① 求高中有机化学实验,越多越好,
有机化学基础实验
(一) 烃
1. 甲烷的氯代(必修2、P56)(性质)
验:取一个100mL的大量筒(或集气瓶),用排 水 的方法先后收集20mLCH4和80mLCl2,放在光亮的地方(注意:不要放在阳光直射的地方,以免引起爆炸),等待片刻,观察发生的现象。
现象:大约3min后,可观察到混合气体颜色变浅,气体体积缩小,量筒壁上出现 油状液体 ,量筒内饱和食盐水液面 上升 ,可能有晶体析出【会生成HCl,增加了饱和食盐水】
解释: 生成卤代烃
2. 石油的分馏(必修2、P57,重点)(分离提纯)
(1) 两种或多种 沸点 相差较大且 互溶 的液体混合物,要进行分离时,常用蒸馏或分馏的分离方法。
(2) 分馏(蒸馏)实验所需的主要仪器:铁架台(铁圈、铁夹)、石棉网、 蒸馏烧瓶 、带温度计的单孔橡皮塞、 冷凝管 、牛角管、 锥形瓶 。
(3) 蒸馏烧瓶中加入碎瓷片的作用是: 防止爆沸
(4) 温度计的位置:温度计的水银球应处于 支管口 (以测量蒸汽温度)
(5) 冷凝管:蒸气在冷凝管内管中的流动方向与冷水在外管中的流动方向 下口进,上口出
(6) 用明火加热,注意安全
3. 乙烯的性质实验(必修2、P59)
现象:乙烯使KMnO4酸性溶液褪色(氧化反应)(检验)
乙烯使溴的四氯化碳溶液褪色(加成反应)(检验、除杂)
乙烯的实验室制法:
(1) 反应原料:乙醇、浓硫酸
(2) 反应原理:CH3CH2OH CH2=CH2↑ + H2O
副反应:2CH3CH2OH CH3CH2OCH2CH3 + H2O
C2H5OH + 6H2SO4(浓) 6SO2↑+ 2CO2↑+ 9H2O
(3) 浓硫酸:催化剂和脱水剂(混合时即将浓硫酸沿容器内壁慢慢倒入已盛在容器内的无水酒精中,并用玻璃棒不断搅拌)
(4) 碎瓷片,以防液体受热时爆沸;石棉网加热,以防烧瓶炸裂。
(5) 实验中要通过加热使无水酒精和浓硫酸混合物的温度迅速上升到并稳定于170℃左右。(不能用水浴)
(6) 温度计要选用量程在200℃~300℃之间的为宜。温度计的水银球要置于反应物的中央位置,因为需要测量的是反应物的温度。
(7) 实验结束时,要先将导气管从水中取出,再熄灭酒精灯,反之,会导致水被倒吸。【记】倒着想,要想不被倒吸就要把水中的导管先拿出来
(8) 乙烯的收集方法能不能用排空气法 不能,会爆炸
(9) 点燃乙烯前要_验纯_。
(10) 在制取乙烯的反应中,浓硫酸不但是催化剂、吸水剂,也是氧化剂,在反应过程中易将乙醇氧化,最后生成CO2、CO、C等(因此试管中液体变黑),而硫酸本身被还原成SO2。故乙烯中混有_SO2_、__ CO2__。
(11) 必须注意乙醇和浓硫酸的比例为1:3,且需要的量不要太多,否则反应物升温太慢,副反应较多,从而影响了乙烯的产率。使用过量的浓硫酸可提高乙醇的利用率,增加乙烯的产量。
4、乙炔的实验室制法:
(1) 反应方程式:CaC2+2H2O→C2H2↑+Ca(OH)2(注意不需要加热)
(2) 发生装置:固液不加热(不能用启普发生器)
(3) 得到平稳的乙炔气流:①常用饱和氯化钠溶液代替水(减小浓度) ②分液漏斗控制流速 ③并加棉花,防止泡沫喷出。
(4) 生成的乙炔有臭味的原因:夹杂着H2S、PH3、AsH3等特殊臭味的气体,可用CuSO4溶液或NaOH溶液除去杂质气体
(5) 反应装置不能用启普发生器及其简易装置,而改用广口瓶和分液漏斗。为什么?①反应放出的大量热,易损坏启普发生器(受热不均而炸裂)。②反应后生成的石灰乳是糊状,可夹带少量CaC2进入启普发生器底部,堵住球形漏斗和底部容器之间的空隙,使启普发生器失去作用。
(6) 乙炔使溴水或KMnO4(H+)溶液褪色的速度比较乙烯,是快还是慢,为何?
乙炔慢,因为乙炔分子中叁键的键能比乙烯分子中双键键能大,断键难.
5、苯的溴代(选修5,P50)(性质)
(1) 方程式:
原料:溴应是_液溴_用液溴,(不能用溴水;不用加热)加入铁粉起催化作用,但实际上起催化作用的是 FeBr3 。
现象:剧烈反应,三颈瓶中液体沸腾,红棕色气体充满三颈烧瓶。导管口有棕色油状液体滴下。锥形瓶中产生白雾。
(2) 顺序:苯,溴,铁的顺序加药品
(3) 伸出烧瓶外的导管要有足够长度,其作用是 导气 、冷凝(以提高原料的利用率和产品的收率)。
(4) 导管未端不可插入锥形瓶内水面以下,因为_HBr气体易溶于水,防止倒吸_(进行尾气吸收,以保护环境免受污染)。
(5) 反应后的产物是什么?如何分离?纯净的溴苯是无色的液体,而烧瓶中液体倒入盛有水的烧杯中,烧杯底部是油状的褐色液体,这是因为溴苯溶有_溴_的缘故。除去溴苯中的溴可加入_NaOH溶液_,振荡,再用分液漏斗分离。分液后再蒸馏便可得到纯净溴苯(分离苯)
(6) 导管口附近出现的白雾,是__是溴化氢遇空气中的水蒸气形成的氢溴酸小液滴_。
探究:如何验证该反应为取代反应? 验证卤代烃中的卤素
①取少量卤代烃置于试管中,加入NaOH溶液;②加热试管内混合物至沸腾;
③冷却,加入稀硝酸酸化;④加入硝酸银溶液,观察沉淀的颜色。
实验说明:
①加热煮沸是为了加快卤代烃的水解反应速率,因为不同的卤代烃水解难易程度不同。
②加入硝酸酸化,一是为了中和过量的NaOH,防止NaOH与硝酸银反应从而对实验现象的观察产生影响;二是检验生成的沉淀是否溶于稀硝酸。
6、苯的硝化反应(性质)
反应装置:大试管、长玻璃导管、温度计、烧杯、酒精灯等
实验室制备硝基苯的主要步骤如下:
①配制一定比例的浓硫酸与浓硝酸的混和酸,加入反应器中。
②向室温下的混和酸中逐滴加入一定量的苯,充分振荡,混和均匀。【先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性)】
③在50-60℃下发生反应,直至反应结束。
④除去混和酸后,粗产品依次用蒸馏水和5%NaOH溶液洗涤,最后再用蒸馏水洗涤。
⑤将用无水CaCl2干燥后的粗硝基苯进行蒸馏,得到纯硝基苯。
【注意事项】
(1) 配制一定比例浓硫酸与浓硝酸混和酸时,操作注意事项是:_先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性)
(2) 步骤③中,为了使反应在50-60℃下进行,常用的方法是_水浴_。
(3) 步骤④中洗涤、分离粗硝基苯应使用的仪器是_分液漏斗_。
(4) 步骤④中粗产品用5%NaOH溶液洗涤的目的是_除去混合酸_。
(5) 纯硝基苯是无色,密度比水_大_(填“小”或“大”),具有_苦杏仁味_气味的油状液体。
(6) 需要空气冷却
(7) 使浓HNO3和浓H2SO4的混合酸冷却到50--60℃以下,这是为何: ①防止浓NHO3分解 ②防止混合放出的热使苯和浓HNO3挥发 ③温度过高有副反应发生(生成苯磺酸和间二硝基苯)
(8) 温度计水银球插入水中 浓H2SO4在此反应中作用:催化剂,吸水剂
(二)烃的衍生物
1、溴乙烷的水解
(1)反应原料:溴乙烷、NaOH溶液
(2)反应原理:CH3CH2Br + H2O CH3CH2OH + HBr
化学方程式:CH3CH2—Br + H—OH CH3—CH2—OH + HBr
注意:(1)溴乙烷的水解反应是可逆反应,为了使正反应进行的比较完全,水解一定要在碱性条件下进行;
(3)几点说明:①溴乙烷在水中不能电离出Br-,是非电解质,加AgNO3溶液不会有浅黄色沉淀生成。
②溴乙烷与NaOH溶液混合振荡后,溴乙烷水解产生Br-,但直接去上层清液加AgNO3溶液主要产生的是Ag2O黑色沉淀,无法验证Br-的产生。
③水解后的上层清液,先加稀硝酸酸化,中和掉过量的NaOH,再加AgNO3溶液,产生浅黄色沉淀,说明有Br-产生。
2、乙醇与钠的反应(必修2、P65,选修5、P67~68)(探究、重点)
无水乙醇
水
钠沉于试管底部,有气泡
钠熔成小球,浮游于水面,剧烈反应,发出“嘶嘶”声,有气体产生,钠很快消失
工业上常用NaOH和乙醇反应,生产时除去水以利于CH3CH2ONa生成
