』 dna粗提取和鉴定实验中蒸馏水的作用

在DNA粗提取的实验中,先后两次向烧杯中加入蒸馏水的作用分别是使血细胞吸水涨破,释放DNA;降低NaCl浓度,使DNA析出.
故选:B.

『肆』 质粒DNA的提取方法总共有哪些,回答的全给高分

(一)碱裂解法提取质粒
[实验原理]
碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复Ph至中性时,共价闭合环状质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,在而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
[实验仪器与设备]
1.恒温培养箱 2.恒温摇床
3.台式离心机(最大转速4000rpm) 4.冷冻高速离心机
5.高压灭菌锅 6.超净工作台
7.微量移液器 8.eppendorf tupe、tip
[实验材料]
1.葡萄糖 2.三羟甲基氨基甲烷(Tris)
3.乙二胺四乙酸(EDTA) 4.氢氧化钠
5.十二烷基硫酸钠(SDS) 6.乙酸钾
7.冰乙酸 8.氯仿
9.乙醇 10.胰RNA酶
11.氨苄青霉素 12.蔗糖
13.溴酚蓝 14.酚
15.β巯基乙醇 16.盐酸
17.含pUC18质粒的大肠杆菌
附:试剂的配制
1.溶液Ⅰ
50mmol/L 葡萄糖
5mmol/L 三羟甲基氨基甲烷(Tris) Tris·HCl (pH8.0)
10mmol/L 乙二胺四乙酸(EDTA)(pH8.0)
2.溶液Ⅱ
0.4 mol/L NaOH, 2%SDS, 用前等体积混合
3.溶液Ⅲ
5mmol/L 乙酸钾 60 ml
冰乙酸 11.5 ml
水 28.5 ml
4.TE缓冲液
10mmol/L Tris·HCl
1 mmol/L EDTA(pH8.0)
5.70%乙醇(放-20℃冰箱中,用后即放回)
6.胰RNA酶
将RNA酶溶于10mmol/L Tris·HCl(pH7.5)、15mmol/L NaCl中,配成10mg/ml的浓度,于100℃加热15min,缓慢冷却至室温,保存于-20℃。
7.终止液:40%蔗糖、0.25%溴蓝酚
8.酚
[实验步骤]
(一) 提取质粒
1.将2ml含相应抗生素的LB液体培养基加入到试管中,接入含质粒的大肠杆菌,37℃振荡培养过夜。
2.取1.5ml培养物倒入微量离心管中,4000rpm,离心2min。
3.吸去培养液,使细胞沉淀尽可能干燥。
4.将细菌沉淀悬浮于100μl溶液Ⅰ中,充分混匀,室温放置10 min。
5.加200μl溶液Ⅱ(新鲜配制),混匀内容物,将离心管放冰上5 min。
6.加入150μl溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。
7.1200rpm,离心15 min,将上清转至另一离心管中。
8.向上清中加入等体积酚:氯仿(去蛋白),反复混匀,12000rpm,离心5min,将上清转移到另一离心管中.
9.向上清加入2倍体积乙醇,混匀后,室温放置5-10min。12000rpm离心5min。倒去上清液,把离心管倒扣在吸水纸上,吸干液体。
10.用1ml70%乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干燥。
11.加50μl TE缓冲液,其中含有20μg/ml的胰RNA酶,使DNA完全溶解,-20℃保存。
(二)琼脂糖凝胶电泳检测DNA
[实验原理]
琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethim bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。
琼脂糖凝胶有如下特点:
(1) DNA的分子大小 在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。
(2) 琼脂糖浓度 一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。
(3) 电压 低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。
(4) 电泳温度 DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。
(5) 嵌入染料 荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。
(6) 离子强度 电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。
对于天然的双链,常用的几种电泳缓冲液有TAE、TBE等,一般配制成浓缩母液,室温保存,用时稀释。
[实验仪器与设备]
1. 恒温培养箱 2. 琼脂糖凝胶电泳系统
3. 高压灭菌锅 4. 紫外线透射仪
[实验材料]
1.三羟甲基氨基甲烷(Tris) 2.硼酸
3.乙二胺四乙酸(EDTA) 4.溴酚蓝
5.蔗糖 6.琼脂糖
7.溴化乙锭 8.DNA marker
9.DNA样品
[实验步骤]
1.缓冲液的配制
① 5×TBE(5倍体积的TBE贮存液)
配1000ml 5×TBE:
Tris 54g
硼酸 27.5g
0.5mol/l EDTA 20ml
Ph8.0
② 凝胶加样缓冲液(6×)
溴酚蓝 0.25%
蔗糖 40%
③溴化乙锭溶液(EB) 0.5μg/ml
2.制备琼脂糖凝胶
按照被分离DNA的大小,决定凝胶中琼脂糖的百分含量。可参照下表:
琼脂糖凝胶浓度 线性DNA的有效分离范围
0.3% 5-60 kb
0.6% 1-20 kb
0.7% 0.8-10 kb
0.9% 0.5-7 kb
1.2% 0.4-6 kb
1.5% 0.2-4 kb
2.0% 0.1-3 kb
3.胶板的制备
(1) 用高压灭菌指示纸带将洗静、干燥的玻璃板的边缘(或电泳装置所皿备的塑料盘的开口)封住,形成一个胶膜(将胶膜放在工作台的水平位置上,用水平仪校正)。
(2) 配制足够用于灌满电泳槽和制备凝胶所需的电泳缓冲液(1×TBE)。准确称量的琼脂糖粉。缓冲液不宜超过锥瓶或玻璃瓶的50%容量。 在电泳槽和凝胶中务必使用同一批次的电泳缓冲液,离子强度或pH值的微小差异会在凝胶中形成前沿,从而大大影响DNA片段的迁移率 。
(3) 在锥瓶的瓶颈上松松地包上一层厚纸。如用玻璃瓶,瓶盖须拧松。在沸水浴或微波炉中将悬浮加热至琼脂糖溶解。注意:琼脂糖溶液若在微波炉里加热过长时间,溶液将过热并暴沸。应核对溶液的体积在煮沸过程中是否由于蒸发而减少,必要时用缓冲液补充。
(4) 使溶液冷却至60℃。加入溴化乙锭(用水配制成10mg/ml的贮存液)到终浓度为0.5ug/ml,充分混匀。
(5) 用移液器吸取少量琼脂糖溶液封固胶模边缘,凝固后,在距离底板0.5-10mm的位置上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。如果梳子距玻璃板太近,则拔出梳子时孔底将有破裂的危险,破裂后会使样品从玻璃板之间渗透。
(6)将剩余的温热琼脂糖溶液倒入胶模中。凝胶的厚度在3-5mm之间。检查一下梳子的齿下或齿间是否有气泡。
(7)在凝胶完全凝固后(于室温放置30-45分钟) ,小心移去梳子和高压灭菌纸带,将凝胶放入电泳槽中。
低熔点琼脂糖凝胶及浓度低于0.5%的琼脂糖凝胶应冷却至4℃,并在冷库中电泳。
(8)加入恰好没过胶面约1mm深的足量电泳缓冲液。
4.加样
DNA样品与所需加样缓冲液混合后,用微量移液器,慢慢将混合物加至样品槽中。此时凝胶已浸没在缓冲液中。 一个加样孔的最大加样量依据DNA的数量及大小而定,一般为20-30μl样品。
已知大小的DNA标准,应同时加在凝胶的左凝胶的左侧和右侧孔内。确定未知DNA的大小。测量未知DNA的大小时,要所有样品都用相同的样品缓冲液。
5.电泳
在低电压条件下,线形DNA片段的迁移速度与电压成比例关系,但是,在电场增加时,不同相对分子质量的DNA片段泳动度的增加是有差别的。因此,随着电压的增加,琼脂糖凝胶的有效分离范围随之减小。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。当溴酚蓝指示剂移到到距离胶板下沿约1-2cm处,停止电泳。

