导航:首页 > 蒸馏问题 > 双瓶亚沸蒸馏

双瓶亚沸蒸馏

发布时间:2022-03-15 09:43:35

蒸馏瓶和烧瓶的区别(要图)

那两个一样的,蒸馏烧瓶瓶口多了一跟玻璃管子

⑵ 化学实验室中制取蒸馏水都用什么仪器

应该用到铁架台,冷凝管,酒精灯,实木块,石棉网,锥形瓶和温度计。对了再买一些软木塞和软导管。就这些了,希望对你有帮助。。。。

⑶ 铁、铜、锌同位素测定

铁、铜、锌同位素多接收器等离子体质谱法测定

自然界中Fe有4个稳定同位素,分别为54Fe、56Fe、57Fe和58Fe;Cu有2个稳定同位素,分别为63Cu和65Cu;Zn有5个稳定同位素,分别为64Zn、66Zn、67Zn、68Zn和70Zn。目前,国际上通用的Fe同位素标准物质为IRMM-014,Cu同位素标准物质为SRM976。目前还没有经过严格同位素组成定值的Zn同位素标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。“里昂标准”是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。

多接收器等离子体质谱仪(MC-ICPMS)的诞生使得精确测试Fe、Cu、Zn同位素组成成为可能。MC-ICPMS的优势主要是离子化效率高以及测定精度高。

自20世纪90年代末期以来,Fe、Cu、Zn同位素研究受到了广泛的关注并且被快速地应用于宇宙化学、地球化学和生物作用过程领域,成为国际地球科学和生命科学领域一个新兴的研究方向。这些新的同位素体系为了解地球各圈层中的相互作用提供一种崭新的地球化学示踪手段。各国学者对不同的样品进行了Fe、Cu、Zn同位素分析,其中包括:地外物质、火成岩、沉积岩、各种矿物、海水、河水、地下水、生物体等。δ56Fe的变化范围为-2.96‰~0.44‰(Anbar,etal.,2007);δ65Cu的变化范围为-3.70‰~5.74‰(Anbar,etal.,2007);δ66Zn的变化范围为-2.65‰~3.68‰(Luck,etal.,2005;Wasson,etal.,1999)。

随着研究和应用工作的进一步深入,Fe、Cu、Zn同位素势必将成为地球科学和生命科学研究中的一种重要的地球化学手段。

方法提要

采用酸溶法将天然样品中的Fe、Cu、Zn提取出来,使用AGMP-1阴离子树脂对Fe、Cu和Zn进行分离和纯化,制成分别含Fe、Cu、Zn的溶液。使用MC-ICPMS进行Fe、Cu、Zn同位素组成的测定。

仪器和装置

多接收器电感耦合等离子体质谱仪(Nu Plasma、Nu PlasmaHR、Nu Plasma1700、Ne ptune、Iso Probe)。

自动进样器。

膜去溶装置。

超净化学实验室。

双瓶亚佛蒸馏器。

电子分析天平。

水纯化系统。

高精度移液器。

超声波洗涤器。

试剂与材料

超纯盐酸由优级纯盐酸经聚四氟乙烯双瓶亚沸蒸馏制得。用于铜同位素分析需亚沸蒸馏2次。

超纯硝酸由优级纯硝酸经聚四氟乙烯双瓶亚沸蒸馏制得。

超纯氢氟酸由优级纯氢氟酸经聚四氟乙烯双瓶亚沸蒸馏制得。

纯水自来水经预纯化、初级纯化、高级纯化三级纯化系统(如Millipore、Elga等水纯化系统)获得,电阻率18.2MΩ·cm。

双氧水优级纯。

Fe、Cu、Zn单元素标准溶液光谱纯试剂配制盐酸或硝酸介质。

聚四氟乙烯器皿溶样杯、洗瓶、试剂瓶、广口瓶等。

IRMM-014铁同位素标准物质,SRM976铜同位素标准物质。

高纯度液氩。

AGMP-1阴离子树脂。

离子交换柱的制备采用聚乙烯材料交换柱(规格:6.8×43mm)。AGMP-1树脂首次用前先以水浸泡,弃去上浮颗粒,湿法装柱。先以0.5mol/LHNO3和H2O交替洗数次,再以7mol/LHCl+0.001%H2O2平衡。

器皿清洗实验用器皿需经严格的清洗才能满足超净化学实验要求,基本清洗步骤如下:①优级HNO3加热浸泡24h后,用超纯水清洗3遍;②超纯HNO3加热浸泡24h后,用超纯水清洗3遍;③超纯水加热浸泡24h后,再用超纯水清洗3遍。

分析步骤

(1)试样消解

a.硅酸盐试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量HNO3和HF,加热至120℃,恒温至试样完全消解;蒸干后再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态。

b.碳酸盐试样的消解。根据试样中铁铜锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量2mol/LHCl,加热至120℃,恒温24h,取出上清液;残渣用HNO3-HF混合酸消解后蒸干,再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。

c.硫化物试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入2mol/LHNO3,加热至120℃,恒温24h,取出上清液;将上清液蒸干后再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。

d.磁铁矿、赤铁矿、自然铜等试样的消解。将称取的磁铁矿、赤铁矿、自然铜等单矿物试样放入聚四氟乙烯溶样罐中,加入6mol/LHCl,加热至120℃,恒温24h,将上清液取出、蒸干。

(2)化学分离

离子交换纯化。试液以0.5mL7mol/LHCl上柱后,用6mL7mol/LHCl+0.001%H2O2(加H2O2以抑制铁被还原),去除基体元素,再以相同试剂22mL淋洗接收Cu。以20mL2mol/LHCl接收Fe。最后以11mL0.5mol/LHNO3接收Zn(图87.32)。

图87.32 Cu、Fe、Zn淋洗曲线m(Cu)=2μg,m(Fe)=200μg,m(Zn)=20μg

该方法的优点是使用同一离子交换柱实现Cu、Fe、Zn的依次分离。在7mol/LHCl介质条件下,Cu和Co的洗脱曲线重迭(唐索寒等,2006),当试液中Co的含量较高时,会影响Cu同位素比值的准确测定(蔡俊军等,2006)。在6mol/LHCl介质条件下,可以进行Cu和Co的有效分离(唐索寒和朱祥坤,2006)。另外,如果只对试液进行Fe或Zn同位素分析,可适当改变HCl的酸度,减少试剂用量,降低本底。

(3)质谱测定

a.进样方式。纯化后的试液以0.2mol/LHCl或HNO3介质进样。试液通过蠕动泵进入雾化器,形成气溶胶经雾室进入炬管,这就是所谓的“湿等离子体”(wetplasma);或通过膜去溶装置,将溶剂加热挥发穿过半透膜被吹扫气带走,载气将溶质以干气溶胶形式送入炬管,这就是所谓的“干等离子体”(dryplasma)。

与湿等离子体相比,干等离子体技术可以降低挥发性组分产生的干扰信号或噪音,提高信号的灵敏度。对于NuPlasmaHR,在干等离子体工作条件下,Fe的进样浓度约为5×10-6,Cu、Zn的进样浓度约为2×10-7

为防止交叉污染,在试样-标样或不同试样测量之间需用与进样介质相同的酸对进样系统进行清洗,使待测元素的信号强度降低到可以忽略的程度后进行下个试样或标样的测定。为了提高清洗效果,可首先用较高酸度的酸(一般为2mol/L)清洗,然后用与进样介质相同酸度的酸清洗。

b.数据采集。同位素信号用法拉第杯接收。信号接收前需进行背景值测定,背景值的测定一般有3种模式:①峰位模式(onpeakmode):在不进样的情况下测定各个同位素峰位的背景值。②半峰位模式(half-peakmode):在不进样的情况下测定与待测同位素有半个原子质量数差的位置的噪声,以此作为峰位的背景值。③ESA偏转模式(ESA-offsetmode):在进样的情况下偏转EAS电压,阻止信号进入磁场和接收器,测定仪器噪声,以此作为峰位的背景值。

上述3种背景值测定方法各有利弊。峰位模式是最直接的测定方式,但由于在实际操作过程中难以做到试样测试之间对进样系统的彻底清洗,这种方法得到的背景值实际上含有一定程度的试样信号。ESA偏转模式测得的是仪器的电子噪声,是严格意义上的背景值;在试样测试过程中,实际背景值不仅包括电子噪声,还包括各种离子的散射对待测信号的影响。利用半峰模式进行背景值测定的原理是假定在远离待测同位素峰半个质量数的位置没有实际试样的信号,并且背景值的分布是均一的;实际上散射离子的分布并不一定均一,由于一些双电荷离子的存在可能在某些半个质量数位置存在一定的信号峰。

完成背景值测定之后即进行试样测定,试样的实际信号等于测量信号减去背景值。这一过程可以由计算机在线直接完成,也可以根据需要离线操作。

信号采集在计算机的控制下自动进行。在进行Fe、Cu、Zn同位素测量时,如果每个数据点的积分时间为10s,每组(block)数据采集10~20个数据点即可。

(4)仪器质量分馏校正与数据表达

a.仪器质量分馏校正。与TIMS相比,MC-ICPMS同位素分析可以产生较大的仪器质量歧视(instrumental mass discrimination)。在正常仪器工作条件下,Fe、Cu、Zn同位素质量范围的仪器质量歧视为3%u-1。原则上,用MC-ICPMS进行同位素比值测定时仪器的质量歧视可以通过元素外标法(element doping method)、标样-试样交叉法(standard-sample-bracketing method)或双稀释剂法进行校正。

标样-试样交叉法。在仪器调试稳定后,进行标样-试样的交叉测定。以试样前后两次标样结果的平均值为标准,计算试样的同位素组成相对与标样的偏差。该方法的最大优点是操作简便,但要求化学纯化过程的回收率达到99%以上,以避免纯化过程中可能造成的同位素分馏。运用标样-试样交叉法进行仪器质量歧视校正的前提,是仪器对于标样和试样的质量歧视在测试误差范围内相同。在实际操作过程中,标样的同位素比值是通过试样测定前后两次标样测定值的内差获得,因此该方法允许测试过程中存在相对均匀的质量分馏飘移。

元素外标法。在试样和标样溶液中加入与待测的元素的质量数相近的至少具有两个同位素的元素(进行Cu同位素测定时一般以Zn为外标元素,进行Zn同位素测定时一般以Cu为外标元素,进行Fe同位素测定时可以Ni为外标元素),对这两个元素的同位素进行同时测定,选择符合所用仪器的质量分馏规律,以外标元素为标准计算质量分馏因子,假定待测元素的同位素的质量分馏因子与外标元素的相同,计算试样和标样的待测元素的同位素“真值”,再根据此“真值”计算试样的同位素组成与标样的偏差。应当指出,运用元素外标法进行同位素测定时,仍需按标样-试样交叉法的程序进行。与单纯的标样-样品交叉法相比,该方法有可能在一定程度上提高试样的测试精度。