实验现象:乙醇与钠发生反应,有气体放出,用酒精灯火焰点燃气体,有“噗”的响声,证明气体为氢气。向反应后的溶液中加入酚酞试液,溶液变红。但乙醇与钠反应没有水与钠反应剧烈。
3、 乙醇的催化氧化(必修2、65)(性质)
把一端弯成螺旋状的铜丝在酒精灯火焰加热,看到铜丝表面变 黑 ,生成 CuO迅速插入盛乙醇的试管中,看到铜丝表面 变红 ;反复多次后,试管中生成有 刺激性 气味的物质(乙醛),反应中乙醇被 氧化 ,铜丝的作用是 催化剂 。
闻到一股刺激性气味,取反应后的液体与银氨溶液反应,几乎得不到银镜;取反应后的液体与新制的Cu(OH)2碱性悬浊液共热,看不到红色沉淀,因此无法证明生成物就是乙醛。通过讨论分析,我们认为导致实验结果不理想的原因可能有2个:①乙醇与铜丝接触面积太小,反应太慢;②反应转化率低,反应后液体中乙醛含量太少,乙醇的大量存在对实验造成干扰。
乙醛的银镜反应
(1)反应原料:2%AgNO3溶液、2%稀氨水、乙醛稀溶液
(2)反应原理: CH3CHO +2Ag(NH3)2OH CH3COONH4 + 2Ag ↓+ 3NH3 +H2O
(3)反应装置:试管、烧杯、酒精灯、滴管
银氨溶液的配置:取一支洁净的试管,加入1mL2%的硝酸银,然后一变振荡,一边滴入2%的稀氨水,直到产生的沉淀恰好溶解为止。(注意:顺序不能反)
(4)注意事项:
①配制银氨溶液时加入的氨水要适量,不能过量,并且必须现配现用,不可久置,否则会生成容易爆炸的物质。
②实验用的试管一定要洁净,特别是不能有油污。
③必须用水浴加热,不能在火焰上直接加热(否则会生成易爆物质),水浴温度不宜过高。
④如果试管不洁净,或加热时振荡,或加入的乙醛过量时,就无法生成明亮的银镜,而只生成黑色疏松的沉淀或虽银虽能附着在试管内壁但颜色发乌。
⑤实验完毕,试管内的混合液体要及时处理,试管壁上的银镜要及时用少量的硝溶解,再用水冲洗。(废液不能乱倒,应倒入废液缸内)
成败关键:1试管要洁净 2.温水浴加热3.不能搅拌4.溶液呈碱性。 5.银氨溶液只能临时配制,不能久置,氨水的浓度以2%为宜。。
能发生银镜的物质:1.甲醛、乙醛、乙二醛等等各种醛类 即含有醛基(比如各种醛,以及甲酸某酯等)
2.甲酸及其盐,如HCOOH、HCOONa等等 3.甲酸酯,如甲酸乙酯HCOOC2H5、甲酸丙酯HCOOC3H7等等
4.葡萄糖、麦芽糖等分子中含醛基的糖
清洗方法
实验前使用热的氢氧化钠溶液清洗试管,再用蒸馏水清洗
实验后可以用硝酸来清洗试管内的银镜,硝酸可以氧化银,生成硝酸银,一氧化氮和水
银镜反应的用途:常用来定量与定性检验 醛基 ;也可用来制瓶胆和镜子。
与新制Cu(OH)2反应:乙醛被新制的Cu(OH)2氧化
(1)反应原料:10%NaOH溶液、2%CuSO4溶液、乙醛稀溶液
(2)反应原理:CH3CHO + 2Cu(OH)2 CH3COOH + Cu2O↓+ 2H2O
(3)反应装置:试管、酒精灯、滴管
(4)注意事项:
①本实验必须在碱性条件下才能成功。
②Cu(OH)2悬浊液必须现配现用,配制时CuSO4溶液的质量分数不宜过大,且NaOH溶液应过量。若CuSO4溶液过量或配制的Cu(OH)2的质量分数过大,将在实验时得不到砖红色的Cu2O沉淀(而是得到黑色的CuO沉淀)。
新制Cu(OH)2的配制中试剂滴加顺序 NaOH — CuSO4 — 醛 。试剂相对用量 NaOH过量
反应条件:溶液应为_碱_性,应在__水浴_中加热
用途:这个反应可用来检验_醛基__;医院可用于 葡萄糖 的检验。
乙酸的酯化反应:(性质,制备,重点)
(1)反应原料:乙醇、乙酸、浓H2SO4、饱和Na2CO3溶液
(2)反应原理:
(3)反应装置:试管、烧杯、酒精灯
(1) 实验中药品的添加顺序 先乙醇再浓硫酸最后乙酸
(2) 浓硫酸的作用是 催化剂、吸水剂(使平衡右移) 。
(3) 碳酸钠溶液的作用 ①除去乙酸乙酯中混有的乙酸和乙醇 ②降低乙酸乙酯在水中的溶解度(中和乙酸;吸收乙醇;降低乙酸乙酯的溶解度)
(4) 反应后右侧试管中有何现象? 吸收试管中液体分层,上层为无色透明的有果香气味的液体
(5) 为什么导管口不能接触液面? 防止因直接受热不均倒吸
(6) 该反应为可逆反应,试依据化学平衡移动原理设计增大乙酸乙酯产率的方法 小心均匀加热,保持微沸,有利于产物的生成和蒸出,提高产率
(7) 试管:向上倾斜45°,增大受热面积
(8) 导管:较长,起到导气、冷凝作用
(9) 利用了乙酸乙酯易挥发的特性
油脂的皂化反应(必修2、P69)(性质,工业应用)
(1)乙醇的作用 酒精既能溶解NaOH,又能溶解油脂,使反应物溶为均匀的液体
(2)油脂已水解完全的现象是 不分层
(3)食盐的作用 使肥皂发生凝聚而从混合液中析出,并浮在表面
酚醛树脂的制取
原理:
①浓盐酸的作用 催化剂 ;②导管的作用 起空气冷凝管的作用——冷凝回流(反应物易挥发);③反应条件 浓HCl、沸水浴
④生成物的色、态 白色胶状物质 ⑤生成物应用 酒精 浸泡数分钟后再清洗。
反应类型 缩聚
(三)大分子有机物
1. 葡萄糖醛基的检验(必修2、P71)(同前醛基的检验,见乙醛部分)
注意:此处与新制Cu(OH)2反应条件为直接加热。
2、蔗糖水解及水解产物的检验(选修5、P93)(性质,检验,重点)
实验:这两支洁净的试管里各加入20%的蔗糖溶液1mL,并在其中一支试管里加入3滴稀硫酸(1:5)。把两支试管都放在水浴中加热5min。然后向已加入稀硫酸的试管中加入NaOH溶液,至溶液呈碱性。最后向两支试管里各加入2mL新制的银氨溶液,在水浴中加热3min~5min,观察现象。
(1) 现象与解释:蔗糖不发生银镜反应,说明蔗糖分子中不含 醛基 ,不显 还原 性。蔗糖在 稀硫酸 的催化作用下发生水解反应的产物具有 还原性 性。
(2) 稀硫酸的作用 催化剂
(3) 关键操作 用NaOH中和过量的H2SO4
3. 淀粉的水解及水解进程判断(选修5、P93,必修2、P72)(性质,检验,重点)
(1) 实验进程验证:(实验操作阅读必修2第72页)
①如何检验淀粉的存在?碘水
②如何检验淀粉部分水解?变蓝、砖红色沉淀
③如何检验淀粉已经完全水解?不变蓝、砖红色沉淀
(四)氨基酸与蛋白质
1、氨基酸的检验(选修5、P102)(检验,仅作参考)
茚三酮中加入氨基酸,水浴加热,呈 蓝 色
2、蛋白质的盐析与变性(选修5、P103)(性质,重点)
(1)盐析是 物理 变化,盐析不影响(影响/不影响)蛋白质的活性,因此可用盐析的方法来分离提纯蛋白质。常见加入的盐是钾钠铵盐的饱和溶液。
(2)变性是 化学 变化,变性是一个 不可逆 的过程,变性后的蛋白质 不能 在水中重新溶解,同时也失去 活性 。
蛋白质的颜色反应(检验)
(1)浓硝酸:条件 微热 ,颜色 黄色 (重点)
(2)双缩脲试剂:试剂的制备 同新制Cu(OH)2溶液 ,颜色 紫玫瑰色 (仅作参考)
蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果。能使蛋白质变性的化学方法有加强酸、强碱、重金属盐、尿素、乙醇、丙酮等;能使蛋白质变性的物理方法有加热(高温)、紫外线及X射线照射、超声波、剧烈振荡或搅拌等。
结果:失去生理活性
颜色反应:硝酸与蛋白质反应,可以使蛋白质变黄。这称为蛋白质的颜色反应,常用来鉴别部分蛋白质,是蛋白质的特征反应之一。 蛋白质黄色反应 某些蛋白质跟浓硝酸作用呈黄色,有这种反应的蛋白质分子一般都存在苯环。
乙醇和重铬酸钾
仪器试剂:圆底烧瓶、试管、酒精灯、石棉网、重铬酸钾溶液、浓硫酸、无水乙醇
实验操作 :在小试管内加入1mL 0.5%重铬酸钾溶液和1滴浓硫酸,在带有塞子和导管的小蒸馏烧瓶内加入无水乙醇,加热后,观察实验现象。
实验现象:反应过程中溶液由橙黄色变成浅绿色。
应用:利用这个原理可制成检测司机是否饮酒的手持装置。
因为乙醇可被重铬酸钾氧化,反应过程中溶液由橙黄色变成浅绿色。刚饮过酒的人呼出的气体中含有酒精蒸汽,因此利用本实验的反应原理,可以制成检测司机是否饮酒的手持装置,检查是否违法酒后驾车。
1、如何用化学方法区别乙醇、乙醛、甲酸和乙酸四种物质的水溶液?