『伍』 DNA提取过程中的关键步骤及注意事项有哪些

质粒抽提流程详解——沉淀菌体
检查细菌培养情况,将明显浑浊的菌液倒在已经编号的2ml的沉菌用离心管里,在约12000转/min的速度下离心沉淀1分钟,保证无悬浮物后取出;将离心管倒扣在卫生纸上,用力敲击,至液体培养基完全去除;如发现菌体沉淀的少,可多加2ml菌液重复沉菌一次。
在离心管中加入250µl 加过RNaseA1酶的Buffer S1,用振荡器震荡,直到沉淀完全充分悬浮。
1. Buffer S1是什么?主要组分是什么?
50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0

2. Buffer S1的功能是什么?
50 mM葡萄糖:加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果Buffer S1中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
EDTA :大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在Buffer S1中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。 ——但是对于测序而言,我们是用水溶解质粒,所以EDTA是必须的。

3.如果抽提质粒恰好Buffer S1用完了,可不可以用水代替?
只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

质粒抽提流程详解——裂解
在离心管中加入250µl Buffer S2,上下缓慢颠倒7~8次至混旋液澄清(这步的操作时间不得超过4分钟);
☆ 注意:颠倒时不能太剧烈,否则会有核DNA污染;如果Buffer S2因温度过低有SDS沉淀析出,可将其放置55~60C水溶锅中适当加热至澄清后再用。
1.抽提质粒的原理是什么?
碱裂解法