双稀释剂法。除了上述两种方法外,进行Fe同位素测定时还可用双稀释剂法。该方法在样品处理前定量加入已知同位素比值的两种Fe同位素(一般为57Fe和58Fe),选择适合所用仪器的质量分馏规律,对试样和标样测试过程中的质量分馏进行校正,获得试样和标样同位素组成的“真值”。该方法的优点是对试样化学处理的要求相对较低,并且可以避免测试可能存在的基质效应。该方法操作繁琐,并且不能对试样所有Fe同位素进行测定。

b.标准物质与数据表达。样品的Fe、Cu、Zn同位素组成以相对于标准物质的千分偏差或万分偏差表示:

岩石矿物分析第四分册资源与环境调查分析技术

岩石矿物分析第四分册资源与环境调查分析技术

当前,国际上通用的铁同位素标准物质为IRMM-014,铜同位素标准物质为SRM976。对于锌同位素,由于目前还没有经过严格同位素组成定值的标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。里昂标准是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。

(5)同质异位素干扰运用MC-ICPMS进行Fe、Cu、Zn同位素测定时可能存在一系列的同质异位素干扰(表87.29)。概略地讲,这些同质异位素干扰可以分为两类:一类与试样的成分有关,如54Cr+54Fe+64Ni+64Zn+的干扰;另一类与测试方法有关,如[14N40Ar]+54Fe+、[16O40Ar]+56Fe+的干扰。与试样有关的干扰可以通过化学纯化解决(唐索寒等,2006;唐索寒和朱祥坤,2006),而与测试方法本身有关的干扰则需要通过改变工作条件、干扰信号扣除等方法克服。

表87.29 Fe、Cu、Zn同位素测定过程中潜在的干扰信号

a.低分辨率模式下同质异位素干扰的评估。对于绝大多数试样而言,经过化学纯化后可以有效地去除可能的干扰元素,满足MC-ICPMS进行Fe、Cu、Zn同位素测定的要求(唐索寒等,2006;唐索寒和朱祥坤,2006)。

对于Cu、Zn同位素测定,化学纯化后的试样产生的同质异位素干扰信号非常低,加之运用标样-试样交叉法进行仪器质量分馏校正可以抵消部分干扰信号,干扰信号一般可忽略不计。应当注意的是,由于Na无处不在,进行Cu同位素测定时应特别注意可能的Na污染问题,经常性地对试剂中的Na含量进行检测。正常工作条件下,一般应保持试液中的23Na/63Cu<0.01。进行Zn同位素测定时,化学纯化后的试液几乎没有对64Zn+66Zn+的干扰信号,但有可能存在一定程度的对67Zn+68Zn+的干扰(表87.29)。对该问题的一种有效的评估方式是,以一定浓度的Zn溶液为标样,对含不同浓度的Zn的溶液进行测定,检测Zn同位素组成的测定值随浓度的变化情况(李世珍等,2008),并由此得出试液的Zn浓度相对与标样的允许变化范围。如果质量数为67和68的干扰信号难以控制到忽略不计的程度,可只报道66Zn/64Zn比值。

与Cu、Zn同位素不同,在低分辨模式下进行Fe同位素测定时存在较强的同质异位素干扰(表87.29),必须对干扰信号的强度进行详细评估,并通过一系列操作,抑制干扰信号强度,提高信号-干扰比。具体地讲,这些操作过程包括以下几个方面:①通过膜去溶装置进样,去掉溶液中的挥发性组分,降低干扰信号强度。②改变RF输出功率。干扰信号的强度可随RF功率的改变而改变,为了最大限度地降低干扰信号的强度,在低分辨率模式下运行时,需要在1100~1600W寻找RF的最佳输出功率。③降低仪器灵敏度。离子信号通过特制的低灵敏度进样锥进入质谱仪,在降低信号强度的同时,该进样锥可有效地抑制[40Ar14N]+、[40Ar16O]+和[40Ar17O]+等干扰信号的产生。④增加试液浓度。在降低仪器灵敏度的同时,增大试液浓度,提升信噪比,从而降低干扰信号的影响。⑤扣除干扰信号。经过上述操作后对仍存在的干扰信号的大小进行评估,在测得的离子信号中扣除相应的干扰信号。⑥试液与标样的浓度匹配。如上所述,仪器的质量歧视校正通过试液-标样交叉法进行,Fe同位素比值的测定结果以试液相对于标样的千分偏差表示,见公式(87.35)、公式(87.36)。因此,在理想状态下(即干扰信号的波动可以忽略不计),如果标样与试液的浓度完全相同,通过与标样的归一化,干扰信号的影响将被抵消。

b.高分辨率模式下同质异位素干扰的分离。进行Fe同位素测定的主要干扰信号是ArN+、ArO+离子(表87.29)。严格地讲,这些离子和与之相对应的Fe同位素间存在微小的质量差异,利用这一差异,可以在高分辨下实现Fe同位素和对应的ArN+、ArO+离子的有效分离。图87.33为NuPlasmaHR型质谱仪在高分辨模式下将多原子干扰信号与待测信号分开的图解,其中左边标有54、56、57的为真正试液的Fe信号,而中间3线重叠处为干扰信号与试液信号的叠加,右边为干扰信号。取无干扰处的Fe信号就可得到试液真正的Fe信号,从而有效地将干扰去除。

图87.33 高分辨下Fe同位素与干扰峰的分离54Fe+56Fe+57Fe+谱图的叠加

与低分辨相比,仪器在高分辨模式下运行时,信号损失约为90%。在高分辨模式下,采用正常的进样锥,所需试液浓度与低分辨模式下相近。

(6)基质效应与浓度匹配

运用标样-试液交叉法进行仪器质量分馏校正的前提是,在误差范围内,测试过程中仪器的质量分馏对于试样和标样是相同的。如果在测试过程中因试样与标样化学成分的不同而导致仪器质量分馏的变化,将会使运用标样-试样交叉法进行仪器质量校正后的数据偏离真值,这就是所谓的基质效应(matrixeffects)。在运用MC-ICPMS进行同位素测定时,基质效应是个值得重视的问题。例如,在进行Fe同位素测定时,当纯化后的试样中Al的含量大于Fe含量的2%时,Fe同位素的测量值就有可能偏离真值(朱祥坤等,2008)。

基质效应的另一种表现形式是酸度对仪器质量分馏的影响。李津等(2008)发现在HNO3介质条件下进行Cu、Zn同位素测定时,仪器的质量分馏对酸度非常敏感,而在HCl介质中,酸度的影响则小得多。

基质效应的一种特殊表现形式是浓度效应,也就是说,仪器的质量分馏受溶液中待测元素的浓度影响。Zhuetal.(2002)在研究Ti同位素测定方法时首先发现了这一现象,进一步的研究表明,在进行Fe同位素测定时需将样品相对于标样的Fe的浓度偏差保持在15%以内(朱祥坤等,2008)。

综上所述,基于基质效应和测试过程中一定程度的干扰信号的影响,在运用MC-ICPMS进行Fe、Cu、Zn等同位素测定时,必须保持试样和标样中待测元素的浓度以及介质的酸度相匹配。二者间允许的偏差可能与具体仪器和工作条件有关。因此,在Fe、Cu、Zn进行方法移植时,需对相关问题进行细致的调查,进而确定出针对所用仪器的酸度和试样浓度的允许变化范围。

方法的重复性

运用标样-样品交叉法进行仪器质量分馏校正时,Fe、Cu、Zn同位素的测试结果的长期重现性(即外部精度,2SD)一般好于0.05‰每原子质量数。

参考文献和参考资料

蔡俊军,朱祥坤,唐索寒,等.2006.多接收电感耦合等离子体质谱Cu同位素测定中的干扰评估[J].高校地质学报,12:392-397

李津,朱祥坤,唐索寒.2008.酸度对多接收器等离子体质谱法Cu、Zn同位素测定的影响[J].分析化学,36(9):1196-1200

李世珍,朱祥坤,唐索寒,2008.多接收器等离子体质谱法Zn同位素比值的高精度测定[J].岩石矿物学杂志,27(4):273-278

唐索寒,朱祥坤,蔡俊军,等.2006.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试,25:5-8

唐索寒,朱祥坤.2006.AGMP-1阴离子树脂元素分离方法研究[J].高校地质学报,12:398-403

朱祥坤,李志红,赵新苗,等.2008.铁同位素的MC-ICPMS测定方法与地质标准物质的铁同位素组成[J].岩石矿物学杂志,27 (4) : 263-272

Anbar A D,Rouxel O.2007.Metal stable isotopes in paleoceanography [J].Annu.Rev.Earth Planet Sci.,35:717-746

Luck J M,Ben Othman D,Albaréde F.2005.Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes [J].Geochimica Cosmochimica Acta, 69(22) : 5351-5363

Wasson J T, Lange D E, Francis C A, et al.1999.Massive chromite in the Brenham pallasite and the ractionation of Cr ring the crystallization of asteroidal cores [J ].Geochim Cosmochim Acta,63: 1219-1232

Zhu X K,Makishima A,Guo Y,et al.2002.High precision measurement of titanium isotope ratios by plasma source mass spectrometry [J].Intenational Journal of Mass Spectrometry,220: 321-329

⑷ 钐-钕法同位素年龄分析流程

方法提要

氢氟酸+高氯酸溶样。化学分离分两步进行,首先在阳离子树脂交换柱上分离总稀土元素,然后采用离子交换法或萃取色层法从总稀土元素中分出钕、钐。热电离质谱计(TIMS)上测出试样的143Nd/144Nd比值,同位素稀释法测定钐、钕含量(目的是测147Sm/144Nd比值),最小二乘拟合计算等时线年龄,同时给出钕同位素初始比值,或仅计算单个试样的钕模式年龄。高精度的同位素分析和测定等时线年龄时合理选择试样,是测定工作成败的关键。

本方法对测定精度要求,147Sm/144Nd比值相对误差0.5%~1%,143Nd/144Nd比值相对误差1×10-5~3×10-5,等时线年龄在100~1000Ma内,95%置信度,相对误差小于2%~5%。

仪器装置和器皿

热电离质谱计MAT260、MAT261、MAT262、VG354、TRITON等相当类型。

点焊机质谱计的配套设备。

质谱计灯丝预热装置质谱计的配套设备。

聚四氟乙烯烧杯10mL与30mL。

氟塑料(F46)试剂瓶500mL、1000mL与2000mL。

聚乙烯塑料洗瓶250mL、500mL、1000mL。

氟塑料(F46)滴瓶30mL。

氟塑料(F46)烧杯30mL、50mL与250mL。

氟塑料(F46)对口双瓶亚沸蒸馏器1000mL。

石英试剂瓶2000mL。

石英亚沸蒸馏器。

石英减压亚沸蒸馏器。

石英交换柱内 径6mm,高300mm,上部接内径20mm高110mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径6mm,高100mm,13或16支为一组,用于总稀土元素分离。

石英交换柱 内径2mm,高350mm,上部接内径16mm高50mm小口容器,尾端内嵌氟塑料筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径2mm,高300mm,13或16支为一组,用于α-HIBA离子交换分离。