加入新制Cu(OH)2后的现象
蓝色沉淀不消失
蓝色沉淀不消失
蓝色沉淀消失变成蓝色溶液
蓝色沉淀消失变成蓝色溶液
混合溶液加热后现象
无红色沉淀
有红色沉淀
无红色沉淀
有红色沉淀
结论
乙醇
乙醛
乙酸
甲酸
2、某芳香族化合物的分子式为C8H8O4,已知1mol该化合物分别与Na、NaOH、NaHCO3反应,消耗三种物质的物质的量之比为3﹕2﹕1,而且该化合物苯环上不存在邻位基团,试写出该化合物的结构简式。
解析:由消耗1mol NaHCO3,可知该化合物一个分子中含有一个羧基:—COOH;由消耗2mol NaOH,可知该化合物一个分子中还含有一个酚羟基:—OH;由消耗3mol Na,可知该化合物一个分子中还含有一个醇羟基:—OH。所以其结构简式为:
三、有机物的分离、提纯
分离是通过适当的方法,把混合物中的几种物质分开(要还原成原来的形式),分别得到纯净的物质;提纯是通过适当的方法把混合物中的杂质除去,以得到纯净的物质(摒弃杂质)。常用的方法可以分成两类:
1、物理方法:根据不同物质的物理性质(例如沸点、密度、溶解性等)差异,采用蒸馏、分馏、萃取后分液、结晶、过滤、盐析等方法加以分离。
蒸馏、分馏法:对互溶液体有机混合物,利用各成分沸点相差较大的性质,用蒸馏或分馏法进行分离。如石油的分馏、煤焦油的分馏等。但一般沸点较接近的可以先将一种转化成沸点较高的物质,增大彼此之间的沸点差再进行蒸馏或分馏。如乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇。
萃取分液法:用加入萃取剂后分液的方法将液体有机物中的杂质除去或将有机物分离。如混在溴乙烷中的乙醇可加入水后分液除去。硝基苯和水的混合物可直接分液分离。
盐析法:利用在有机物中加入某些无机盐时溶解度降低而析出的性质加以分离的方法。如分离肥皂和甘油混合物可加入食盐后使肥皂析出后分离。提纯蛋白质时可加入浓的(NH4)2SO4溶液使蛋白质析出后分离。
2、化学方法:一般是加入或通过某种试剂(例NaOH、盐酸、Na2CO3、NaCl等)进行化学反应,使欲分离、提纯的混合物中的某一些组分被吸收,被洗涤,生成沉淀或气体,或生成与其它物质互不相溶的产物,再用物理方法进一步分离。
(1)洗气法:此法适用于除去气体有机物中的气体杂质。如除去乙烷中的乙烯,应将混合气体通入盛有稀溴水的洗气瓶,使乙烯生成1,2-二溴乙烷留在洗气瓶中除去。不能用通入酸性高锰酸钾溶液中洗气的方法,因为乙烯与酸性高锰酸钾溶液会发生反应生成CO2混入乙烷中。
除去乙烯中的SO2气体可将混合气体通入盛有NaOH溶液的洗气瓶洗气。
(2)转化法:将杂质转化为较高沸点或水溶性强的物质,而达到分离的目的。如除去乙酸乙酯中少量的乙酸,不可用加入乙醇和浓硫酸使之反应而转化为乙酸乙酯的方法,因为该反应可逆,无法将乙酸彻底除去。应加入饱和Na2CO3溶液使乙酸转化为乙酸钠溶液后用分液的方法除去。
溴苯中溶有的溴可加入NaOH溶液使溴转化为盐溶液再分液除去。
乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇。
混合物的提纯
② 如何检测家禽类饲料中的粗蛋白
凯氏法测定试样中的含氮量,即在催化剂作用下,用硫酸破坏有机物,使含氮物转化成硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用酸滴定,测出氮含量,将结果乘以换算系数6.25,计算出粗蛋白含量。
2、试剂
2.1 硫酸(GB 625):化学纯,含量为98%,无氮。
2.2 混合催化剂:0.4g硫酸铜,5个结晶水(GB 665),6g硫酸钾(HG 3—920)或硫酸钠(HG 3—908),均为化学纯,磨碎混匀。 2.3 氢氧化钠(GB 629):化学纯,40%水溶液(m/V)。 2.4 硼酸(GB 628):化学纯,2%水溶液(m/V)。
2.5 混合指示剂:甲基红(HG 3—958)0.1%乙醇溶液,溴甲酚绿(HG 3—1220)0.5%乙醇溶液,两溶液等体积混合,在阴凉处保存期为三个月。
2.6 盐酸标准溶液:邻苯二甲酸氢钾法标定,按GB 601制备。 2.6.1 盐酸标准溶液:c(HCl)=0.1mol/L。8.3mL盐酸(GB 622,分析纯),注入 1 000mL蒸馏水中。
2.6.2 盐酸标准溶液:c(HCl)=0.02mol/L。1.67mL盐酸(GB 622,分析纯),注入1 000mL蒸馏水中。 2.7 蔗糖(HG 3—1001):分析纯。 2.8 硫酸铵(GB 1396):分析纯,干燥。
2.9 硼酸吸收液:1%硼酸水溶液1 000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1%甲基红乙醇溶液7mL,4%氢氧化钠水溶液0.5mL,混合,置阴凉处保存期为一个月(全自动程序用)。
3、 仪器设备
3.1 实验室用样品粉碎机或研钵。 3.2 分样筛:孔径0.45mm(40目)。 3.3 分析天平:感量0.0001g。 3.4 消煮炉或电炉。
3.5 滴定管:酸式,10、25mL。 3.6 凯氏烧瓶:250mL。
3.7 凯氏蒸馏装置:半微量水蒸气蒸馏式。 3.8 锥形瓶:150、250mL。 3.9 容量瓶:100mL。 3.10 消煮管:250mL。
3.11 定氮仪:以凯氏原理制造的各类型半自动。
4、 试样的选取和制备
选取具有代表性的试样用四分法缩减至200g,粉碎后全部通过40目筛,装于密封容器中,防止试样成分的变化。
5 分析步骤
5.1.1 试样的消煮
称取试样0.5~1g(含氮量5~80mg)准确至0.0002g,放入凯氏烧瓶中,加入6.4g混合催化剂,与试样混合均匀,再加入12mL硫酸和2粒玻璃珠,将 凯氏烧瓶置于电炉上加热,开始小火,待样品焦化,泡沫消失后,再加强火力 (360~410℃)直至呈透明的蓝绿色,然后再继续加热,至少2h。
5.1.2 氨的蒸馏:
将试样消煮液冷却,加入20mL蒸馏水,转入100mL容量瓶中,冷却后用水稀释至刻度,摇匀,做为试样分解液。将半微量蒸馏装置的冷凝管末端浸入装有20mL硼酸吸收液和2滴混合指示剂的锥形瓶内。蒸汽发生器 的水中应加入甲基红指示剂数滴,硫酸数滴,在蒸馏过程中保持此液为橙红色,否则需补加硫酸。准确移取试样分解液10~20mL注入蒸馏装置的反应室中,用少量蒸馏水冲洗进样入口,塞好入口玻璃塞,再加10mL氢氧化钠溶液,小心提起玻璃塞使之流入反应室,将玻璃塞塞好,且在入口处加水密封,防止漏气。蒸馏4min降下锥形瓶使冷凝管末端离开吸收液面,再蒸馏1min,用蒸馏水冲洗冷凝管末端,洗液均流入锥形瓶内,然后停止蒸馏。
5.1.2.3 蒸馏步骤的检验
精确称取0.2g硫酸铵,代替试样,按5.1.2步骤进行操作,测得硫酸铵含氮量为21.19±0.2%,否则应检查加碱、蒸馏和滴定各步骤是否正确。
5.1.3 滴定
用5.1.2.1或5.1.2.2法蒸馏后的吸收液立即用0.1mol/L或0.02mol/L(4.6.2)盐酸标准溶液滴定,溶液由蓝绿色变成灰红色为终点。
6 、空白测定
称取蔗糖0.5g,代替试样,按第5章进行空白测定,消耗0.1mol/L盐酸标准溶液的体积不得超过0.2mL。消耗0.02mol/L盐酸标准溶液体积不得超过0.3mL。
7、 分析结果的表述
7.1 计算见下式:
粗蛋白质(%)=(V2-V1)·c×0.0140×6.25/(m×V'/V) ×100 式中:V2── 滴定试样时所需标准酸溶液体积,mL; V1── 滴定空白时所需标准酸溶液体积,mL; c── 盐酸标准溶液浓度,mol/L; m── 试样质量,g;
V── 试样分解液总体积,mL; V── 试样分解液蒸馏用体积,mL;