2. Buffer S2是什么?主要组分是什么?
0.2 N NaOH / 1% SDS
SDS:十二烷基磺酸钠(Sodium dodecyl sulfate,SDS),是洗洁精的主要成分。常用于DNA提取过程中使蛋白质变性后与DNA分开。

3.Buffer S2的功能是什么?
NaOH:NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解。用了不新鲜的NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
4.加入Buffer S2为何时间不能太久,动作要轻柔?
第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

质粒抽提流程详解——中和
加入400ul Buffer S3,剧烈颠倒5~10次,使之充分中和,同时将大块白色沉淀振成小块,便于离心。
在约13600转/min的速度下离心沉淀12分钟,如有因沉淀不完全引起的白色絮状物质,可重复振荡离心直至沉淀完全。
1. Buffer S3是什么?主要组分是什么?
3 M 醋酸钾 / 2 M 醋酸

2.加入Buffer S3后出现的白色沉淀是什么?&3.Buffer S3的功能是什么?
每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。
最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,与此同时大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

2 M的醋酸的作用是什么?
是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。

质粒抽提流程详解——纯化
将上步离心上清液用移液器转移到吸附柱上,在约10500转/min的速度下离心1分钟。
注意:不要把沉淀物转移到吸附柱里,1个样品使用1个枪头。

为何离心上清液经离心后,质粒DNA就被吸附到膜上?
在高盐状态下,硅胶膜专一性地吸附DNA;而在低盐或水溶液状态下,DNA被洗脱下来。

质粒抽提流程详解——洗涤脱盐
取出DNA吸附柱,弃掉废液收集管中的液体,将柱子放回这个离心管中,加入500ul Wash Solution到柱子中,高速离心(10,000rpm)30秒。
重复上述步骤一次。
取出DNA吸附柱,弃掉废液收集管中的液体,将柱子放回这个离心管中,最大速度离心2分钟
使用Wash Solution要进行两次洗涤,目的是使残留的蛋白、盐离子等杂质更充分的被去除,保证硅胶膜上吸附的DNA尽量纯。

质粒抽提流程详解——产物回收
将DNA吸附柱移入新的1.5ml离心管中,在DNA吸附柱的膜中央加入30-40ul 预热无菌双蒸水,室温放置2分钟后12,000rpm离心1分钟,离心管底即为质粒DNA。

『陆』 质粒提取为什么加蒸馏水

质粒提取加蒸馏水是因为:稀释层析液,更有利于色素扩散。

叶绿体色素在叶绿体内以其亲水部分与蛋白质结合,亲脂部分与类脂结合,纯的有机溶剂不能打破色素与蛋白质的联系,所以必须用能与水混溶的有机溶剂并有少量水存在时,才能将叶绿素提取出来。

加蒸馏水是为了促进血细胞破裂,使DNA从细胞核中释放出来。加蒸馏水降低NaCl溶液浓度,使DNA析出。关键要理解实验原理。

实验原理

提取质粒DNA的方法有很多种,从提取产量上分可分为微量提取、中量提取、大量提取,从使用仪器上分可分为一般提取和试剂盒方法提取,从具体操作方法分可以分为碱裂解法、煮沸法、牙签法等,各种不同的方法各有其优缺点,根据不同的实验目的可以采用合适的提取方法。详细内容请参考《分子克隆实验指南》。