石英交换柱 内径8mm,高180mm,上部接内径20mm高60mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径8mm,高100mm,13或16支为一组,用于萃取色层法钕、钐分离。

石英交换柱 内径30mm,高400mm,上接敞口容器,下端塞聚四氟乙烯纤维,用于阳离子树脂的预处理。

氟塑料(PFA)密封溶样器 15mL。

高压釜 包括30mL聚四氟乙烯闷罐、热缩套、不锈钢外套。

石英滴管。

石英量筒(杯)10mL、50mL。

硬脂玻璃量筒1000mL。

三角玻璃瓶250mL。

玻璃烧杯3000mL。

水纯化系统。

分析天平感量0.00001mg。

酸度计测量精度pH±0.02。

磁力搅拌机。

电热板(温度可控)。

超声波清洗器。

不锈钢恒温烘箱<300℃。

高速离心机。

聚乙烯或石英离心管。

干燥器。

微量取样器10μL与50μL。

器皿清洗

所有使用的氟塑料与石英器皿,用(1+1)优级纯盐酸和优级纯硝酸先后在电炉上于亚沸状态下各煮2h,去离子水冲洗后又用去离子水煮沸1h,再用超纯水一只只冲洗,超净工作柜中电热板上烤干。第一次使用的新器皿在用酸煮沸前,需先用洗涤剂擦洗。

试剂与材料

去离子水二次蒸馏水再经Milli-Q水纯化系统纯化。

超纯水去离子水经石英蒸馏器蒸馏。

超纯盐酸用(1+1)优级纯盐酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步用超纯水配制为需求浓度。

超纯硝酸用(1+1)优级纯硝酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步用超纯水配制为需求浓度。

超纯氢氟酸用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。

超纯高氯酸用优级纯高氯酸经石英蒸馏器减压亚沸蒸馏制备。

丙酮优级纯。

无水乙醇分析纯。

超纯氢氧化铵用高纯氢氧化铵在密封干燥器中平衡法制备。

200~400目AG50×8或Dowex50×8强酸性阳离子交换树脂,或其他性能相似、性能更好的树脂。

α-羟基异丁酸(α-HIBA)分析纯。

二-2-乙基己基正膦酸(HDEHP,P204)分析纯。

P204(HDEHP)萃淋树脂。

P507(HEHEHP)萃淋树脂。

聚四氟乙烯粉末。

200~400目AG1×8或Dowex1×8强碱性阴离子交换树脂。

铀试剂Ⅲ(偶氮胂Ⅲ)溶液(wB=0.08%)用分析纯固体铀试剂Ⅲ与超纯水配制。

145Nd或146Nd稀释剂富集145Nd或146Nd同位素的固体氧化钕(Nd2O3)。

149Sm或147Sm稀释剂富集149Sm或147Sm同位素的固体氧化钐(Sm2O3)。

145Nd(或146Nd)+149Sm(或147Sm)混合稀释剂溶液溶液配制与浓度标定见附录86.3A。

普通氧化钕(Nd2O3)光谱纯基准物质,保存在干燥器中。

普通氧化钐(Sm2O3)光谱纯,基准物质,保存在干燥器中。

GBW04419全岩,钐-钕法国家一级标准物质。

实验室专用薄膜(Parafilm)。

超纯硝酸c(HNO3)=3.5mol/L用高浓度超纯硝酸和超纯水配制。

铼带规格18mm×0.03mm×0.8mm

试样分解

操作程序分两种情况:①钐、钕含量的稀释法测定(ID)和钕同位素组成(IC)测定,分别称样、溶样。②一次称样、溶样,但是在试样完全分解后将溶液分成ID和IC两个分样。前者适用于均匀性好的试样,后者多用于均匀性差的试样。

1)当分别溶样时,ID测定是在PFA密封溶样器中称取0.05g(精确至0.00001g)粉末样,按最佳稀释度要求加0.1~0.15g145Nd+149Sm混合稀释剂溶液(精确至0.00001g),轻微晃动使试样充分散开,加5mL左右超纯氢氟酸和几滴超纯高氯酸;IC测定是在PFA密封溶样器中称取0.1~0.2g粉末样,加5~8mL超纯氢氟酸和几滴超纯高氯酸,在大量酸加入前先加入少量,同样轻微地晃动使试样充分散开。紧密盖上溶样器盖子,置于电热板上于150℃温度下加热分解,在加热过程中也需要经常轻微摇动溶样器,加速试样分解。当试样完全分解后打开盖子蒸干溶液,升高电热板温度(180℃左右)赶尽多余氢氟酸和高氯酸,用2mL6mol/L超纯盐酸淋洗溶样器内壁,蒸干,再用5mL2.5mol/L超纯盐酸溶解干涸物,此时溶液很清亮,准备上柱。如果溶液出现浑浊或残渣需进行离心分离,取上部清液上柱。

2)当ID、IC测定采用一次溶样时,先称取0.2g(精确至0.00001g)粉末样,以后的试样分解过程与前面程序相同。在试样完全分解、被处理成5mL左右的清液后,在天平上大致按1∶2的比例将溶液分成ID和IC两个分样,分别称量(精确至0.00001g),再在ID分样中大约加入0.1g~0.15g145Nd+149Sm混合稀释剂溶液(精确至0.00001g),轻微晃动放置过夜,准备上柱(IC分样不加稀释剂)。

根据岩石化学特征,当预计试样中的稀土元素含量较高时(如碱性岩)可以酌情减少试样量。超镁铁质岩的稀土元素含量一般很低,特别是地幔橄榄岩,钐、钕含量常常在10-7~10-8级。对于这一类试样的溶样问题推荐以下程序:采用30mL高压釜将试样称量增大至2~4g,氢氟酸+高氯酸溶样,蒸干,1mol/L盐酸溶解干涸物,加氢氧化铵使稀土元素与氢氧化铁共沉淀,离心分离除去溶液留下沉淀物,2.5mol/LHCl溶解沉淀物,溶液待上柱。这一程序可以在离子交换分离之前将试样溶液的体积减小1/10,而钐、钕含量增加了10~20倍(达到10-6级),同时本底没有明显增加。

Sm-Nd化学分离

钐、钕化学分离分两步进行,第一步分离总稀土元素,第二步分离钐和钕。

1)总稀土元素分离。

a.阳离子树脂交换柱准备。首次使用的200~400目AG50×8或Dowex50×8阳离子树脂盛于石英烧杯中(约200g),无水乙醇浸泡24h,倾出乙醇晾干后用去离子水漂洗,再用(1+1)优级纯盐酸浸泡24h,转入30mm×400mm大型专用石英柱中,继续用(1+1)优级纯盐酸淋洗直至无铁离子[硫氰化铵(NH4CNS)检验,洗出液不再显红色],最后用超纯水淋洗,转入用于总稀土元素分离的(6mm×300mm)石英柱中,树脂床高100mm,直径6mm,待水淋干后依次加30mL6mol/L超纯盐酸淋洗,10mL2.5mol/L超纯盐酸平衡,待用。以后继续使用时,依次用30mL超纯水分多次淋洗交换柱内壁,30mL6mol/L超纯盐酸回洗,10mL2.5mol/L超纯HCl平衡。

b.上柱分离。将分解完全的试样溶液倒入备好的阳离子树脂交换柱中,待溶液漏完先用5mL2.5mol/L超纯盐酸分多次淋洗管壁,然后加40mL2.5mol/L超纯盐酸淋洗钾、钠、钙、镁、铁、铝等干扰元素,最后用15mL6mol/L超纯盐酸洗脱总稀土元素,下用30mL聚四氟乙烯烧杯接收,电热板上蒸干,待下步分离。

2)Sm-Nd分离。从总稀土元素中分离钕和钐有离子交换法和萃取色层法等多种方法。

a.α-HIBA离子交换法。本方法是个较老的方法,采用铵化阳离子树脂,淋洗液为pH值~4.6、浓度为0.23mol/L左右的α-羟基异丁酸(α-HIBA)。

a)阳离子树脂柱准备。选择200目~400目AG50×8阳离子树脂(约300g)于石英烧杯中(Dowex50×8树脂在粒度均匀性与纯度方面较AG50×8为差,如经过筛选也可用,两者交换性能一样),无水乙醇和(1+1)优级纯盐酸依次各浸泡24h,转入大型专用石英柱中(同上),继续用(1+1)优级纯盐酸淋洗,直至洗尽铁离子[硫氰化铵(NH4CNS)检验,洗出液不再显红色],超纯水淋洗至中性,完全除去Cl-离子[硝酸银(AgNO3)检测,洗出液不再呈现乳白色浑浊物],加稀的超纯氢氧化铵淋洗,至洗出液呈碱性(pH试纸检验),表明阳离子树脂全部铵化。转入500mL试剂瓶,保存在0.23mol/LpH=4.6左右的α-羟基异丁酸溶液中,供长期使用。

b)α-羟基异丁酸溶液配制与pH值调节。称取70g固体分析纯α-羟基异丁酸于250mL氟塑料烧杯中,加少量超纯水微热溶解,转入3000mL石英试剂瓶中,超纯水稀释至刻度(3000mL),充分摇匀。此时α-HIBA的量浓度为0.23mol/L,pH值~2.6,通过加超纯氢氧化铵,酸度计测量,将溶液酸度调节到pH值~4.6。由于平衡氢氧化铵的浓度难以控制,需要分多次加入,每加一次摇匀后测一次pH值,注意掌握pH递增规律,最后是逐滴加入,必要时将氢氧化铵稀释。每次测量pH值是将溶液倒在10mL小烧杯中,测量过的溶液弃去,不再回到大瓶中。将酸度调节好的α-HIBA溶液密封保存,供长期使用。

c)上柱分离。实验证明在采用本方法时,树脂粒度、均匀性以及α-HIBA溶液的浓度、pH值等条件变化对钐、钕洗出峰位置的影响十分明显,而每次处理树脂和配制α-羟基异丁酸溶液都不可能完全重复,因此当每处理一次树脂和配制一次α-HIBA溶液后,都需要用标准溶液做一次分离实验,用ICP或铀试剂Ⅲ法检测,得出修正后的新淋洗曲线。这种离子交换分离又分加压和自然流速两种,前者的稳定性优于后者。

下面以一个有效流程示例。用滴管从大瓶中吸入少量经过预处理的AG50×8树脂加到2mm×350mm石英柱中,以自然沉降或加压方式至树脂床高320mm,直径2mm,此时应注意树脂柱结构的均匀性,不能有分层和气泡。加5mL0.23mol/LpH4.6的α-HIBA溶液平衡,流干。用几滴α-HIBA将经过第一次分离的试样(仅有总稀土元素)溶解,用微量移液管逐滴上柱,流干,再加10mL0.23mol/LpH4.6的α-HIBA,通过光谱纯氮气加压,控制滴速在1滴/55s±5s左右,液滴计数器计数。对于ID试样,0~44滴弃去,45~56滴收集钐,57~150滴弃去,151~175滴收集钕;对于IC试样,0~150滴弃去,151~175滴收集钕。收集液蒸干后不再进一步处理(破坏HIBA),直接进行质谱分析。有的实验室在收集液蒸干后还要加几滴高氯酸分解α-HIBA,或再经一次阳离子树脂分离除去α-HIBA。