0.0140── 与1.00mL盐酸标准溶液〔c(HCl)=1.000mol/L〕相当的、以克表示的氮的质量。
6.25── 氮换算成蛋白质的平均系数。
7.2 重复性
每个试样取两个平行样进行测定,以其算术平均值为结果。 当粗蛋白质含量在25%以上时,允许相对偏差为1%。 当粗蛋白含量在10%~25%之间时,允许相对偏差为2%。 当粗蛋白质含量在10%以下时,允许相对偏差为3%。
③ 酒精蒸馏塔有无清洗办法
酒精生产中醪垢形成、预防及清洗
【吉林燃料乙醇有限公司/姜树宽徐宝国】
蒸馏塔(醪塔)结垢堵塞问题,尤其是醪
塔堵塔问题,是蒸馏系统不能长周期运行的
主要制约因素。一般的解决办法是定期或不
定期进行物理法或化学法
处理,虽然能收到
一定效果,但短时间又会产生同样的问题。
本文试图对醪垢的成因、预防和清除进行探
讨,希望对业界解决这一问题能有所帮助。
1醪垢的定义
醪垢是沉积在设备、管道内表面上由不
溶性盐、泥砂、纤维、淀粉、蛋白质、糊精、糖、
酵母菌体及其它糖酵解代谢副产物等所组
成的多成分物质。一般附着在成熟醪预热
器、塔底再沸器的管壁及蒸馏塔塔盘和塔件
上,常常造成进料温度降低,塔底各板间温
差加大,塔顶真空度升高,严重时会造成塔
底跑酒,最终导致生产不能正常进行。
2醪垢的形成
2.1发酵成熟醪成分
发酵成熟醪是一个复杂的多组分非均
相混合液。它由水(75%%-90%%,w/w)、干物
质(4%%-10%%,w/w)、酒精及其它挥发性物
质(6%%-15%%,w/w)构成。
2.2醪垢成分
醪垢的化学成分受各种条件影响很大。
分析结果表明,不同的原料产地、不同的前
处理方法、不同的酒精生产工艺,醪垢的成
分都不同。即便是同一工厂不同生产时期、
不同部位醪垢成分也有一定差别。
醪垢的化学成分为碳酸钙、碳酸镁、磷
酸钙、硫酸钙、有机酸钙、糖、糊精、蛋白质
等,是由多种无机物、有机物构成的,并以无
机物为主。
2.3醪垢的成因
2.3.1 微溶或可溶物质在蒸馏过程中达
到过饱和状态而析出
发酵成熟醪在蒸馏过程中沿塔板逐层
而下。相对挥发性大的物质在醪塔内沿塔板
逐层上升,从顶部排出;干物质和水,还有高
级醇、酸、酯类等相对挥发性小的物质沿塔
板逐层向下,微溶或可溶物质浓度不断增
加,当其浓度超过其溶解度达到过饱和状态
后,便会在塔底再沸器的管壁及蒸馏塔塔盘
和塔件表面析出。在蒸馏过程中首先析出的
是溶解度较小的碳酸钙、碳酸镁、磷酸钙等,
而溶解度稍大一些的也逐渐被浓缩沉积,如
硫酸钙、有机酸钙等。
发酵成熟醪中的不溶性悬浮物质,如酵
母菌体、纤维、淀粉及析出的无机盐形成晶
核,加速了处于饱和状态下的无机盐、有机
盐、糖、糊精、可溶性蛋白质等的析出。众所
周知,国内大部分酒精厂采用了离心清液回
配技术。离心清液的回配进一步提高了发酵
成熟醪中干物质含量,加剧了微溶或可溶物
质在醪液输送、换热、蒸馏过程中的析出和
结垢概率。
2.3.2 可溶性钙盐转化成碳酸钙垢
在蒸馏过程中,可溶性有机酸钙盐与醪
液中的可溶性碳酸盐反应生成碳酸钙垢:
CaA
2
+Na
2
CO
3
=CaCO
3
↓+2NaA
CaA
2
+K
2
CO
3
=CaCO
3
↓+2KA
2.3.3 可溶性钙盐受热分解生成难溶碳
酸钙垢
在蒸馏过程中,可溶性钙盐受热分解生
成溶解度小的盐垢:
Ca(H CO
3
)
2
=CaCO
3
↓+H
2
O+CO
2
↑
Mg(H CO
3
)
2
= Mg CO
3
↓+H
2
O+CO
2
↑
2.3.4 前处理制浆工艺对醪垢的生成也
有影响
在酒精生产中,前处理制浆工艺可分为
干法、半干法、湿法及改良湿法等,其对醪液
输送、换热、蒸馏等过程中的结垢及积料影
响程度从小到大,依次为湿法、干法、半干
法、改良湿法。无论哪种制浆工艺,造成堵塔
或换热器效率下降的主要原因均为醪垢的
积累,物料粒度则是次要原因。
3醪垢的预防
3.1化学防垢法
投加阻垢剂。采取加入阻垢分散剂来抑
制醪垢析出,这是一种经济上节约,操作上
简便,效果上显著的方法。实践证明,阻垢分
散剂的投入量为mg/L级,即可起到很好的
阻垢作用。由于酒精行业的特殊性,建议使
用单宁、木质素等天然有机分散剂。
3.2物理防垢法
物理防垢法又称电磁防垢法,即在醪管
线相应位置加电磁防垢器,当醪液通过电磁
防垢器磁场时,钙、镁等成垢因子受强磁场
感应而失去结晶能力,只能生成一种结构疏
松易碎而不易牢固附着的沉渣,达到防垢的
目的。
3.3控制离心清液回配比,确定回配率
前文已提到,离心清液的回配进一步提
高了发酵成熟醪中干物质含量,加剧了微溶
或可溶物质在设备表面的析出,因此,只要
适当控制回配比,增加新鲜工艺水量就可以
把成垢因子稳定在一定范围而不析出。也可
给出最高上限,依据离心清液回配数学模
型,确定最佳回配率。
3.4改善工艺、规范操作
醪垢形成除与机理有关外,还与温度、
流速、浆料粒度、设备结构等因素有关。因
此,新工厂要从工艺设计、设备选型、材料选
择、施工安装质量抓起。已建成的工厂要从
改进工艺、规范操作,加强管理抓起。
实践证明:当醪液在设备或管道内处于
湍流状态下,醪垢形成概率大为减少;在生
产运行中,合理控制生产负荷,稳定操作,避
免蒸馏塔温度、压力波动过大,会有效降低
系统醪垢形成速率;深入研究系统运行规
律,正确确定设备清洗、检修周期,定期对系
统进行有计划地清洗,是防止醪垢形成和积
累的一个有效途径。
4醪垢的清洗
4.1化学清洗法
4.1.1 碱煮法
利用纯碱或烧碱与碳酸钙、硫酸钙等发
生化学反应而除掉醪垢的方法。碱煮通常使
用纯碱或烧碱,有时再加入少量磷酸钠和食
盐作辅助除垢剂,以提高煮洗除垢的协同效
应。主要化学反应如下:
CaCO3 +2NaOH= Ca(OH)2 + Na 2 CO 3
CaSO 4 +2NaOH= Ca(OH) 2 + Na 2 SO 4
4.1.2 酸洗法
利用盐酸或硫酸与碳酸钙、磷酸钙等发
生化学反应而溶解醪垢的方法。主要化学反
应如下:
CaCO 3 +2HCl= Ca Cl 2 + +CO 2 ↑+H 2 O
Ca 3 (PO 4 ) 2 + 6HCl =3Ca Cl 2 +2H 3 PO 4
4.2CIP清洗法
4.2.1 CIP清洗是Clean In Place(就地
清洗)的简称,是指不拆解或移动生产设备,
采用适当的化学清洗配方,在一定温度、压
力下进行清洗、杀菌和除垢。
4.2.2 CIP清洗技术具有减轻工人劳动
强度,防止操作失误,清洗效率高,安全可靠
等优点。通常分为预洗、碱洗、水洗、漂洗等
几个阶段,是酒精工厂清洁生产的必备手段
之一。
4.3高压水射流清洗法
高压水清洗就是利用高压泵打出高压
水经喷嘴转化成高流速的射流,沿着正向或
切向冲击醪垢,高压水在醪垢上产生强大的
冲击力将其击碎,从而露出被清洗的设备表
面。高压水清洗需专业设备,已广为酒精厂
采用。
5小结
5.1 通过对酒精生产中醪垢形成原因分
析,找出了结垢因子、结垢机理、结垢条件,
为预防与清洗提供了理论依据,对醪垢预防
和处理具有普遍指导意义。
5.2 醪垢的预防和清除,有些是从理论
上给出的方法,如化学防垢法,虽然在其它
行业已成功应用,但在醪垢处理上尚需实
践;有些是从实践角度给出的方法,为成熟
经验,如物理防垢法、CIP清洗法等可直接
使用。
5.3 实践证明,利用离心清液回配数学
模型,可随时监测结垢因子浓度,确定最佳
回配比,使结垢因子浓度控制在允许范围
内。
④ 蒸馏烧瓶内固体被烧焦如何清理
您好,一般要根据烧瓶内剩余物质的性质来决定清洗液,避免发生特殊反应产生有毒有回害物质而造成危险。一般常答用的清洗液有热NaOH溶液,稀盐酸,乙醇,二氧甲烷,DMSO等,配合刮刀或试管刷进行清洗,希望对你有帮助。
⑤ 中号冲洗器能装多少毫升水一百毫升水中号冲洗器装到哪怎么计量容器水多少是否一百毫升
蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 1.有机物中的胺根在强热和CuSO4,浓H2SO4 作用下,硝化生成(NH4)2SO4 反应式为: CuSO4 +2NH2-+H2S04+2H+=(NH4)2S04 2.在凯氏定氮器中与碱作用,通过蒸馏释放出NH3 ,收集于H3BO3 溶液中 反应式为: (NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4 2NH3+4H3BO3=(NH4)2B4O7+5H2O 3. 用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量 反应式为: (NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3 (NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3 [编辑本段]2 试剂 所有试剂均用不含氨的蒸馏水配制。 2.1 硫酸铜。 2.2 硫酸钾。 2.3 硫酸。 2.4 2%硼酸溶液。 2.5 混合指示液:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶液与1份0.1%次甲基蓝乙醇溶液临用时混合。 2.6 40%氢氧化钠溶液。 2.7 0.025mol/L硫酸标准溶液或0.05mol/L盐酸标准溶液。 [编辑本段]3 仪器 定氮蒸馏装置:如图所示。 凯氏定氮法仪器1.安全管 2.导管 3.汽水分离管 4.样品入口 5.塞子 6.冷凝管 7.吸收瓶 8.隔热液套 9.反应管 10.蒸汽发生瓶 [编辑本段]4 操作方法 1、 样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,3g硫酸钾及20毫升硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45度角斜支于有小孔的石棉网上,小火加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5小时。取下放冷,小心加20ml水,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸铵同一方法做试剂空白试验。 2、 按图装好定氮装置,于水蒸气发生器内装水约2/3处加甲基红指示剂数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水。 3、 想接收瓶内加入10ml 2%硼酸溶液及混合指示剂1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将10ml 40%氢氧化钠溶液倒入小玻璃杯,提起玻璃塞使其缓慢流入反应室,立即将玻璃盖塞紧,并加水于小玻璃杯以防漏气。夹紧螺旋夹,开始蒸馏,蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min。移动接收瓶,使冷凝管下端离开液皿,再蒸馏1min,然后用少量水冲洗冷凝管下端外部。取下接收瓶,以0.01N硫酸或0.01N盐酸标准溶液定至灰色或蓝紫色为终点。 同时吸取10.0ml试剂空白消化液按3操作。 计算: X =((V1-V2)*N*0.014)/( m*(10/100)) +F*100 X:样品中蛋白质的含量,g; V1:样品消耗硫酸或盐酸标准液的体积,ml; V2:试剂空白消耗硫酸或盐酸标准溶液的体积,ml; N:硫酸或盐酸标准溶液的当量浓度; 0.014:1N硫酸或盐酸标准溶液1ml相当于氮克数; m:样品的质量(体积),g(ml); F:氮换算为蛋白质的系数。蛋白质中的氮含量一般为15~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.70,玉米、高粱为6.24,花生为5.46,米为5.95,大豆及其制品为5.71,肉与肉制品为6.25,大麦、小米、燕麦、裸麦为5.83,芝麻、向日葵为 5.30。 [编辑本段]注意事项 (1) 样品应是均匀的。固体样品应预先研细混匀,液体样品应振摇或搅拌均匀。 (2) 样品放入定氮瓶内时,不要沾附颈上。万一沾附可用少量水冲下,以免被检样消化不完全,结果偏低。 (3) 消化时如不容易呈透明溶液,可将定氮瓶放冷后,慢慢加入30%过氧化氢(H2O2)2-3ml,促使氧化。 (4) 在整个消化过程中,不要用强火。保持和缓的沸腾,使火力集中在凯氏瓶底部,以免附在壁上的蛋白质在无硫酸存在的情况下,使氮有损失。 (5) 如硫酸缺少,过多的硫酸钾会引起氨的损失,这样会形成硫酸氢钾,而不与氨作用。因此,当硫酸过多的被消耗或样品中脂肪含量过高时,要增加硫酸的量。 (6) 加入硫酸钾的作用为增加溶液的沸点,硫酸铜为催化剂,硫酸铜在蒸馏时作碱性反应的指示剂。 (7) 混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色,在酸性溶液中呈红色。如果没有溴甲酚绿,可单独使用0.1%甲基红乙醇溶液。 (8) 氨是否完全蒸馏出来,可用PH试纸试馏出液是否为碱性。 (9) 吸收液也可以用0.01当量的酸代表硼酸,过剩的酸液用0.01N碱液滴定,计算时,A为试剂空白消耗碱液数,B为样品消耗碱液数,N为碱液浓度,其余均相同。 (10) 以硼酸为氨的吸收液,可省去标定碱液的操作,且硼酸的体积要求并不严格,亦可免去用移液管,操作比较简便。 (11) 向蒸馏瓶中加入浓碱时,往往出现褐色沉淀物,这是由于分解促进碱与加入的硫酸铜反应,生成氢氧化铜,经加热后又分解生成氧化铜的沉淀。有时铜离子与氨作用,生成深兰色的结合物[Cu(NH3)4]2+ (12) 这种测算方法本质是测出氮的含量,再作蛋白质含量的估算。只有在被测物的组成是蛋白质时才能用此方法来估算蛋白质含量。 管道直饮水,采用纳滤膜特有的选择透过性性能,可脱除自来水中有机物、细菌和病毒,保留水中有益于人体的微量元素,是对“自来水饮用水的深度处理”,经臭氧、紫外线、变频恒压输出至用户可直接生饮的水。 分质供水是指根据生活中人们对水的不同需要,由市政提供的自来水为生活饮用水,采用特殊工艺将自来水进行深度加工处理成可直接饮用的纯净水,然后由食品卫生级的管道输送到户,并单独计量。这种直接饮用的纯净水分纯水或净水,即按照中华人民共和国GB 17323《瓶装饮用纯净水》,以符合生活饮用水卫生标准的水为原料,通过反渗透膜(Revvrse Osmosis Element/RO)净化处理后,称为纯水。按照建设部CJ 94《饮用净水水质标准》[3],用同样符合生活用水卫生标准的水为原料,通过纳滤膜(Nanofiltration Element/NF)或法国卡提斯(CARTIS)载银活性炭净化处理后,称为净水。 国家《生活饮用水管道分质直饮水卫生规范(讨论稿)》[2]要求管道直饮水用户龙头出水任何时间必须符合《饮用净水水质标准(CJ 94-1999)》[3]规定要求。管道分质直饮水系统的设计生产必须符合《管道直饮水系统技术规程(讨论稿)》[4],在法规上给予了严格的行业规范和强有力的卫生行政执法依据,真正确保每一个小区管道分质直饮水用户的饮水卫生安全与饮用健康,这便是新一代的高效、绿色环保、节能型水质处理供水装置。 1.2直饮水 以上纯水或净水经臭氧气液混合后密封于容器中且不含任何添加物,再通过紫外线照射,经电子(场)水处理器(微电解杀菌器)流经的水在微弱的电场中产生大量具有极强和广谱杀生能力的活性水,由食品卫生级管道供每家每户直接饮用,可供直接饮用的水叫直饮水。 