以上内容参考:网络-质粒抽提

『柒』 如何对提取的DNA纯化

质粒DNA的提取、纯化和电泳检测
摘要
本实验通过碱变性法提取E.coli DH5α(pUC19)的质粒DNA,并且通过一系列的分离纯化技术将其质粒DNA与染色体DNA、RNA、蛋白质等杂质分开从而得到纯化的质粒DNA分子。通过琼脂糖凝胶电泳可以通过DNA条带的位置来大致判断其分子大小,也可以将实际电泳的结果和理论结果相对比,分析差异产生原因,从而完善实验方法,严谨实验步骤。
关键词碱变性法分离纯化技术琼脂糖凝胶电泳
引言
质粒是细菌细胞中与主染色体共存、可自主复制的一段大多数呈环形的DNA。细菌质粒的相对分子质量大小从1kb至200kb以上不等。一些质粒永远独立于染色体之外,另外一些质粒在一定条件下会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。质粒在基因工程中质粒常被用做基因的载体。目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(DNA)。质粒在基因工程中是一类重要的载体,其作用主要是携带一些基因片段(可以是编码基因,也可以是调控区等),在细胞内环境中进行表达或参与通路的相互作用,通过将质粒转化到宿主细胞可以探究基因相互作用关系,取得蛋白产物,实现特定基因片段的克隆等。总之,质粒在生物科学研究方面具有广泛的作用。
提取和纯化质粒DNA的方法很多,目前常用的有:碱裂解/碱变性法、煮沸法、羟基磷灰石柱层析法、EB-***化铯密度梯度离心法和Wizard法等。其中,碱变性提取法最为经典和常用。碱裂解/碱变性法是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的的分离方法。在pH12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性;质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以pH4.8的KAc高盐缓冲液调节其pH值至中性时,变性的质粒DNA恢复原来的构型,保存在溶液中;染色体DNA不能复性而形成缠连的网状结构,与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,通过离心被除去。最后,质粒DNA用冰乙醇沉淀获得。由于DNA和RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNaseA将RNA降解。质粒DNA溶液中的RNaseA以及一些可溶性蛋白,可通过酚/***仿抽提除去,最后获得纯度较高的质粒DNA。
电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极移动的现象。各种生物大分子在一定pH条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。凝胶电泳是分子生物学的核心技术之一。凝胶是电泳支持介质,具有分子筛效应。含有电解液的凝胶在电场中,其中的电离子会发生移动,此时移动的速度可因带电离子的大小、形态及电荷量的不同而有差异。利用移动
速度差异,就可以区别各种大小不同的分子。因而,凝胶电泳可用于分离、鉴定和纯化DNA片段。
正文
1.材料和方法
1.1材料和试剂
实验材料:E.coli DH5α(pUC19)。
实验试剂:LB液体培养基、氨苄青霉素(Amp)母液(储存浓度100mg/mL)、溶液Ⅰ:50mM葡萄糖,25mMTris-HCl,10mM EDTA (pH 8.0);溶液Ⅱ:0.2MNaOH,1% SDS;溶液Ⅲ:5MKAc(pH 4.8);TE溶液:10mM Tris-HCl,1mM EDTA (pH 8.0);冰乙醇、70%乙醇、RNase A、Tris饱和酚、***仿/异戊醇混合液、酚/***仿/异戊醇(PCI)(25:24:1)混合液、3M NaAc溶液、灭菌双蒸水ddH2O、50×TAE缓冲液、10mg/mL溴化乙锭(EB)溶液、6×上样缓冲液(6×loading buffer)。
1.2实验方法
大肠杆菌的增值
用牙签从LB固体培养基挑取E.coli DH5α(pUC19)菌落于LB+Amp(Amp工作浓度为100μg/mL)液体培养基中,置于37℃、200rpm培养箱下振荡过夜培养。
实验前准备
(1)用搪瓷杯取一杯冰。
(2)将小烧杯放在天平上,调至平衡。
(3)配置80ml溶液Ⅱ: 将原液10M NaOH,10% SDS配制成0.2M NaOH,1% SDS。取用8ml SDS,1.6ml NaOH和70.4ml蒸馏水配置。