经ICP检测该流程钐-钕分离度(Rs)达到5.00。

b.萃取色层分离。由于使用材料不同,本方法又分HDEHP+聚四氟乙烯粉末、P204萃淋树脂和P507萃淋树脂三种。HDEHP(P204)是二-2-乙基己基正膦酸,HEHEHP(P507)是2-乙基己基膦酸单2-乙基己基脂,都是稀土元素萃取剂。

a)HDEHP+聚四氟乙烯粉末。

(a)色层柱准备。将萃取剂HDEHP、聚四氟乙烯粉末、分析纯丙酮按1∶10∶100比例置于500mL聚四氟乙烯烧杯中,用磁力搅拌器高速搅拌至丙酮近干,使HDEHP紧密附着在聚四氟乙烯粉末表面,加少量0.20mol/L超纯盐酸调成稀糊状,转入6mm×180mm石英柱中自然沉降、压实,取色层柱高100mm,直径8mm,上覆一层厚10mm的AG1×8树脂帮助压实聚四氟乙烯粉末,30mL6mol/L超纯盐酸淋洗消除本底,超纯水淋洗至中性(pH试纸检验),5mL0.20mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.20mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入色层柱,再用1mL0.20mol/L超纯盐酸涮洗烧杯后倒入。加8mL0.20mol/L超纯盐酸淋洗铈,洗出液弃去,流干后加10mL0.20mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加10mL0.20mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)色层柱再生。在分离程序全部完成后用30mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止色层柱因失水而断裂。

b)P204萃淋树脂。采用P204萃淋树脂分离稀土元素是近30年发展起来的技术,萃淋树脂实际上是一种含液态萃取剂的树脂,而P204萃淋树脂是稀土元素萃取剂HDEHP(P204)与阳离子树脂的聚合,基于悬浮聚合原理用特殊方法制成。

(a)树脂柱准备。取20g左右120~200目P204萃淋树脂于6.0mol/L优级纯盐酸中浸泡24h,以稀糊状倒入8mm×180mm石英柱中,缓慢沉降至树脂床高100mm,直径8mm,上面覆盖一层10mm厚AG1×8树脂帮助压实树脂床(此时应注意树脂床中不能有气泡,树脂粒度应该均匀),30mL6.0mol/L超纯盐酸淋洗,超纯水洗至中性(pH试纸检验),5mL0.36mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.1mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入树脂柱,再用3mL0.1mol/L超纯盐酸分2次涮洗烧杯后倒入。加7mL0.36mol/L超纯盐酸淋洗铈,洗出液弃去,加10mL0.36mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加10mL0.36mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)树脂柱再生。在分离程序全部完成后用30mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止树脂柱因失水而断裂。

c)P507萃淋树脂。P507萃淋树脂与P204萃淋树脂属同一类型。

(a)树脂柱准备。取20g左右120目~200目P507萃淋树脂于6.0mol/L优级纯盐酸中浸泡24h,以稀糊状倒入6mm×300mm石英柱中,缓慢沉降至树脂床高200mm,直径6mm,上面覆盖一层10mm厚AG1×8树脂帮助压实树脂床(此时注意树脂床中不能有气泡,树脂粒度应该均匀),30mL6.0mol/L超纯盐酸分2次淋洗,超纯水洗至中性(pH试纸检验),10mL0.10mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.10mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入树脂柱,再用1mL0.10mol/L超纯盐酸涮洗烧杯后倒入。加10mL0.10mol/L超纯盐酸淋洗铈,洗出液弃去,加10mL0.10mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加20mL0.10mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)树脂柱再生。在分离程序全部完成后用50mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止树脂柱因失水而断裂。

上述方法分离钐、钕都十分稳定而有效,但是α-HIBA离子交换法流程较复杂,HDEHP+聚四氟乙烯粉末法中萃取剂较容易脱落,P507萃淋树脂由于比重小装柱比较困难,因此目前用得较多的是P204萃淋树脂,该方法钐-钕分离度高,稳定性强,装好一次柱可以长时间使用而效果不变。由于树脂床内径、高度互有不同,不同时间、不同厂家和批次的萃淋树脂在性能上也会有差异,因此每当处理一次树脂装好一批柱子时都需做淋洗曲线,具体确定最佳分离条件。

Sm、Nd同位素分析

Sm、Nd同位素分析操作以双带源MAT261为例,其他型号质谱计类同。

1)装样。灯丝铼带预处理,将铼带用无水乙醇清洗,点焊机将铼带点焊在灯丝支架上,将已点好铼带的支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流和1800℃温度下,每组带预烧15min,以除去铼带上杂质。

将离子源转盘上已烧好的铼带初步整形,依次取下电离带。两小滴3.5mol/L超纯硝酸将试样溶解,用微量取样器将溶液逐滴加在蒸发带中央,给蒸发带通电流,强度1A左右,使试样缓慢蒸干,以后逐步加大电流至带上白烟散尽,进一步升温至铼带显暗红后迅速将电流调至零,转到加下一个样。当试样全部装好后按原位置插上电离带,进一步给铼带整形,要求蒸法带与电离带两者彼此平行靠近,但又绝不能碰到一起,两带间距离以0.7mm为宜。装上屏蔽罩,送入质谱计离子源中,抽真空。

2)Sm、Nd同位素分析。

a.未加稀释剂试样的143Nd/144Nd比值(IC)测定。测定对象为金属离子流Nd+。当离子源真空达到5×10-6Pa时打开分析室隔离阀,电离带与蒸发带通电流缓慢升温,注意在加大电流过程中试样排气和真空下降情况,避免真空下降过快。在真空达到2×10-6Pa以上,电离带电流在4~6A,蒸发带电流2.5A左右,灯丝温度达到1700℃~1800℃时,将测量系统处于手动状态,调出引导峰146Nd(或142Nd、145Nd),小心调节峰中心和带电流,使Nd+离子流强度达到n×10-11A(高压10kV,高阻1011Ω)并保持稳定。采用多接收器自动采集同位素比值143Nd/144Nd、145Nd/144Nd、146Nd/144Nd和147Sm/144Nd等数据,均取6位有效数字,其中147Sm/144Nd监测钐-钕分离情况,145Nd/144Nd监测测定值准确性,146Nd/144Nd用于质量分馏效应校正。每个试样至少采集10组(block)数据,每组数据由8~10次扫描组成,最后取143Nd/144Nd比值的加权平均值并给出标准偏差,必要时增加采集数据流程。

b.试样+稀释剂混合物的Sm、Nd同位素比值(ID)测定。分两种情况:

a)ID分样经过二次分离,此时钐、钕完全分开,它们的同位素比值是分别装样、分别测定的。系统抽真空、通带电流升温、调出引导峰使离子流强度达到最大等操作程序同未加稀释剂试样,仅仅在测钐同位素时离子源温度稍低。采用多接收器,当使用145Nd+149Sm混合稀释剂时,钕、钐分别采集143Nd/145Nd、146Nd/145Nd和147Sm/149Sm、154Sm/149Sm两组数据(根据多接收系统中法拉第杯的配置情况可以做相应调整,此外如果使用146Nd、147Sm等稀释剂取值也应做相应改变),均取6位有效数字。由于钐、钕都有多个同位素,因此应同时采集两组以上比值用于质量分馏效应校正,这样可以将浓度(147Sm/144Nd)的测定精度提高1~2个数量级。具体办法有多种:①与数据采集同步,根据现场测出的两组以上比值及时计算浓度,当两个结果在误差范围内一致时为最佳测定值。②联立方程法(见下节)。③迭代法,该方法适用于平行测定较多的情况。

b)ID分样仅进行一次总稀土元素分离,钐、钕未单独分开。通过一次装样、测定,同时完成钐、钕同位素分析。该方法利用了145Nd、146Nd和147Sm、149Sm分别是钕、钐的特型同位素,不存在同质异位素干扰的特性。系统抽真空、通带电流升温、调出引导峰使离子流强度达到最大等操作程序同未加稀释剂试样。采用多接收器采集146Nd/145Nd与147Sm/149Sm2组数据。该方法优点是节省工作量,缩短了流程,缺点是混合物的单个同位素比值不能进行质量分馏效应校正,此外杂质元素增多也影响离子流的发射和稳定性,总体上测定精度没有钐、钕经过二次分离的高。

⑸ 石英亚沸高纯水蒸馏器有什么用原理是怎样的

石英亚沸蒸馏水可用于极谱催化法,阳极溶出伏安法、差肪冲极谱、微服技术分析专、中子活化分析、同属位素称释、火花源质谱、化学电离质谱、电感藉合等源的原子发射光谱、无焰原子吸收光谱、气相色谱、及高压气相色谱、核子共振、电子探针、X射线荧光、电子熊谱学俄显电子能诺学等用水

石英亚沸高纯水蒸馏器原理是利用大自然的热辐射原理,保持液相温度低于沸点温度蒸发冷凝而制取高纯水。在提纯过程中因冷凝空间温度高可制取无菌无热超纯水,加热丝封闭在壳体内,接受水又不接触空气,整个提纯过程不受环境污染。

⑹ 种主、次、痕元素量的测定 电感耦合等离子体原子发射光谱法

1 范围

本方法规定了地球化学勘查试样中次量、痕量元素钡、铍、铈、钴、铜、镧、锂、锰、镍、钪、锶、钒、锌及主量元素氧化钙、三氧化二铁、氧化镁及氧化钠十七个元素的测定方法。

本方法适用于水系沉积物及土壤试料中以上各元素量的测定。

本方法检出限(3S)及测定范围见表1及表2。

表1 主量元素检出限及测定范围

表2 次量及痕量元素检出限及测定范围

2 规范性引用文件

下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。

下列不注日期的引用文件,其最新版本适用于本方法。

GB/T20001.4 标准编写规则第4部分:化学分析方法。

GB/T14505 岩石和矿石化学分析方法总则及一般规定。

GB6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。

GB/T14496—93 地球化学勘查术语。

3 方法提要

试料经盐酸、硝酸、氢氟酸、高氯酸冷溶过夜,次日加热分解至高氯酸白烟冒尽;盐酸溶解后,移入10mL带塞塑料管中,定容。将溶液引入等离子炬中,在已选定的波长测量各元素离子及原子的发射光谱强度,由仪器自带计算机计算各元素含量,并校正基体的影响,直接打印出各元素含量的分析报告。

4 试剂

除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水(去离子水)或亚沸蒸馏水。在空白试验中,若已检测到所用试剂中含有大于本方法所列出的各该元素方法检出限的量,并确认已经影响试料中该元素低量的测定时,应净化试剂。

4.1 高氯酸(ρ1.67g/mL)

优级纯。

4.2 硝酸(ρ1.40g/mL)

4.3 盐酸(ρ 1.19g/mL)