1.3直饮机 管道直饮机,是在饮水机的基础功能上增加进水自动控制器,使用时只需将管道直饮机与饮用水管道直接联接,实现自动进水,可直接饮用的饮水机。是现代住宅小区、写字楼供水的终端饮水设备。 1.4管道分质供水系统 管道分质直饮水及直饮机是将水处理装置与供水管网、管道直饮机有机的结合,在处理工艺上都有严格要求和卫生规范,工艺中除沉淀、吸附、过滤常规方式外,采用新的水处理材料及工艺,用铜锌滤料(KDF)替代石英砂;用臭氧(Ozone/Q3)与颗粒活性炭(Grancule Activated Carbon/GAC)结合成生物-活性炭法(Biological Activated Carbon/BAC)消毒方式替代普通活性炭(Activated Carbon/AC);用钛金属滤芯(HDF)替代聚丙烯(PPF);用超滤膜(Ultrafiltration Element/UF)作为预处理;用纳滤膜(Nanofiltration Element/NF)或卡提斯(CARTIS)替代通常的逆渗透膜(Revvrse Osmosis Element/RO),将水的利用率提高;将电量的消耗减少,产品水主要采用臭氧加紫外线杀菌器的最佳组合,增加电子(场)水处理器(微电解杀菌器),是管道分质供水系统管网循环杀菌的理想产品。对管网进行定期循环,经卡提斯(CARTIS)处理过的水溶氧量大,增加了水的活性,能抑制细菌生长,可持续保鲜,有效保证管网内水的新鲜与饮用卫生安全。系统的供水量严格遵守每天的按用水需求量设计,再加上管道直饮机内储存水容量不会大于3升(家用型)、30升(单位型),保持随时饮用随时补充新鲜水。国家《生活饮用水管道分质直饮水卫生规范(2002)》[2]标准(讨论稿)要求管道直饮水用户龙头出水任何时间必须符合《饮用净水水质标准(CJ94-1999)》[3]。由于直饮水水质纯净,口感甜润,每天的产水每天饮用完,管网系统每天定时用臭氧、紫外线杀菌、电子(场)水处理器消毒保鲜,水中含氧量的提高能预防直饮水的二次污染,使每天的直饮水新鲜可口。给水采用恒压变频水泵输送,满足高层建筑要求。分质供水非常适应于现代城市住宅小区管道直接饮用水的需求,从而提高人民生活质量。 1.5预处理装置 预处理装置是将自来水经臭氧氧化、活性炭吸附、5μm精度多级过滤,使原水达到初级净化的装置。其由臭氧水处理仪、原水罐、增压泵、铜锌沉淀过滤、活性炭吸附过滤、金属钛棒微孔精密过滤,经预处理后的水满足超滤膜净化处理,提供给予后置反渗透膜或纳滤膜进水要求。 1.6水质深度处理装置 水质深度处理装置是将经预处理后的水,由高压泵加压作用于反渗透膜(简称RO)或反渗透膜纳滤膜(简称NF)的反渗透功能达到纯净水的目的[9],电导率检测仪、臭氧装置、紫外线消毒杀菌器、和微电脑控制电器组合而成。通过去除水中有机物(如三卤甲烷中间体、胶体、悬浮物、微生物、细菌、藻类、霉类等)、热源、病毒、异色异味等,经处理的水质符合卫生部《生活饮用水卫生规范》[1]的有关规定和建设部《饮用净水水质标准(CJ 94-1999)》[3]。 1.5净水的制造方法:纳滤膜渗透法(简称NF) 纳滤渗透膜技术是介于反渗透膜与超滤膜性能之间的承前启后膜技术,作为一种新型分离技术,纳滤膜在其分离应用中表现出下列三个显著特征[7]:一是其截留分子量介于反渗透膜和超滤膜之间,为150~2000 Å;二是纳滤膜对无机盐有一定的截留率,因为它的表面分离层是由聚电解质所构成,对离子有静电相互作用。三是超低压大通量,即在超低压下(0.1MPa)仍能工作,并有较大的通量。也是最先进、最节能、效率最高的膜分离技术。其原理是在高于溶液渗透压的压力下,借助于只允许水分子透过纳滤渗透膜的选择截留作用,将溶液中的溶质与溶济分离,从而达到净化水的目的。纳滤渗透膜是由具有高度有序矩阵结构的聚洗胺合成纳米纤维素组成的。它的孔径为0.001微米(相当于大肠肝菌大小的百分之一,病毒的十分之一)。利用纳滤渗透膜的分离特性,可以有效的去除水中的溶解盐、胶体、有机物、细菌和病毒等,纳滤膜比反渗透膜优异之处,在于除去有害物质相同之下,纳滤膜保留了水分子中人体所需生命元素。有纯净水的口感,矿泉水的微量元素。 2 工艺流程与处理单元 自来水 高频臭氧 活性炭 铜锌滤料 钛金属 增压水泵 超滤膜 直饮水 紫外线 恒压水泵 卡提斯 纳滤膜 高频臭氧 高压泵 电子水处理仪 电脑控制 钛金属 循环水泵 管网用户 2.1生物活性碳(Biological Activated Carbon) 臭氧活性碳技术是目前国际上最先进的水处理工艺,在日、美、欧等发达国家已广泛采用,目前我国采用臭氧消毒处理是水处理消毒的发展趋势。臭氧与颗粒活性炭相结合的臭氧生物活性炭净水处理工艺(BAC法),包括三个过程:臭氧氧化、活性炭吸附和生物降解。BAC法能高效去除水中的有机物,延长活性炭使用寿命。 活性炭(Carbon)是一种经特殊处理的炭,每克活性炭的表面积为500~1500平方米。活性炭有很强的“物理吸附”和“化学吸附”功能,解毒作用就是利用了其巨大的面积,将毒物吸附在活性炭的微孔中,从而阻止毒物的吸收。同时,活性炭能与多种化学物质结合,从而阻止这些物质的吸收。 活性炭能够滤除水中化学有机物、重金属、色度、异味、氯离子等,主要功能改善口感。 生物活性炭[8],臭氧和活性炭处理的结合,一种电解自由基氧化、生物活性炭水处理技术,将需要处理的原水进入处理单元的电解部分,首先经过阳极产生的羟基自由基的氧化和阴极产生的氢自由基在阴极表面的催化加成,使有机物降解脱毒;同时阳极产生的分子态氧供给下一步生物活性炭利用,经降解脱毒后的处理水再经过生物活性炭处理后,有机污染物进一步去除,达到深度处理的目的。使用该技术处理水源水,可以使原水中的挥发性有机物由原来的11种降解至7种,TOC减少85%以上。可以使生活污水的COD减少75%以上。是一种新型的给水或有机废水深度处理的技术,在饮用水深度处理与难降解有机废水处理领域有着广阔的应用前景。生物活性炭的运行周期一般都达3至4年(使用寿命与水源水质有关); 2.2铜锌介质沉淀过滤器(KDF) 铜锌KDF滤料[5]是一种颗粒状高纯度合金,表面有着极强的抗氧化能力,近几年来流行的新型水处理过滤材料[3]。KDF滤料通过离子的氧化还原反应来工作。这种离子交换使许多有害物质成为无害物质,如使氯成为氯化物,重金属等附着在凯得菲KDF滤料上,从而降低了有害物质的含量,用KDF滤料进行水处理是一种简单、低消耗的方法,对于微滤、超滤、纳滤、反渗透膜、离子交换树指、颗粒活性碳等,KDF滤料介质能够保护这些昂贵的水处理组件不受氯、微生物、矿物质结垢的影响,提高系统的使用寿命。此外,KDF滤料能去除水中高达98%的可溶性重金属,如铅、汞、铜、镍、镉、砷,锑、铝等,因此可用于饮用水或其他水处理中重金属的超出的治理。另外,借助沉淀在KDF滤料上发生的氧化还原反应还可以降低水中的碳酸盐,硝酸盐、硫酸盐等。约10年内不用更换滤料(使用寿命与水源水质有关); 2.3钛金属微过滤器(HD) 钛棒过滤芯是以粉沫钛烧结而成,具有抗化学腐蚀,耐高温、耐氧化、寿命长,易清洗, 可再生的特点,最近两年广泛地应用在水处理领域,是一种水的过滤中 比较理想的滤芯,钛棒过滤器操作简单,拆卸方便,可在线完成清洗。采用5微米HD钛棒芯过滤,拦截大于5微米的物体,耐臭氧,主要功能延长膜的寿命,约2年内不用更换滤料(使用寿命与水源水质有关)。《循环管网回水用钛金属微过滤器,采用0.45微米HD钛棒芯过孔径大小滤,拦截大于0.45微米的物体,耐臭氧,约3年内不用更换滤料》。 2.4超滤(UF)膜净化处理器[6] 超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及与孔径大小的小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的的净化、分离和浓缩的目的,可有效去除水中的微粒、胶体、细菌垫层及高分子有机物质,达到保护纳滤膜的功效。 