3. E.coil菌株的收获( 4°C操作)
(1)取一个灭菌离心管,称重,标记为W1 14.552g
(2)倒入菌液至距瓶口1/3处,两两配平
(3) 6000rpm,离心5min,弃上清
(4)加入5ml 溶液Ⅰ,涡旋, 6000rpm,5min,弃上清,称重为W2 14.676g,计算W2-W1 0.124g。
4.细胞裂解提取质粒DNA ( 4°C操作)
向菌体沉淀中量加入(按菌体量接近的重新分组,溶液Ⅰ补平)
(1)2.0 mL 溶液Ⅰ,充分涡旋振荡;用溶液Ⅰ再次配平
(2)4.0 mL溶液Ⅱ,轻柔颠倒混匀,冰浴3-5mi
(3)3.0 mL 溶液Ⅲ,轻柔颠倒混匀,冰浴5mi
(4)12000rpm, 15min;小心转移上清到新的离心管内,记录体积V。
(5)加入2V冰乙醇,颠倒混匀;-20℃,15min;。
(6)12000rpm,15min,弃上清。
(7)加入5mL70%乙醇,12000rpm,3min,吸弃上清。
(8)重复乙醇洗涤一次;37℃风干5-10min。
(9)分次加入0.5mL TE溶液两次,将沉淀吹开吹匀,并移到Ep管中,得质粒DNA粗提物
(10)加入5μl RNase A(10mg/ml),终浓度为50μg/mL,37℃孵育1-2小时。
5.质粒DNA的纯化
将1mL质粒DNA粗提物分出500μL到一新EP管中,使得每组两管。每个EP管进行如下操作:
(1)加入等体积的Tris饱和酚,涡旋振荡,12000rpm,5mi
(2)转移上清V1(两管均为400μL)至新管,加入V1的酚/***仿/异戊醇混合液,涡旋振荡(<1min),12000rpm,5mi
(3)转移上清V2(一管为400μL,一管为378μL)至新管,加入V2的***仿/异戊醇混合液,涡旋振荡(<1min),12000rpm,5mi
(4)转移上清V3(两管均为250μL)至新管,加入1/10 V3的3M NaAc溶液(pH=5.2),再加入2V4(V4=V3+1/10V3)的冰乙醇,震荡混匀,-20℃保存30mi
(5)12000rpm,15min,弃上清
(6)加入500μL 70%乙醇洗涤,12000rpm离心2min,弃上清
(7)重复洗涤一次,吸弃上清,37℃风干5mi
(8)每管加入25μL TE溶解沉淀,合并,得50μL纯化质粒DNA。
6. 1% 琼脂糖凝胶的制备
(1)配制2L 1×TAE:取40mL 50×TAE,用双蒸水将其稀释至2L
(2)正确组装制胶槽、制胶板、样品梳
内容来自淘豆网www.taodocs.com转载请标明出处.
第2页 /(共3页)
文档介绍:
(3)取40mL 1×TAE至250mL干净红盖瓶中,称量0.4g琼脂糖,混匀,轻旋瓶盖,微波炉加热沸腾3-4次,至溶液澄清无颗粒
(4)待溶液冷却至60℃左右,加入20μL 1mg/mL的溴化乙锭(EB)溶液,使EB溶液终浓度为0.5mg/L,混匀后倒入制胶槽中,冷却凝固待用(冷却凝固时间要在30min以上)。
7.电泳上样
(1)取2.0μL纯化DNA、2μL双蒸水、1μL上样缓冲液(6×loading buffer),用微量移液器吹吸混匀
(2)将凝胶连同制胶板一同放入电泳槽中,添加1×TAE至高出胶面约1mm
(3)将上述混合好的DNA样品,按照下表顺序,点样到凝胶中。。
8.凝胶电泳与DNA分离
(1)开启电泳仪电源,选择合适的电压120V和时间40mi
(3)将电泳槽电极与电泳仪连接。电泳槽红色电极为正极,与电泳仪正极相连。电泳槽黑色电极为负极,与电泳仪负极相连
(4)启动电泳,待观察到负极有气泡升起方可离开
(5)电泳结束,关闭电源,取出凝胶,在紫外灯下观察电泳条带。
2.实验结果
表 DNA样品加样顺序
泳道
DNA
样品/
marker
超螺旋marker
UC19
UC19/HindⅢ
1组DNA样品
2组DNA样品
3组DNA样品
4组DNA样品
5组DNA样品
超螺旋marker
样量
6μL
5μL
5μL
5μL
5μL
5μL
5μL
5μL
6μL
泳道
10
11
12
13
14
15
16
17
DNA
样品/
marker
6组DNA样品
6组DNA样品(阳性对照)
7组DNA样品
8组DNA样品
9组DNA样品
10组DNA样品
UC19
HindⅢ
UC19/
样量
5μL
5μL
5μL
5μL
5μL
5μL
5μL
5μL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
5,026
5,026
3,049
2,087
图碱裂解法提取质粒pUC19 DNA的琼脂糖凝胶电泳