4.4 氢氟酸(ρ1.13g/mL)

优级纯。

4.5 盐酸(1+1)

4.6 盐酸(1+9)

4.7 硝酸(1+1)

4.8 硫酸(ρ1.84g/mL)

优级纯。

4.9 硫酸(1+1)

4.10 钡标准溶液[ρ(Ba)=1.000mg/mL]

称取1.5160g已于105℃干燥2h后的光谱纯无水氯化钡,置于100mL烧杯中,加入50mL水及10mL盐酸(4.3)溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.11 钴标准溶液[ρ(Co)=100μg/mL]

称取0.1000g纯度[w(Co)=99.9%]的金属钴,置于250mL烧杯中,加入20mL硝酸(4.7)微热溶解后,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.12 铜标准溶液[ρ(Cu)=100μg/mL]

称取0.1000g纯度[w(Cu)=99.95%]的金属铜,置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.13 镧标准溶液[ρ(La)=100μg/mL]

称取0.1173g已经800℃灼烧过的光谱纯氧化镧,置于 100mL烧杯中,用水润湿,加入10mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.14 锰标准溶液[ρ(Mn)=1.000mg/mL]

称取1.000g纯度为[w(Mn)=99.95%]的金属锰,置于 100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.15 镍标准溶液[ρ(Ni)=100μg/mL]

称取0.1000g纯度为[w(Ni)=99.95%]的金属镍,置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.16 锶标准溶液[ρ(Sr)=1.000mg/mL]

称取2.4153g已在干燥器中干燥一昼夜的光谱纯硝酸锶,置于250mL烧杯中,加水溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.17 钒标准溶液[ρ(V)=200μg/mL]

称取0.4593g已于干燥器中干燥两天以上的光谱纯偏钒酸铵(NH4VO3),置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.18 锌标准溶液[ρ(Zn)=250μg/mL]

称取0.2500g纯度为[w(Zn)=99.95%]的金属锌,置于100mL烧杯中,加入20mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.19 铍标准溶液[ρ(Be)=50μg/mL]

称取0.1388g已经1000℃灼烧过的光谱纯氧化铍,置于 100mL烧杯中,加入10mL硫酸(4.9)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.20 铈标准溶液[ρ(Ce)=100μg/mL]

称取0.1228g纯度为[w(CeO2)=99.95%]的二氧化铈于 100mL烧杯中,加入20mL硝酸(4.7)及几滴过氧化氢,盖上表皿,加热溶解,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.21 钪标准溶液[ρ(Sc)=1.00mg/mL]

称取0.1534g纯度为[w(Sc2O3)=99.95%]的三氧化二钪于 100mL烧杯中,加入20mL盐酸(4.3),盖上表皿,在控温电热板上加热溶解。用少许水吹洗表皿,继续蒸至湿盐状,加10mL盐酸(4.3),移入100mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.22 铝标准溶液[ρ(Al2O3)=10.0mg/mL]

称取5.2925g纯度[w(Al)=99.95%]的金属铝于250mL烧杯中,加入100mL盐酸(4.3)及少许硝酸助溶,待溶解后再加入100mL盐酸(4.3),移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.23 铁标准溶液[ρ(Fe2O3)=5.00mg/mL]

称取5.000g光谱纯的三氧化二铁置于250mL烧杯中,加入100mL盐酸(4.3)溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.24 氧化钙标准溶液[ρ(CaO)=5.00mg/mL]

称取8.9239g经120℃烘干2h后的光谱纯碳酸钙于250mL锥瓶中,加入50mL水,盖上表面皿,沿壁分次加入50mL盐酸(4.3)溶解,使碳酸钙全部溶解,并煮沸除出二氧化碳,冷却,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.25 氧化镁标准溶液[ρ(MgO)=5.00mg/mL]

称取5.000g经800℃灼烧1h后的氧化镁,置于250mL烧杯中,加入100mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.26 钛标准溶液[ρ(Ti)=1.00mg/mL]

称取1.6680g经1000℃灼烧过的光谱纯二氧化钛,置于30mL瓷坩埚中,加入15g焦硫酸钾,加瓷坩埚盖后放入高温炉中,升温至700℃熔融约30min至全熔,取出冷却,用100mL盐酸(4.5)浸取。洗出坩埚,加热直至溶液清亮,冷却。移入1000mL容量瓶中,补加100mL盐酸(4.5),并用水稀释至刻度,摇匀,备用。

4.27 锂标准溶液[ρ(Li)=100μg/mL]

称取0.5323g经105℃干燥2h后的光谱纯碳酸锂,置入150mL三角烧杯中,盖上表皿,沿杯壁加入10mL盐酸(4.5)溶解。加热微沸除去二氧化碳,冷却后移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.28 氧化钠标准溶液[ρ(Na2O)=1.00mg/mL]

称取1.8859g经500℃灼烧30min后的光谱纯氯化钠于100mL烧杯中,用水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.29 混合标准工作溶液

见表3。

表3 混合标准工作溶液的元素组合及其浓度

4.29.1 ρ(Co)=1.0μg/mL、ρ(Cu)=2.0μg/mL、ρ(Ni)=2.0μg/mL、ρ(V)=4.0μg/mL、ρ(Zn)=5.0μg/mL、ρ(La)=2μg/mL、ρ(Mn)=25μg/mL、ρ(Sr)=25μg/mL、ρ(Ba)=50μg/mL。分取50.00mL钡标准溶液(4.10)、10.00mL钴标准溶液(4.11)、20.00mL铜标准溶液(4.12)、20.00mL镧标准溶液(4.13)、25.00mL锰标准溶液(4.14)、20.00mL镍标准溶液(4.15)、25.00mL锶标准溶液(4.16)、20.00mL钒标准溶液(4.17)、20.00mL锌标准溶液(4.18)于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.2 ρ(Be)=0.25μg/mL分取5.00mL铍标准溶液(4.19)于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.3 ρ(Ti)=60μg/mL、ρ(MgO)=250μg/mL、ρ(CaO)=500μg/mL、ρ(Fe2O3)=1000μg/mL、ρ(Al2O3)=1500μg/mL。分取15.00mL三氧化二铝标准溶液(4.22)、20.00mL三氧化二铁标准溶液(4.23)、10.00mL氧化钙标准溶液(4.24)、5.00mL氧化镁标准溶液(4.25)、6.00mL钛标准溶液(4.26)于100mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.4 ρ(Li)=5.0μg/mL、ρ(Na2O)=250μg/mL 分取5.00mL锂标准溶液(4.27)、25.00mL氧化钠标准溶液(4.28),置于100mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.5 ρ(Ce)=2.0μg/mL、ρ(Sc)=20μg/mL 分取20.00mL铈标准溶液(4.20)、20.00mL钪标准溶液(4.21),置于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

5 仪器及材料

5.1 电感耦合等离子体原子发射光谱仪

工作条件参见附录A。其他型号的电感耦合等离子体原子发射光谱仪,凡达到附录A中A.3条款指标的均可使用。

5.2 光电倍增管

波长范围:190nm~7800nm。

5.3 等离子体炬管(三轴同心石英炬管)

5.4 玻璃同轴雾化器

5.5 双层玻璃雾化室

5.6 聚四氟乙烯坩埚

规格:30mL。

5.7 具有刻度的带塞塑料试管

规格:10mL。

6 分析步骤

6.1 试料

试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶中备用。

试料量。称取0.1g试料,精确至0.0002g。

6.2 空白试验

随同试料分析全过程做双份空白试验。

6.3 质量控制

选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。

6.4 测定

6.4.1 称取0.1000g试料(6.1)置于30mL聚四氟乙烯坩埚(5.6)中,加几滴水润湿。加入2mL高氯酸(4.1)、2mL硝酸(4.2)、3mL盐酸(4.3)、3mL氢氟酸(4.4)。置于控温电热板上,加坩埚盖,放置过夜。次日,升温至110℃,保持1.5~2h。揭去盖子,升温至240℃,直至高氯酸白烟冒尽,加入2mL盐酸(4.5),趁热浸取,冷却。移入具有刻度的10mL带塞塑料管(5.7)中,用水稀释至刻度,摇匀,备用。

6.4.2 将仪器开机预热30min,在电感耦合等离子体原子发射光谱仪上,按附录A中A.1仪器工作条件,在各元素设定的波长处,同时测定试料溶液和工作曲线各元素浓度的强度值,由仪器自带的计算机按附录B进行基体校正,给出浓度直读结果,并打印出分析报告。

6.5 工作曲线的绘制

采用高低两点工作溶液标准化。低点为不含待测元素的盐酸溶液(4.6);高点为人工配制的混合标准工作溶液(4.29.1至4.29.5),5个高点工作溶液的元素组合及其浓度见表3。按6.4.2手续测定并储存在计算机内,由系统软件进行运算,并计算试料中各元素的浓度值。

7 分析结果的计算

由计算机对被测元素进行基体校正(见附录B),按下式计算各元素含量:

区域地球化学勘查样品分析方法

式中:mi——从工作曲线上查得试料溶液中经基体校正(参见附录B)后被测元素i的量,μg;m0——从工作曲线上查得空白试验溶液中被测元素的量,μg;m——试料质量,g。

8 精密度

各主量、次量、痕量元素的精密度见表4至表20。

表4 精密度[w(Ba),10-6

表5 精密度[w(Be),10-6

表6 精密度[w(Ce),10-6

表7 精密度[w(Co),10-6

表8 精密度[w(Cu),10-6

表9 精密度[w(La),10-6

表10 精密度[w(Li),10-6

表11 精密度[w(Mn),10-6

表12 精密度[w(Ni),10-6

表13 精密度[w(Sc),10-6

表14 精密度[w(Sr),10-6

表15 精密度[w(V),10-6

表16 精密度[w(Zn),10-6

表17 精密度[w(CaO),10-2

表18 精密度[w(TFe2O3),10-2

表19 精密度[w(MgO),10-2

表20 精密度[w(Na2O),10-2

附 录 A

(资料性附录)

A.1 仪器工作条件

表A.1 仪器工作条件

A.2 分析元素波长

表A.2 分析元素波长

A.3 仪器参数

A.3.1 仪器分辨率≤0.04nm。

A.3.2 精密度:在仪器预热40min后,用浓度为1μg/mL的标准溶液测量10次,其相对标准偏差应≤1.5%。

A.3.3 稳定性:在仪器预热40min后,用浓度为1μg/mL的标准溶液在2h内,每间隔10min测量一次,共测量12次,其相对标准偏差应≤3%。

A.3.4 工作曲线线性:工作曲线线性相关系数≥0.999。

附 录 B

(资料性附录)

B.1 基体元素的干扰校正

为扣除基体元素对各分析元素的干扰,采用基体校正法。即求出基体元素对各分析元素的乘法干扰系数KMj和加法干扰系数KAj,将KMj和KAj填入分析程序,计算机即根据系统软件按下式自动校正分析结果:

区域地球化学勘查样品分析方法

式中:Ci——校正后分析元素i的分析结果;Cci——未校正的分析元素i的分析结果;KMj—干扰元素j的乘法干扰系数;Cj——干扰元素j的浓度;KAj——干扰元素j的加法干扰系数。

式中:Ci、Cci、Cj是主量元素以氧化物化学计量时,其计量单位为%;次量及痕量元素是以元素态化学计量时,其计量单位为μg/g。由于使用了干扰系数KMj和KAj,基本上消除了基体效应和谱线干扰。

B.2 使用法国JY公司JY38/48型电感耦合等离子体原子发射光谱仪

干扰系数见表B.1。

表B.1 干扰系数

续表

附 录 C

(资料性附录)

C.1 从实验室间试验结果得到的统计数据和其他数据

如表C.1至表C.17。

本方法精密度协作数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。

表C.1至表C.17中不需要将各浓度的数据全部列出,但至少列出3个或3个以上浓度所统计的参数。

C.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。

C.1.2 列出了方法的相对误差参数,计算公式为。公式中为多个实验室测量平均值,x0为I级标准物质的标准值。

C.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差;SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为:“重复性变异系数”及“再现性变异系数”。

C.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。

表C.1 Ba统计结果表

表C.2 Be统计结果表

表C.3 Ce统计结果表

表C.4 Co统计结果表

表C.5 Cu统计结果表

表C.6 La统计结果表

表C.7 Li统计结果表

表C.8 Mn统计结果表

表C.9 Ni统计结果表

表C.10 Sc统计结果表

表C.11 Sr统计结果表

表C.12 V统计结果表

表C.13 Zn统计结果表

表C.14 CaO统计结果表

表C.15 TFe2O3统计结果表

表C.16 MgO统计结果表

表C.17 Na2O统计结果表

附加说明

本方法由中国地质调查局提出。

本方法由武汉综合岩矿测试中心技术归口。

本方法由武汉综合岩矿测试中心负责起草。

本方法主要起草人:熊采华。

本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。

⑺ 锂同位素测量

热电离质谱法测量锂同位素

自然界锂有两种稳定同位素6Li和7Li,原子质量分别为6.0151223(5)u和7.0160041(5)u,其丰度分别为0.07591(2)和0.92409(20)(Coplenetal.,2002)。IAEA推荐的锂同位素标准参考物质是NBSL-SVECLi2CO3,其绝对6Li/7Li=0.0832±0.0002(Fleschetal.,1973)。另外还有两个标准物质是富6Li的IRMM-015和天然丰度的IRMM-016,后者的绝对6Li/7Li=0.08212±0.00028(Qietal.,1997)。根据IUPAC的推荐,试样的锂同位素组成要采用δ7Li表示(Coplen,1996)。

目前测定锂同位素的方法主要有历史悠久的热电离质谱法(TIMS)(Sahoo,Masuda,1995)和近期发展起来的多接收等离子体质谱法(MC-ICPMS)(Magnaetal.,2004)。

方法提要

采用碱熔、酸溶或水溶的方法将待测试样中的Li制备成含Li溶液,采用离子交换方法进行Li的分离并转型为Li2B7O4或Li3PO3形式,采用双带热电离的方法获得Li+离子进行锂同位素组成的TIMS测定。

仪器装置

热电离同位素质谱计(VG354,MAT262,IsoProbeT,Triton)。

原子吸收光谱仪。

真空烧带装置。

超净化实验室。

石英亚佛蒸馏器。

超净化干燥蒸发箱。

电子分析天平。

试剂与材料

硼酸优级纯。

氢氧化钠优级纯。

氯化钠优级纯。

磷酸。

低本底亚沸蒸馏盐酸。

无水甲醇优级纯。

低Li亚沸蒸馏水。

1.2mol/LHCl-(4+1)甲醇淋洗溶液由上述试剂配制。

NBS951硼同位素标准溶液ρ(B)=1mg/mL。

各类四氟乙烯器皿烧杯、洗瓶等。

NBSL-SVECLi2CO3锂同位素标准物质。

Ta金属箔和Re金属箔规格:长7.5mm,宽0.76mm,厚0.02mm。

上海正一号阳离子交换树脂(80~100目)。

石英离子交换柱=0.5cm。

离子交换柱的制备将浸泡过夜的上海正一号阳离子交换树脂(80~100目)装入直径为0.5cm的石英离子交换柱中,树脂床高度为10cm,继以200mL4mol/LHCl淋洗,再用高纯水洗至中性,并采用1.2mol/LHCl-(4+1)甲醇淋洗溶液将交换柱中的水排出,最后将树脂倒出,用1.2mol/LHCl-(4+1)甲醇溶液重新装柱备用。

分析步骤

(1)试样制备

a.盐类试样的溶解及水溶液试样的预处理。称取约0.1g盐类试样,用低锂亚沸蒸馏水溶解,过滤除去不溶部分,制备成含Li的溶液备用。水溶液试样过滤除去不溶物后,在低温下蒸发至约3mL备用。

b.离子交换纯化。在准备就绪的试样溶液中加入2.5gNaCl和15mL1.2mol/LHCl-(4+1)甲醇淋洗溶液,以0.2mL/min的流速过柱进行交换,盛样容器中残留的NaCl晶体用少量淋洗溶液转移,剩下的少量NaCl晶体用0.2mL水溶解后再加入2mL淋洗液,混合后倒入柱中,重复一次以上操作。最后用淋洗溶液以0.5mL/min的流速淋洗,根据淋洗曲线收集含Li的淋洗液部分。在超净箱中于60℃蒸发至干,加少量水溶解,再蒸干,重复2次。将生成的溶液通过OH-型阴离子交换柱,将Li转化成LiOH形式备用。

当采用Li3PO4作涂样物质时,将交换分离后的试样溶液蒸干后加入0.3mL0.017mol/LH3PO4,然后在电热板上于90℃蒸发数小时备用。

(2)锂含量和特殊组成测定

a.锂含量的检测。试液中锂的浓度可采用原子吸收光谱法测量,以确定锂同位素质谱测定时的取样量。

b.钽、铼带的加热去气处理。为了降低钽和铼带中的Li及其他杂质的含量,钽和铼带通常要进行加热处理,过程如下:将点焊在灯丝架上的钽和铼带在专用的真空系统中进行电加热处理,加热电流Ta带为3.0A,Re带4.5A,加热时间为1.0h,系统的真空度应优于1×10-3Pa。

c.锂同位素测定。锂同位素分析在热电离同位素质谱计(VG354,MAT261,MAT262,IsoProbeT,TritonT)上进行。

采用Li2B4O7作涂样物质(Xiao,1989):采用去过气的双带或三带,样品带为Ta带,电离带为Re带。涂样时在样品带上涂3μL浓度为1mg/mL的NBS951硼标准溶液(也可采用其他超纯的H3BO3化学试剂),蒸发至近干,再加入0.5~1.0μgLi的试液溶液,通以1.2A电流,加热2min使试液蒸干。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。快速升高电离带电离至2.00A,然后以0.2A/min继续升高直到电离带温度为1500℃,温度采用光学温度计测量。然后缓慢升高样品带电流至7Li+离子流达到5×10-12A。对7Li+离子流进行仪器聚焦,当7Li+离子流达到2×10-11A时开始数据采集,采用峰跳扫方式测量7Li+6Li+离子流强度,基线零点为u/e6.5。

采用Li3PO4作涂样物质(Moriguti,1998):采用去过气的双带或三带,样品带和电离带均为Re带。涂样时在样品带上涂添加有H3PO4的含Li的试样溶液,先在1.0A下加热,随后缓慢升高电流至1.7A,并避免试液沸腾,维持带电流直至磷酸冒烟消失。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。首先升高电离带电流至电离带温度为1150℃,样品带电流升至0.3A,维持10min后快速将两加热电流降至0,冷却10min后再重新升高电离带电流至1.05~1.10A,此时温度为850℃,升高样品带电流至0.60A,此时将出现7Li+,随后缓慢升高至7Li+离子流达到(1.05~1.25)×10-11A时开始数据采集。采用峰跳扫方式测量7Li+6Li+离子流强度,基线零点为u/e6.5。

若采用IsoProbeT或FinniganTriton进行测量,可采用双接收同时进行7Li+6Li+离子流强度的测量。

试液的锂同位素组成用相对于NBSL-SVECLi2CO3锂同位素标准δ7Li表示:

岩石矿物分析第四分册资源与环境调查分析技术

图87.26表明在不同的电离带温度下以Li2B4O7作涂样物质时,7Li/6Li比值随测量时间的变化。结果表明,当电离带温度低于1200℃时,测定的7Li/6Li比值偏低,且有随时间而升高的趋势。

图87.26 以Li2B4O7作涂样物质时不同电离温度时7Li/6Li比值随时间的变化

按照以上方法对NBSL-SVECLi2CO3锂同位素标准进行重复涂样测定的7Li/6Li比值列于表87.25。

表87.25 对NBSL-SVECLi2CO3锂同位素标准7Li/6Li比值测定的重复性

采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值

正热电离质谱法在Li同位素地球化学、环境等研究领域获得广泛应用。表87.26总结了世界各实验室采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值和精度。

表87.26 各实验室采用热电离质谱法测定的NBSL-SVECLi2CO3Li同位素比值

讨论

锂同位素热电离质谱法测定有一个由单带到双带的发展过程。在多带法中由于Li以分子形式蒸发,降低了Li在蒸发过程中的同位素分馏而使测定精度得以提高,最常用的涂样物质有LiNO3、LiCl、LiI、Li2SO4、Li3PO4和Li2B4O7,被检测的离子有Li+、LiF+和Li2BO2+。近些年来,以Li3PO4作涂样形式测定Li+的方法得到更普遍的应用。Xiao(1989)等对采用Li2B4O7作涂样物质测定Li+的热电离质谱法高精度测定锂同位素进行系统研究,发现电离带温度对控制测定中的锂同位素分馏起着决定性作用。在多种涂样物质中,发现Li2B4O7是最好的,能获得最稳定的7Li/6Li比值测定。但是后来有研究表明,Li3PO4作涂样物质具有更多的优越性(Moriguti,1998)。

1)电离温度的影响。由于Li的两种稳定同位素6Li和7Li非常大的相对质量差,在热电离质谱法测定中会产生严重的同位素分馏,使得锂同位素的精密测定十分困难。电离温度是影响Li同位素分馏的重要因素,图87.27表明采用不同涂样物质时,7Li/6Li比值随电离温度的变化;在低温时,测定的7Li/6Li比值严重偏低,随电离温度的升高,测定的7Li/6Li比值逐渐升高,到1200℃时7Li/6Li比值才趋于平稳。这表明在低温时,Li同位素的分馏更为显著,因此在进行Li同位素热电离法测定时,电离温度应在1400℃以上。