2.5纳滤(NF)膜深度处理器[5] 高压水泵(单泵,也可备一用),提供纳滤膜透过水的工作压力。促进水的渗透,保持产水率。 膜的分离孔径在10-6cm-10-7cm,能除去水中有机物(如三卤甲烷中间体、胶体、悬浮物、微生物、细菌、藻类、霉类等)、热源、病毒等物质,流体经前五级预处理后的水经反渗透RO膜或纳滤NF膜主机深层分离处理后,使有益于人体健康的水通过,不利于人体健康的水排除,脱盐率60-98%。,纳滤膜在产水过程中会截留大量的小于5微米的微粒,如不及时冲洗,在压力的作用下附着在膜表面形成污垢,严重影响膜的渗透。通过电脑定时对电磁阀的控制能及时冲洗膜表面附着的微粒,阻止膜表面污垢的形成,延缓膜的衰减,延长膜的寿命,约3年内不用更换膜元件(使用寿命与水源水质有关)。纳滤膜是超低压,大通量膜,较反渗透膜节电50%,节水10%,。 2.6卡提斯(CARTIS TM)载银活性炭技术 卡提斯粉末中共价键的银对活性碳起到保护和防止污染物腐蚀作用及抑制溶解化合物的毒性析出;粉末吸附余氯和溶解的化合物、重金属,细菌;每克卡提斯粉末面积相当于1500一2000㎡的足球场,卡提斯粉末使吸附的细菌不再变化,卡提斯粉末中共价键的银对于活性碳中细菌起到抑制其滋生作用,就是使其不在繁殖或增加细菌。卡提斯处理后的水在封闭管道里含有相似天然的催化能力;此时的灭菌功效靠卡提斯水中数以千计的微电磁场与水中矿物质相互作用和卡提斯粉末产生的其它方面等等的相关作用对水进行灭菌;同时强大的微电磁场可对输水管道进行清洗和减少结垢现象。因此卡提斯水在封闭管道和容器中的持续灭菌时间会更长。 经过大量的测试显示:卡提斯设备处理后的水,溶解氧可提高30%左右。卡提斯设备处理后的水,将对其水中的致病病菌(厌氧菌)非常有效地进行灭菌并抑制其繁殖。因此在一定的时间内,卡提斯粉末处理后的水口感和卫生指标都是最好的,充分发挥了卡提斯技术的功效。简单试验可以看出:卡提斯处理后的水会产生氧化作用,广泛应用于家庭和社区团体的直饮水、管道分质供水,满足所有对高质量用水的需求。 3 电导率显示仪 在线随时动态显示净水生产的水质状态。 4 高频臭氧水处理仪 4.1臭氧的杀菌特点[12] 臭氧处理生活饮用水,其主要的目的为消毒并降低生物耗氧量(BOD)和化学耗氧量(COD),去除亚硝酸盐、悬浮固体及脱色,已达到全面生产应用的水平。饮用水的处理在使用臭氧设备时,臭氧的投加量一般在1-3mg/L,接触时间10-15分钟即可,可作为选型时根据用水量计算参考。化学耗氧量(锰法)(COD-Mn),溶解性有机物(DOC),紫外消光值(SAC-254nm)。臭氧的投加量的单位为PPm=mg/L。臭氧主要功能是能氧化微生物细胞的有机物或破坏有机体链状结构而导致细胞死亡。因此,臭氧对顽强的微生物如病毒、芽孢等有强大的杀伤力。此外,臭氧在杀伤微生物的同时,还能氧化水中的各种有机物,去除水中的色、嗅、味和酚等能抑制微生物的繁殖起到净化水的作用;延长CD活性炭、HD钛棒芯、UF膜、NF膜的使用寿命。 当臭氧水中的臭氧浓度达到灭菌浓度0.3mg/L时,消毒和灭菌作用瞬间发生,水中剩余臭氧浓度达0.3mg/L时,在0.5~1分钟内就可以100%的致死细菌,剩余臭氧浓度达到0.4mg/L时,1分钟内对病毒的灭活率达100%[10]。 臭氧氧化其它物质和有机质,最终生成无害的氧气、水和二氧化碳,剩余臭氧在常温下半衰期为20~50分钟,数小时后全部分解,还原为氧气。因而臭氧发生器也成为所有矿泉水、纯净水生产企业必选的先进杀菌消毒设备。纯氧气经电解生成臭氧气,经气液混合泵混合于水箱水中, 臭氧气溶水效率达98%,增加了水中的活性氧。臭氧装置由制氧机、臭氧发生器、气液混合泵、储水罐组成。供水系统为了防止纯净水的二次污染,延长纯净水的存放时间,由微电脑通过气液混合泵自动完成臭氧气与净化水的混合,臭氧投加量为1-5mg / L , 接触时间为4-10min,维持臭氧气在水中浓度0.5-1mg / L剩馀臭氧浓度。仅30秒起到最佳杀菌功效,杀菌率可达100%。臭氧杀菌不产生有害气体物质、无污染、无残留物,环保节能等优点;臭氧溶于水中,臭氧在水中分解时,所产生氢氧基具有强大的氧化力,可将水中的杂质如铁、锰、臭味、细菌、病毒等迅速清除,并将水分子变小,使水的味道甘甜。且自来水中的氯或卤代有机物也可完全消除。(详情请参照《臭氧对水质处理之特性》专栏)。并产生负离子。臭氧在水中约20分钟至30分钟会分解一半,因此臭氧在水中静止1小时后很快就会还原成氧气。 臭氧是无毒物质安全气体,在浓度高于1.5mg/L以上时,人员须离开现场,原因是臭氧刺激人的呼吸系统,严重会造成伤害,为此,臭氧工业协会制定卫生标准: 国际臭氧协会:0.1mg/L,接触10小时 美 国:0.1mg/L,接触8小时 德、法、日等国:0.1mg/L,接触10小时 中 国:0.15mg/L,接触8小时 以上是人在臭氧化气体环境下的安全卫生标准,其浓度与接触时间的乘积可视为基准点。“应用臭氧一百多年来,世界没有发生一起臭氧中毒事件”。 臭氧浓度以重量百分比表示,分别取0~2.0之间八个数值,通过接触装置反应五分钟后的数据。 表1 臭氧水浓度与臭氧浓度对照表为: 臭氧浓度 0.2 0.4 0.6 0.8 1.0 1.5 2.0 臭氧水浓度 0.35 0.55 0.75 0.85 1.15 1.65 2.15 以上结果表明,臭氧水的浓度与臭氧浓度成线性正比关系,制备高浓度的臭氧水必须先产生出高浓度的臭氧。因此,在现场使用过程中,很多单位采用了氧气作为气源来产生臭氧。在实验中当臭氧浓度(重量百分比)达到3.0时,臭氧水的浓度可达到15mg/L以上。 表2 国内外公认的臭氧灭菌消毒的实验数据 臭氧消毒 投放浓度 投放时间 病毒、病原体种类 杀灭效率 10mg/m³ 20分钟 乙型肝炎表面抗原 (HbsAg) 99.99% 0.5mg/L 5分钟 甲型流感病毒 99% 0.13mg/L 30秒 脊髓灰质炎病毒I型 (PVI) 100% 40µg/L 20秒 大肠杆菌噬菌体 ms2 98% 0.25mg/L 1分钟 猿轮状病毒SA-H 和人轮状病毒2型 99.60% 4mg/L 3分钟 艾滋病毒 (HIV) 100% 8mg/m³ 10分钟 支原体(Mycoplasma)、 衣原体(Chlamydia)等 病原体 99.85% 5 恒压变频装置(单泵,也可一备一用或二备一用) 由微处理器、压力传感器、运算放大器、变频器、断路器、液位传感器、可编程序控制器、触摸显示屏人机操作界面组成。水泵按设定的压力变频运行,保证管网压力恒定不变,不用水时自动停机,用水时自动补水,维持管网流量恒定。变频器电子保护功能:过载保护、高低电压保护、瞬间跳电保护、逆转保护、过热保护、漏电保护、欠相保护、无水停机保护等, 均可达到运动功能的显示, 查找故障原因,并能达到自动复位的功能。恒压变频装置控制器应用的最大优势是,恒压、节电。 6 紫外线杀菌器[10] 利用紫外线C波段《T253.7nm (240 - 260nm)》对细菌、病毒等致病微生物具有高效、广谱杀灭的能力,就是以紫外线破坏及改变微生物的组织结构(DNA-核酸),使其丧失复制、繁殖的能力。抑制微生物活动力以达到杀菌作用的杀菌力取决于紫外线输出量的大小,紫外线输出量不低于300000μW/cm2时(在此强度下消毒时间不超过0.8秒),在额定水流量内瞬间杀菌灭各种细菌、病毒。杀菌率可达99%~99.99%。具有保鲜效果的富氧水再经紫外线杀菌器输出,不改变水的性状、原色、原味,不产生任何消毒副产物,能确保饮用水原汁原味,卫生安全,灯管寿命约10000小时,实际装置的设计照射量相当于D10×4,即50mw.s/cm2以上。 紫外消毒的杀菌原理是利用紫外线光子的能量破坏水体中各种病毒、细菌以及其它致病体的DNA结构,使各种病毒、细菌以及其它致病体丧失复制繁殖能力,达到灭菌的效果。 通常,水消毒用的紫外线灯的中心辐射波长是253.7nm。显然,紫外线的杀菌效果取决于紫外线的辐射强度和照射时间的乘积,即辐照剂量。表1列出了微生物不同杀灭率需要的紫外线辐照剂量值,试验水样染菌1×105cfj/L,水深2cm