泳道1与泳道9 加的样品是Supercoiled DNA Ladder Marker。supercoiled DNA Ladder Marker 由8种超螺旋的质粒DNA 构成,DNA大小分别为:2,087 bp、3,049 bp、3,997 bp、5,026 bp、6,133 bp、8,023 bp、10,085 bp、11,849 bp。其中5,026 bp的条带最亮。
泳道2与泳道17加的样品是pUC19质粒。DNA,即超螺旋的共价闭合环状结构的质粒DNA,其条带在2.7kb左右,起对照作用。
泳道3与泳道16加的样品是用HindⅢ酶切的pUC19质粒。HindⅢ酶切pUC19的结果是使超螺旋的共价闭合环状结构的pUC19质粒DNA的链断裂成线状的DNA, 线状DNA电泳速率减慢。但是实验中所用的HindⅢ没有将pUC19酶切充分,因此泳道3与泳道16电泳后会形成两条条带,其中暗带是被HindⅢ酶切的pUC19 质粒,明带是没有被HindⅢ酶切的pUC19质粒。
泳道11是没有加RNase的对照组的电泳图像,由于RNA易形成各种高级结构,同样大小的DNA和RNA相比,RNA的电泳速率快。泳道11下方的大量明带即为RNA电泳区域。
除了泳道15存在pUC19质粒所在区域条带,其他组的都无或无明显的pUC19质粒所在区域的条带,包括泳道15在内的所有组的条带位置都偏低,因为碱变性法有缺陷:容易导致不可逆的变性,不适合大质粒的抽提。碱裂解法是很剧烈的方法,质粒在碱性条件下会变性,时间一长,这种变性就是不可逆的了,我们碱变性时间太长,导致质粒DNA的变性不可逆,所以实际条带位置和预估不一样。
除了位置偏下的质粒DNA带以外,每一组都存在中间位置较弱的杂带(实心箭头所指),我们推测此杂带是没有被沉淀的,在加了有机物后涡旋震荡过程中所产生的线性染色体DNA的碎片,DNA,所以它的位置偏后。这一杂带在泳道4、7、8、10、12和16尤为明显。
个别组在加样孔下方也存在较窄的DNA条带(线性箭头所指),据推测,这种条带的产生是质粒DNA沉淀中少量染色体DNA杂质的存在而产生的,由于染色体DNA片段过大,1%的琼脂糖凝胶的分辨率有限,片段过大的DNA在电泳时速度极慢或很难穿过琼脂糖凝胶的孔径,因此,形成离上样孔近的较窄的杂带。这一杂带在泳道4、7、10和12尤为明显。
个别组在加样孔处也存在较弱的DNA条带(方形箭头末端所指),我们推测可能是没有除尽的蛋白质把加样孔堵住了,导致少数DNA无法从加样孔跑到凝胶当中去。这一杂带在泳道4、7、10和12尤为明显。
我们组的质粒DNA(0.124g)在泳道13,和其他泳道相比,我们的质粒DNA的条带稍微偏弱,这说明我们在组提取质粒DNA时有一定的DNA损失,但是我们组的DNA碎片和染色体DNA杂带也相对较弱,这可能和我们所提取的DNA量较少有关(和泳道4对照,由于此组提取的质粒DNA量较大,所获得的杂带也较明显。因此,不能因为我们组的杂带少而确定我们组的结果好),也有可能是我们的杂质除去得较为充分(和泳道14相比,我们组的杂带明亮程度和他们相近,但是我们的目标带明显比他们亮度高)。
3.讨论
加入5ml 溶液Ⅰ,涡旋的目的是重悬并洗涤菌体。溶液Ⅰ中葡萄糖的作用是为细胞提供等渗环境,
Tris-HCl作为pH缓冲液,为细胞提供适宜酸碱环境,EDTA(pH 8.0时溶于水)是重要金属螯合剂,可以与Mg2+、Ca2+等金属络合,抑制DNase对DNA的降解作用。离心后尽可能去除干净上清液,减少培养基对实验结果的影响。
加入2.0 mL 溶液Ⅰ的作用是重悬并洗涤菌体。
加入4.0 mL溶液Ⅱ的目的:①SDS能断裂分子内和分子间氢键,使分子去折叠,从而破坏蛋白质分子的二级结构和三级结构而达到裂解细胞的目的。加入溶液Ⅰ后,溶液变得清亮粘稠,变得清亮是由于细胞破碎了,粘稠是由于细胞内蛋白质等有机物析出。加入溶液Ⅰ要慢慢颠倒,使之混匀,不能烈震荡。震荡过于剧烈会使染色体DNA断裂成碎片,导致在质粒DNA中引入杂质。②NaOH的碱裂解作用和碱变性作用:NaOH可以与蛋白质结合(细胞膜含有蛋白质)从而破碎细胞;在pH12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性,而质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。因此可通过之后对pH值的调节达到分离染色体DNA与质粒DNA的目的。
此步骤等待时间不能过长,因为强碱也会破坏质粒DNA。
加入3.0 mL 溶液Ⅲ(5M KAc(pH 4.8))的作用是使质粒DNA复性,而染色体DNA太长难以复性从而沉淀出来。不能复性的染色体DNA与