2)不同形式涂样物质的比较。采用大分子量的涂样物质能降低Li化合物蒸发过程中的同位素分馏,因此Li同位素测定中采用的涂样物质有一个由低相对分子质量到高相对分子质量的发展过程,所采用涂样物质有LiOH、LiCl、LiNO3、LiF、LiI、Li2B4O7和Li3PO4等。除了这一因素外,涂样物质的腐蚀性和记忆效应以及能否产生稳定的Li+离子流应进行综合考虑。表87.27表明,LiCl和Li2B4O7可能是比较理想的涂样物质,7Li/6Li测定精度可达0.14%以上,而且记忆效应较弱。近些年来,很多实验室采用Li3PO4作涂样物质,也得到比较理想的测定结果。图87.27也表明采用Li3PO4涂样时,记忆Li量与Li2B4O7涂样时相似,测量条件控制得好,可望获得更高的测定精度,不妨采用之。LiF可能是最不合适作为锂同位素测定时的涂样物质,采用LiF作涂样物质,测定精度最低,而记忆效应最强。

图87.27 采用不同涂样物质时7Li/6Li比值随电离温度的变化

表87.27 采用不同锂化合物涂样时对NBSL-SVECLi2CO3锂测定的锂同位素比值和记忆量

参考文献

肖应凯,白玉珍,王蕴慧 .1983.大量钠和镁中微量锂的离子交换分离 [J].理化检验,化学分册,19(6) : 41-43

肖应凯,祁海平,王蕴慧,等 .1988.质谱测定锂同位素组成的分馏效应研究 [J].科学通报,33(17) : 1336-1338

肖应凯,祁海平,王蕴慧,等 .1991.热电离质谱法测定锂同位素中各种涂样形式的比较 [J].科学通报,36 (18) : 1386 -1388

Chan L H,Edmond J M, Thompson G, Gillis K.1992.Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans.Earth Planet Sci.Lett.,108: 151-160

Chan L H.1987.Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate.59: 2662-2665

Coplen T B,Blke J K,Bièvre P De,Ding T,Holden N E,Hopple J A,Krouse H R,Lamberty A,Peiser H S,Révész K,Rieder S E,Rosman K J R,Roth E,Taylor P D P,Vocke J R R D,and Xiao Y K.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017

Coplen T B.1996.Atomic weights of the elements.1995.Pure Appl.Chem,68: 2339-2359

Flesch G D, Anderson, Jr A R and Svec H J.1973.A secondary isotopic atandard for6Li /7Li determinations.Int.J.Mass Spectrom Ion Phys.,265-272.

Green L W, Leppinen J J, Elliot N L.1988.Isotopic analysis of lithium as thermal dilithium fluoride ions.Anal.Chim.Acta,60: 34-37

Huh Y,Chan L H,Zhang L,et al.1998.Lithium and its isotopes in major world revers: implications for weathering and the oceanic budget,geochim.Cosmochim.Acta,62: 2039-2051

Lamberty A,Michiels E,Bievre P D.1987.On the atomic weight of lithium.Int.J.Mass Spectrom Ion Proc.,79: 311-313

Magna T,Wiechert U H,Halliday A N.2004.Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS.Int.J.Mass Spectrom.,239: 67-76

Moriguti T,Nakamura E.1993.Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source meterial.Proc.Jpn.Acad.Sci.,69: 123-128

Moriguti T,Nakamura E.1998.High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples.Chem.Geol.,145: 91-104

Qi H P,Taylor P D P,Berglund M,Bievre P De.1997.Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016.Int.J.Mass Spectrom.Ion Proc,171:263-268

Sahoo S K, Masuda A.1995.High precision isotopic measurement of lithium by thermal ionization mass spectrometry.Int.J.Mass Spectrom.Ion Proc.,151: 189-196

Xiao Y K,Beary E S.1989.High-precision isotopic measurement of lithium by thermal ionization mass spetrometry[J].Int.J.Mass Spectrom Ion Processes,94: 101-114.

You C F,Chan L H.1996.Precise determination of lithium isotopic composition in low concentration natural samples [J].Geochim Cosmochim Acta,60: 909-915

本节编写人: 肖应凯 (中国科学院青海盐湖研究所) 。

⑻ 岩石与单矿物铷-锶年龄测定

在计算年龄的(86.41)式中,锶同位素初始比值(87Sr/86Sr)i既是未知数又不能直接测定。为了解决这个问题,测定岩石和单矿物的铷-锶年龄有模式年龄和等时线年龄两种方法。模式年龄法是给试样假设一个初始比值,这个方法仅适用于一些年代较老、富铷贫锶的单矿物,如天河石、铯榴石、锂云母等,以及一些特殊情况。获得等时线年龄需要测定一组试样(5~6个以上),该组试样要求具有相同形成年龄和相同的锶同位素初始比,并且自岩石(或矿物)形成以来其Rb-Sr体系一直保持封闭状态。在满足这3个条件情况下,(86.40)式是一个直线方程,在87Sr/86Sr-87Rb/86Sr直角坐标图上该组试样将能联成一条直线,该直线称作Rb-Sr等时线,它在Y轴上的截距给出锶同位素的初始比值(87Sr/86Sr)i,它的斜率是b:

岩石矿物分析第四分册资源与环境调查分析技术

另外根据直线最佳拟合需要,构成一条等时线的试样点要求有合理的分布,即试样之间Rb/Sr比值应该有一定程度变化。一般来说,低Rb/Sr比试样比较容易获得,关键在挑选高Rb/Sr比试样,下面的公式可以帮助选择:

岩石矿物分析第四分册资源与环境调查分析技术

该公式依据当前Sr同位素的测定精度而定,Δ(Rb/Sr)表示试样间Rb/Sr比的最大差值,年龄t单位:Ma。

方法提要

按照等时线要求选择一组岩石或单矿物试样,氢氟酸+高氯酸溶样,在阳离子树脂交换柱上用不同浓度盐酸色层分离铷和锶,在热电离质谱计(TIMS)上用同位素稀释法测定铷、锶含量,得到87Rb/86Sr比值,同时计算出试样的87Sr/86Sr比值,最小二乘拟合计算等时线年龄,同时给出锶同位素初始比值,或仅计算单个试样模式年龄。除同位素比值测定精度等共性要求外,选择适应试样以及在稀释法测定中满足最佳稀释度要求是测定结果成败的关键。

本方法对测定精度要求:87Rb/86Sr比值相对误差1%~2%,87Sr/86Sr比值相对误差小于1×10-4,等时线年龄在100~1000Ma内,95%置信度,相对误差2%~5%。

仪器、设备与器皿

热电离质谱计MAT260、MAT261、MAT262、VG354、TRITON等相当类型。

点焊机质谱计的配套设备。

质谱计灯丝预热装置,质谱计的配套设备。

聚四氟乙烯烧杯10mL与30mL。

氟塑料(F46)试剂瓶500mL、1000mL与2000mL。

聚乙烯塑料洗瓶500~1000mL。

氟塑料(F46)滴瓶30mL。

氟塑料(F46)对口双瓶亚沸蒸馏器500mL。

石英试剂瓶2000mL。

石英亚沸蒸馏器。

石英减压亚沸蒸馏器。

石英交换柱内径6mm,高300mm,上部接内径20mm高110mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径6mm,高100mm,13或16支为一组。

氟塑料(PFA)密封溶样器15mL。

铂皿30mL,平底。

石英滴管。

石英量筒(杯)10mL、50mL。

硬脂玻璃量筒1000mL。

三角玻璃瓶250mL。

玻璃烧杯3000mL。

水纯化系统。

分析天平感量0.00001mg。

电热板(温度可控)。

超声波清洗器。

不锈钢恒温烘箱<300℃。

高速离心机。

聚乙烯或石英离心管。

微量取样器10μL与50μL。

器皿清洗

所有使用的氟塑料与石英器皿,用(1+1)优级纯盐酸和优级纯硝酸先后在电炉上于亚沸状态下各煮1h,去离子水冲洗后又用去离子水煮沸1h,再用超纯水逐只冲洗,超净工作柜中电热板上烤干。第一次使用的新器皿在用酸煮沸前,需先用洗涤剂擦洗。铂皿清洗设专用烧杯、专用(1+1)优级纯盐酸煮沸。

试剂与材料

去离子水 二次蒸馏水再经Milli-Q水纯化系统纯化。

超纯水 去离子水经石英蒸馏器蒸馏。

超纯盐酸 用优级纯(1+1)盐酸经石英蒸馏器亚沸蒸馏,实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。

超纯硝酸 用优级纯(1+1)硝酸经石英蒸馏器亚沸蒸馏。实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。

超纯氢氟酸 用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。

超纯高氯酸 用优级纯高氯酸经石英蒸馏器减压亚沸蒸馏制备。

氢氧化钠标准溶液c(NaOH)≈0.3mol/L用分析纯固体氢氧化钠+去离子水配制,邻苯二甲酸氢钾标定;

丙酮 优级纯。

无水乙醇 分析纯。84Sr稀释剂 富集84Sr同位素的固体硝酸锶[Sr(NO3)2]。87Rb或85Rb稀释剂 富集87Rb或85Rb同位素的固体氯化铷(RbCl)。84Sr+87Rb(或85Rb)混合稀释剂溶液 溶液配制与浓度标定见附录86.2A。

固体硝酸锶[Sr(NO3)2]光谱纯,基准物质,保存在干燥器中。

固体氯化铷(RbCl)光谱纯,基准物质,保存在干燥器中。

NBS987碳酸锶(SrCO3) 国际同位素标准物质。

NBS607(或NBS70a)钾长石 国际标准物质。

GBW04411钾长石国家一级标准物质。

实验室专用薄膜(Parafilm)。

强酸性阳离子交换树脂 Bio RadAG50×8或Dowex50×8,或其他性能相似的或更好的树脂,200~400目。

阳离子树脂交换柱准备将约200g首次使用的200~400目AG50×8或Dowex50×8阳离子树脂置于石英烧杯中,用无水乙醇浸泡24h,倾出乙醇用去离子水漂洗,再用(1+1)优级纯盐酸浸泡24h,倾出盐酸后又用去离子水漂洗。最后转入已备好的石英柱中,使树脂床直径6mm,高100mm。待水淋干依次加30mL(1+1)优级纯盐酸和15mL超纯水淋洗,最后用10mL1.0mol/L超纯HCl平衡,待用。以后继续使用,同样用30mL(1+1)优级纯盐酸回洗,15mL超纯水淋洗,10mL1.0mol/L超纯HCl平衡。

铼带规格18mm×0.03mm×0.8mm。

试样准备

从同一火成岩岩体或同一火山岩层位中采集一组新鲜未蚀变的岩石试样,手标本大小,除去表层风化面或其他污染,粉碎至200目,按规则缩分至10g左右。采用一般化学分析方法(如原子吸收光谱)粗测Rb、Sr含量,根据(86.44)式或经验,从中挑选出5~6个Rb/Sr比值变化大的试样,待测年龄。