⑥ 凯氏定氮法,为什么冷凝管下端要浸入液面以下怎样知道蒸馏是否完全蒸馏结束要注意什么
冷凝管下端进入页面以下是因为氮是也氨气的形式蒸馏出来的,如果不在页面以下,就不能完全的被吸收液吸收,造成结果偏小。氨是否完全蒸馏完全,可用PH试纸试检测馏出液是否为碱性。蒸馏完全后就去滴定。
如果是用的凯氏定氮仪的话,结束后只要注意机子的保养就好了,如果是自己组装的装置那就要就要注意:蒸馏结束后,掐紧簧夹,断绝蒸气,使反应室内溶液全部吸人回流管中,再放松簧夹,从小漏斗加入蒸馏水40~50ml。
再通蒸气加热和回流,放掉回流管中残液,这样反复3~4次,将反应室洗涤干净,才能备下一次测试用(标准书上只洗一次,不易洗净)。
在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
(6)蒸馏反应室如何清洗扩展阅读:
蛋白质与浓硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,并换算成蛋白质含量。含氮量*6.25=蛋白含量。
在整个消化过程中,不要用强火。保持和缓的沸腾,使火力集中在凯氏瓶底部,以免附在壁上的蛋白质在无硫酸存在的情况下,使氮有损失。
如硫酸缺少,过多的硫酸钾会引起氨的损失,这样会形成硫酸氢钾,而不与氨作用。因此,当硫酸过多的被消耗或样品中脂肪含量过高时,要增加硫酸的量。
加入硫酸钾的作用为增加溶液的沸点,硫酸铜为催化剂,硫酸铜在蒸馏时作碱性反应的指示剂。
混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色,在酸性溶液中呈红色。如果没有溴甲酚绿,可单独使用0.1%甲基红乙醇溶液。
⑦ 求花生粕和豆粕用定氮仪测定粗蛋白含量的方法
凯氏定氮法
用于测定有机物的含氮量,若蛋白质的含氮量已知时,则可用此法测定样品中蛋白质的含量。当蛋白质与浓硫酸共热时,其中的碳、氢两元素被氧化成二氧化碳和水,而氮则转变成氨,并进一步与硫酸作用生成硫酸铵。此过程通常称为“消化”。但是,这个反应进行得比较缓慢,通常需要加入硫酸钾或硫酸钠以提高反应液的沸点,并加入硫酸铜作为催化剂,以促进反应的进行。消化完成后,在凯氏定氮仪中加入浓碱,可使消化液中的硫酸铵分解,游离出氨,借助水蒸汽蒸馏法,将产生的氨蒸馏到一定量、一定浓度的硼酸溶液中,硼酸吸收氨后,氨与溶液中氢离子结合,使溶液中的氢离子浓度降低,指示剂颜色改变,然后用标准无机盐酸滴定,直至恢复溶液中原来的氢离子浓度为止。根据所用标准盐酸的量可计算出待测物中的总氮量。蛋白质的含氮量为16%,即1克蛋白质中的氮相当于6.25克蛋白质,用凯氏定氮法测出的含氮量乘以6.25,即得样品中蛋白质的含量。
1实验材料1.1器材1.2试剂2实验步骤
实验材料
器材
微量凯氏定氮仪1套;
50ml凯氏烧瓶4个;
移液管;锥形瓶;
试管;
小玻璃珠
试剂
浓硫酸;
30%氢氧化钠溶液;
2%硼酸溶液;
标准盐酸溶液(0.01mol/L)。
粉末硫酸钾—硫酸铜混合物:K2SO4与CuSO4·5H2O以3:1配比研磨混合。
混合指示剂(田氏指示剂):由50ml0.1%甲烯蓝乙醇溶液与200ml0.1%甲基红乙醇溶液混合配成,贮于棕色瓶中备用。
样品溶液:配制3mg/ml的牛血清白蛋白溶液作为样品。
实验步骤
安装凯氏定氮仪。
消化:取4个50ml凯氏烧瓶并标号,各加1颗玻璃珠,在1号及2号瓶中各加样品1ml,催化剂(K2SO4-CuSO4·5H2O)200mg,浓硫酸5ml。注意加样品时应直接送入瓶底,而不要沾在瓶口和瓶颈上。在3号及4号瓶中各加1ml蒸馏水和与1、2号瓶相同量的催化剂和浓硫酸,作为对照。在通风橱内进行消化。在消化开始时应控制火力,不要使液体冲到瓶颈。待硫酸开始分解并放出SO2白烟后,适当加强火力,继续消化,直至消化液呈透明淡绿色为止。撤掉火力,冷却至室温。
蒸馏:
蒸馏器的洗涤:用水洗涤干净微量凯氏定氮仪,在蒸汽发生器中加入用几滴硫酸酸化的蒸馏水和几滴甲基红指示剂,用这样的水蒸气洗涤凯氏定氮仪。约15分钟后,在冷凝器下端倾斜放好装有硼酸-指示剂的锥形瓶,继续蒸汽洗涤2分钟,观察锥形瓶内的溶液是否变色,如不变色则证明蒸馏装置内部已洗涤干净。移走锥形瓶,停止加热,打开夹子。
蒸馏:取下棒状玻塞,用吸管吸取消化液,细心地插到反应室小玻璃杯的下方,塞紧棒状玻塞。将一个含有硼酸和指示剂的锥形瓶放在冷凝器下方,使冷凝器下端浸没在液体内。取30%的氢氧化钠溶液10ml放入小玻璃杯中,轻提棒状玻璃塞使之流入反应室(为了防止冷凝管倒吸,液体流入反应室必须缓慢)。尚未完全流入时,将玻璃塞盖紧,向玻璃杯中加入蒸馏水约5ml。再轻提玻璃塞,使一半蒸馏水慢慢流入反应室,一半留在玻璃杯中作水封。加热水蒸汽发生器,沸腾后夹紧夹子,开始蒸馏。氨气进入锥形瓶,瓶中的酸溶液由紫色变成绿色。变色时起记时,再蒸馏5分钟。移动锥形瓶,使硼酸液面离开冷凝管约1厘米,并用少量蒸馏水洗涤冷凝管口外面,继续蒸馏1分钟,移开锥形瓶,用表面皿覆盖锥形瓶。蒸馏完毕后,须将反应室洗涤干净,再继续下一个蒸馏操作。待样品和对照均蒸馏完毕后,同时进行滴定。
滴定:用0.01mol/L的标准盐酸溶液滴定各锥形瓶中收集的氨量,硼酸指示剂溶液由绿色变淡紫色为滴定终点。
结果计算:
其中:
A为滴定样品用去的盐酸溶液平均ml数;
B为滴定对照液用去的盐酸溶液平均ml数;
C为所取样品溶液的ml数。
现在的公司有现成的仪器可以使用,上面是教材中的原理,哈哈
可以参考下面的网址
⑧ 实验室过去常用洗液来洗涤玻璃仪器,其原理是什么
常用洗液之一是铬酸洗液,是由浓硫酸和重铬酸钾配制而成,浓硫酸有强氧化性,重铬酸钾在酸性条件下也有强氧化性,所以,这两种物质足以将有机物氧化成小分子物质而去除掉。这种洗液主要去除有机物,这种洗液主要去除有机物。
清洗方式及原理:
1,根据物质的性质。如果用的是碱性的东西,一般用酸来清洗,反之依然。
2,用溶剂来洗。根据相似相溶原理,极性的物质溶解在极性中非极性的溶解非极性的,或用混合溶剂。比如乙醇或丙酮,洗完后很容易挥发干净。
3,用强氧化剂浸泡。如洗液,有时可以稍微加热一下。
4,浸煮。结合加热,比如用蒸馏水、洗衣粉溶液、碱液、酸液等来煮。以及其他方法清洗后用蒸馏水煮干净。
实验室玻璃仪器洗涤注意事项:
1,初用玻璃仪器的清洗:新购买的玻璃仪器表面常附着有游离的碱性物质,可先用0.5%的去污剂洗刷,再用自来水洗净,然后浸泡在1%~2%盐酸溶液中过夜(不可少于4小时),再用自来水冲洗,最后用无离子水冲洗两次,在100℃~120℃烘箱内烘干备用。
2,使用过的玻璃仪器的清洗使用过的玻璃仪器的清洗,可先用自来水洗刷至无污物,再用合适的毛刷沾去污剂(粉)洗刷,或浸泡在0.5%的清洗剂中超声清洗(比色皿决不可超声),然后用自来水彻底洗净去污剂,再用无离子水洗两次。
3,石英和玻璃比色皿的清洗:绝不可用强碱清洗,因为强碱会侵蚀抛光的比色皿。只能用洗液或1%~2%的去污剂浸泡,然后用自来水冲洗,这时使用一支绸布包裹的小棒或棉花球棒刷洗,效果会更好,清洗干净的比色皿内外壁不挂水珠。
4,生化实验中用到的玻璃和塑料器皿经常需要干燥,通常都是用烘箱或烘干机在110℃~120℃进行干燥,而不要用丙酮荡洗后再吹干的方法来干燥,因为那样会有残留的有机物覆盖在器皿的内表面,从而干扰生物化学反应。