『捌』 在质粒DNA的提取过程中,应注意哪些操作,为什么

非本人原创,转载自网络。认真看。质粒提取需要注意的提到了。
溶液I,50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;
溶液II,0.2 N NaOH / 1% SDS;
溶液III,3 M 醋酸钾 / 2 M 醋酸。
让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳 的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦,后面我再详细说明。
每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。
那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。
不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。
琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。 非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。

『玖』 DNA粗提取实验步骤

一 教学目的
1.初步掌握DNA的粗提取和鉴定的方法。
2.观察提取出来的DNA物质。
二 教学建议
在本实验的教学中,教师应注意以下几点。
1.实验材料必须准备充足。本实验所用的实验材料是鸡血细胞液,由活鸡的鲜血经沉淀后获得。每组(2个学生)需用5 mL 鸡血细胞液,则每班(50人)至少需要130 mL,而鸡血细胞液与鸡血的体积比为1:3,这样每班至少需要390 mL 鸡血细胞液。宰杀1只中等大小的活鸡,一般可得120 mL 左右的鲜血,因此,1个班实验需要买4只活鸡。如果不具备购买活鸡的条件,也可以到市场售活鸡处去索取鸡血,但所带烧杯中必须提前放入抗凝剂。
2.盛放鸡血细胞液的容器,最好是塑料容器。鸡血细胞破碎以后释放出的DNA,容易被玻璃容器吸附,由于细胞内DNA的含量本来就比较少,再被玻璃容器吸附去一部分,提取到的DNA就会更少。因此,实验过程中最好使用塑料的烧杯和试管,这样可以减少提取过程中DNA的损失。
3.获取较纯净的DNA的关键步骤。
(1)充分搅拌鸡血细胞液DNA存在于鸡血细胞的细胞核中。将鸡血细胞液与蒸馏水混合以后,必须用玻璃棒沿一个方向快速搅拌,使鸡血细胞加速破裂,并释放出DNA。
(2)沉淀DNA时必须用冷酒精实验前必须准备好大量的体积分数为95%的酒精,并在冰箱(至少5S以下)中至少存放24 h。
(3)正确搅拌含有悬浮物的溶液实验步骤3、5、7,都需要用玻璃棒搅拌。教师应提醒学生注意,在进行步骤3、5时,玻璃棒不要直插烧杯底部,而且搅拌要轻缓,以便获得较完整的DNA分子。进行步骤7时,要将玻璃棒插入烧杯中溶液的中间,用手缓慢转动510 min。
三 参考资料
实验原理的补充介绍
1.DNA的释放 DNA位于鸡血细胞的细胞核中,正常情况下不会释放出来。为了使DNA从细胞核中释放出来,实验中采用了向鸡血细胞液中加入蒸馏水并且搅拌的方法。蒸馏水对于鸡血细胞来说,是一种低渗液体,水分可以大量进入血细胞内,使血细胞破裂。同时,再加上搅拌的机械作用,就加速了鸡血细胞的破裂(细胞膜和核膜的破裂),于是释放出DNA,当然也有RNA。但是,释放出来的大量DNA和RNA往往与蛋白质结合在一起。
2.将DNA与蛋白质分离 根据二者的特性,即在浓度较高的氯化钠溶液(物质的量浓度为2 moL/L )中,核蛋白容易解聚,游离出DNA。而DNA在浓度较高的氯化钠溶液中的溶解度很高,Na+与带负电的DNA结合成DNA钠盐。这时DNA在溶液中呈溶解状态。
3.DNA的析出与获取 利用DNA在浓度较低的氯化钠溶液中溶解度小的原理,向含有DNA的浓度较高的氯化钠溶液中加入大量(300 mL )蒸馏水,稀释氯化钠溶液,使DNA的溶解度下降,而蛋白质的溶解度增高(这就是蛋白质的盐溶现象),从而使二者分离。这时,加上不停地搅拌,溶解度下降的DNA逐渐呈丝状物。再通过过滤,滤去蛋白质,就可以获取DNA的黏稠物了。如果采用离心法则更好,用4 000 r/min 的旋转频率,离心15 min ,除去上清液(含有蛋白质),留下的沉淀物中含DNA。
4.DNA的再溶解 再用较高浓度的氯化钠溶液去溶解DNA黏稠物。
5.DNA的沉淀和浓缩 除去了蛋白质的核酸溶液,必须再进一步沉淀和浓缩。最常用的方法是酒精沉淀法。就是将含有Na+的DNA溶液,加入到相当于其两倍体积的体积分数为95%冷酒精溶液中,混匀以后可以使DNA沉淀、浓缩,形成含杂质较少的DNA丝状物,悬浮于溶液中。如果出现的丝状物较少,可以将此混合液再放入冰箱中冷却几分。浓缩后的DNA丝状物,可以用缓缓旋转玻璃棒的方法卷起(因为玻璃棒有吸附DNA的作用)。
6.DNA的鉴定 本实验中鉴定DNA的方法为二苯胺法(配方见下述的“药品配制”)。二苯胺法的原理是:DNA中嘌呤核苷酸上的脱氧核糖遇酸生成ω-羟基-γ酮基戊醛,它再和二苯胺作用而显现蓝色(溶液呈浅蓝色)。
鉴定时溶液蓝色的深浅,与溶液中DNA含量的多少有关。
二苯胺试剂的配制
A液: 15 g二苯胺溶于100 mL 冰醋酸中,再加15 mL浓硫酸,用棕色瓶保存。如冰醋酸呈结晶状态,则需加温后待其熔化,再使用。
B液: 乙醛的体积分数为0.2%的溶液。
配制: 将0.1 mL B液加入到10 mL A液中,现配现用。
DNA粗提取与鉴定的另一种方法
1.材料用具
新鲜菜花(或蒜黄、菠菜)。
塑料烧杯,量筒,玻璃棒,尼龙纱布,陶瓷研钵,试管,试管架,试管夹,漏斗,酒精灯,石棉网,三角架,火柴,刀片,天平。
研磨液,体积分数为95%的酒精溶液,二苯胺试剂,蒸馏水。
2.方法步骤
(1)DNA的粗提取
①准备材料 将新鲜菜花和体积分数为95%的酒精溶液放入冰箱冷冻室,至少24 h。
②取材 称取30 g菜花,去梗取花,切碎。
③研磨 将碎菜花放入研钵中,倒入10 mL研磨液,充分研磨10 min 。
④过滤 在漏斗中垫上尼龙纱布,将菜花研磨液滤入烧杯中(有条件的学校可将滤液倒入塑料离心管中进行离心,用1 000r/min的旋转频率,离心25 min,取上清液放入烧杯中)。在4 ℃冰箱中放置几分后,再取上清液。
⑤加冷酒精 将一倍体积的上清液倒入两倍体积的体积分数为95%的冷酒精溶液中,并用玻璃棒缓缓地轻轻搅拌溶液(玻璃棒不要直插烧杯底部)。沉淀35 min后,可见白色的DNA絮状物出现。用玻璃棒缓缓旋转,絮状物会缠在玻璃棒上。
(2)DNA的鉴定
①配制二苯胺试剂 取0.1 mL B液,滴入到10 mL A液中,混匀。
②鉴定 取4 mL DNA提取液放入试管中,加入4 mL 二苯胺试剂,混匀后观察溶液颜色(不变蓝)。用沸水浴(100 ℃)加热10 min 。在加热过程中,随时注意试管中溶液颜色的变化(逐渐出现浅蓝色)。
研磨液的配制方法
Tris:10.1 g(相对分子质量为121.14),先加50 mL 蒸馏水溶解,用物质的量浓度为2 moL/L 的盐酸调至pH8.0,再加下述药品。
NaCl:8.76 g(相对分子质量58.44)
EDTA:37.2 g(相对分子质量372.24)
SDS:20 g(相对分子质量288.3)
待上述药品全部溶解后,再用蒸馏水定容至1 000 mL。
若在室温低于20 ℃时配制药液,SDS呈沉淀析出,此时需要加温,才能将SDS溶解。如果提前配制的研磨液出现了沉淀,则应加温使沉淀溶解后再使用。
研磨液中几种药品的作用
SDS(十二烷基磺酸钠):可使蛋白质变性,与DNA分离。
EDTA(乙二胺四乙酸二钠):为DNA酶的抑制剂,可以防止细胞破碎后DNA酶降解DNA。
物质的量浓度为0.15 moL/L的氯化钠溶液:能很好地溶解DNA。
Tris/HCl:提供缓冲体系,DNA在这个缓冲体系中呈稳定状态。(Tris为三羟甲基氨基甲烷)
鉴定DNA的其他方法 用紫外灯照射法鉴定DNA效果很好。具体鉴定方法如下。
1.配制染色剂。用蒸馏水配制万分之五的溴化乙锭(EB)溶液。
2.将玻璃棒上缠绕的白色絮状物抹于蜡纸上,再滴1滴EB溶液染色。
3.将蜡纸放在紫外灯(260 nm)下照射(暗室中),可见橙红色的萤光(DNA的紫外吸收高峰在280 nm处)。

阅读全文

与质粒dna提取蒸馏水调零相关的资料

热点内容
棋牌室用什么饮水机 浏览:79
超低压反渗透膜压力 浏览:1
屯昌县城污水 浏览:602
磷脂油废水 浏览:452
21款CT6空调滤芯怎么换 浏览:172
滤芯收尘器多少钱一台 浏览:746
耐水煮玻璃漆树脂 浏览:80
废水暖零件是水箱么 浏览:812
电瓶车电瓶加蒸馏水后能马上充电吗 浏览:994
国内做RO膜招聘 浏览:524
安装前置过滤器需要加什么 浏览:879
污废水管道 浏览:256
净空气净化器多少钱 浏览:607
废水处理工作防护 浏览:743
如何把污水处理厂经营好 浏览:111
十渡污水 浏览:971
土壤阳离子交换量都多大 浏览:317
为什么要求雨污水分离 浏览:469
斯麦恩净水器滤芯怎么换视频 浏览:618
利用沼气池做污水处理 浏览:815