试样分解

称取30~50mg(精确至0.1mg)岩石或单矿物粉末试样,置于PFA氟塑料密封溶样器或铂皿中,按最佳稀释度要求加入84Sr+87Rb(或85Rb)混合稀释剂(精确至0.1mg),轻微摇晃令结成块的试样充分散开,加3mL超纯氢氟酸和几滴超纯高氯酸,在电热板上缓慢升温溶解(控制温度在120℃左右)。待试样完全分解后,蒸干,用少量6mol/L超纯盐酸冲洗器壁后再蒸干,温度升至180℃赶氟和多余高氯酸。用1mL1.0mol/LHCl溶解干涸物,将溶液倒入交换柱中。若发现试样溶液浑浊或存在明显残渣,表明试样分解不完全,则需要增加离心分离步骤。如果试样含铁量很高,也需要将试样溶液转入铂皿中放在电炉上于500℃下灼烧数分钟,冷却后用水溶解,离心分离提取清液上柱。

Rb-Sr分离:

试样溶液上柱后用1mL1.0mol/L超纯HCl清洗溶样器(或铂皿)器壁同样转入交换柱中,待溶液流干,加14mL1.0mol/L超纯HCl淋洗Li、Na、K、Fe等杂质元素,淋洗液弃去。加6mL1.0mol/L超纯HCl解析Rb,收集于10mL聚四氟乙烯烧杯中。然后用6mL2.5mol/L超纯HCl淋洗Mg、Ca、Al、Fe等,淋洗液弃去,继续用6mL2.5mol/L超纯HCl解析Sr,收集于10mL聚四氟乙烯烧杯中,蒸干。

用1mL1.0mol/LHCl将已蒸干的Rb、Sr分样重新溶解,分别倒入经过再生和用1mL1.0mol/LHCl平衡处理后的阳离子树脂柱中,按上述程序将Rb与Sr进一步纯化。蒸干解析液薄膜封盖,待质谱分析。

Rb、Sr同位素分析:

1)装样。Rb、Sr同位素分析采用双带源热电离质谱计,下面的操作以MAT261为例,其他型号质谱计类同。

灯丝铼带预处理将铼带用无水乙醇清洗,点焊机将铼带点焊在灯丝支架上,将已点好铼带的支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流强度1800℃温度下,每组带预烧15min,以除去铼带上杂质。

将离子源转盘上已烧好的铼带初步整形,依次取下电离带。一滴超纯水将纯化后的试样溶解,用微量取样器将溶液点滴在蒸发带中央,给蒸发带通电流,强度1A左右,使试样缓慢蒸干,以后逐步加大电流至带上白烟散尽,进一步升温至铼带显暗红后迅速将电流调至零,转到加下一个样。当试样全部装好后按原位置插上电离带,进一步给铼带整形,要求蒸法带与电离带两者彼此平行靠近,但又绝不能连到一起,两带间距离以0.7mm为宜。装上屏蔽罩,送入质谱计离子源中,抽真空。

2)Rb、Sr同位素测定。测定对象为金属离子流Sr+和Rb+。当离子源真空达到5×10-6Pa时打开分析室隔离阀,分别给电离带与蒸发带灯丝通电流缓慢升温,注意在加大电流过程中试样排气和真空下降情况,避免真空下降过快。在真空达到2×10-6Pa,电离带电流达到2A以上,蒸发带电流在1.5A左右,灯丝温度达到1000~1200℃时,将测量系统处于手动状态,在质量数88~84范围内寻找锶离子流,小心调节蒸发带电流使锶离子流达到足够强度(10-13~10-11A)并保持稳定。根据质谱计型号不同,分析采用多接收极同时接收或单接收极峰跳扫描依次接收锶同位素离子流。启动自动测量程序,系统采集锶同位素比值84Sr/86Sr、87Sr/86Sr、88Sr/86Sr数据,并以85Rb/86Sr比值监测铷的分离情况,当该比值大于10-4时,说明87Rb对87Sr/86Sr比值存在明显干扰,此时应适当降低带温度,在较低温度下停留一个时间,令电离温度稍低的铷蒸发殆尽,然后再升高温度继续测量锶同位素比值。每个试样采集4~6组(block)数据,每组数据由8~10次扫描组成,分别计算在加有稀释剂的试样中锶同位素的平均值和标准偏差。

铷的同位素分析与锶类似,但采集85Rb/87Rb数据时的温度较低,在1000℃左右(电离带电流1.5A以上,蒸发带电流越低越好。

3)Sr同位素比值直接测定。年轻海相碳酸盐的年龄测定仅需测定锶同位素比值,其他年轻岩浆岩在仅用于地球化学研究时也只需测定锶同位素比值,不需要测定铷、锶浓度。此种情况下,粗略称取相同量级的试样,不加稀释剂,采用相同化学分离程序分离和纯化锶,同样方法进行同位素分析,经质量分馏效应校正后直接得出试样的87Sr/86Sr比值。

⑼ 微量锆石U-Pb年龄测定

方法提要

本方法适用于来自不同类型岩浆岩中的锆石,在测定偏基性岩浆岩中铀及放射成因铅含量较低的锆石,以及年轻火山岩中晶体细小的锆石时,更显示出优越性。因为该方法允许有较大试样称量(毫克级),在质谱分析中能够产生较强的铅离子流,保证测定精度。缺点是在一个样中可能包含有多种类型锆石,测定结果是它们不同年龄信息的平均值,直观表现为测定一个试样同时获得的三个U-Pb年龄彼此之间明显不一致。为此,测定前应该重视研究和合理挑选试样。

先用稀酸处理锆石晶体表面,氢氟酸封闭溶样,以不同浓度的盐酸在阴离子树脂交换柱上色层分离和纯化U与Pb,在热电离质谱计(TIMS)上进行Pb同位素分析,同位素稀释法测定Pb,U浓度。根据式(86.9)~式(86.12)直接计算或采用U-Pb一致曲线图解法,计算矿物中的U-Pb体系自进入封闭状态以来至今的时间,即矿物结晶年龄。由于铅污染无处不在,因此整个实验流程除测定精度等共性要求外,降低铅的全流程本底是关键。

本方法测定铀、铅含量误差允许限为±1.5%,铅同位素比值测定精度对于207Pb/206Pb应好于0.05%,当被测试样年龄在100~1000Ma时,在95%置信水平下年龄值的相对偏差应小于±5%。

仪器与设备

热电离质谱计 MAT260、MAT261、MAT262、VG354、TRITON等相当类型。

点焊机 质谱计的配套设备。

质谱计灯丝预热装置 质谱计的配套设备。

微量取样器 10μL与50μL。

聚四氟乙烯烧杯10mL与30mL。

氟塑料(F46)试剂瓶500mL与2000mL。

氟塑料(F46)洗瓶500mL。

氟塑料(F46)滴瓶30mL。

氟塑料(F46)对口双瓶亚沸蒸馏器500mL。

石英试剂瓶2000mL。

石英亚沸蒸馏器。

高压釜包括30mL容积聚四氟乙烯闷罐、氟塑料热缩套、不锈钢外套。

离子交换柱用石英管或氟塑料热缩管制作,下部嵌有石英筛板或聚丙烯筛板,保证装在上面的树脂不泄漏,规格:上部内径7mm,高50mm,下部(树脂床)内径5mm,高26mm。

石英滴管。

三角玻璃瓶250mL。

玻璃烧杯3000mL。

水纯化系统。

实验室专用薄膜(Parafilm)。

分析天平感量0.00001g。

电热板(温度可控)。

超声波清洗器。

不锈钢恒温烘箱<300℃。

器皿清洗

所有器皿在(1+1)优级纯盐酸和(1+1)优级纯硝酸中反复交替浸煮三遍,每次煮24h,以后用超纯盐酸或硝酸浸煮,去离子水与超纯水先后冲洗,超纯水浸煮,最后在空气净化柜中用超纯水冲洗,低温下烤干。

高压釜中的溶样闷罐在经过上述程序清洗后,再加入1mL超纯氢氟酸、一滴超纯硝酸,置于不锈钢套中,拧紧,放入不锈钢烘箱中,在温度(180±10)℃下加热48h,然后冷却,倾出氢氟酸,超纯水冲洗,加满超纯水后在电热板上于110℃温度下加热30min,反复三次。最后在超净柜中用超纯水冲洗,烤干。

试剂与材料

去离子水二次蒸馏水再经Milli-Q水纯化系统纯化。

超纯水去离子水经石英蒸馏器蒸馏。

超纯盐酸用(1+1)优级纯盐酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步配制为需求浓度。

超纯硝酸用(1+1)优级纯硝酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步配制为需求浓度。

超纯氢氟酸用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。

丙酮优级纯。

无水乙醇优级纯。

235U稀释剂溶于3mol/LHCl中,235U丰度>90%,浓度标定见附录86.1A。

208Pb稀释剂溶于3mol/LHCl中,208Pb丰度>99.9%,浓度标定见附录86.1A。

强碱性阴离子交换树脂BioRadAG1×8(200~400目)或Dowex1×8(200~400目)或更好的性能相似树脂。

阴离子树脂交换柱准备将约100g200~400目AG1×8阴离子交换树脂倒入250mL烧杯中,先用无水乙醇浸泡24h以上,中间用玻棒搅动几次,倒出乙醇后晾干,用去离子水漂洗。再用优级纯(1+1)盐酸浸泡24h以上,同样不断用玻棒搅动,倒出盐酸用超纯水漂洗,转入200mL试剂瓶浸泡于水中供长期使用。用滴管从该试剂瓶中吸出少量呈糊状的树脂,分别装入已清洗好的石英(或氟塑料)交换柱中,树脂床高26mm,直径5mm,体积约0.5mL,用20mL(1+1)超纯盐酸和超纯水分别动态淋洗,最后用5mL3mol/L超纯盐酸平衡,待用。以后每分离一批试样,都需要拆柱,已用过的树脂弃去,按上述程序装入新树脂。

超纯磷酸c(1/3H3PO4)=0.5mol/L用优级纯磷酸经阳离子树脂交换纯化后配制。

硅胶由超细级光谱纯二氧化硅(SiO2)和稀超纯硝酸在超声波作用下制成的胶体溶液。

硼砂饱和溶液用超纯水溶解优级纯固体硼砂(Na2B4O7·10H2O)。

同位素标准物质NBS-981、NBS-982、NBS-983。

铀同位素标准物质铀-500。

铅标准物质。

铀标准物质光谱纯硝酸铀酰。

离子源灯丝铼带18mm×0.03mm×0.8mm。

试样选择与预处理

1)样品采集。锆石等副矿物一般从岩石大样中选取,岩石样的采集量视锆石在其中的含量而定。对于中酸性岩浆岩(如花岗岩),如果在岩石薄片中能见到一粒锆石,那么采集10kg左右足够,基性岩采样量相应增加。在风化作用强烈找不到新鲜露头的地方,可以选择半风化壳用淘砂盘就地淘洗,选出一标本袋重砂后回到室内再进一步选矿。

2)锆石分选。

A.碎样。碎样前严格清洗场地,用高压空气吹尽工作场地与台面上的灰尘,在每个样碎样前,都需要拆下碎样机各部件用水冲洗,酒精擦洗,复原后在下面垫一块白纸空转机器5min,视有无岩屑震落,如不合格,重复操作。在大量岩石开始破碎前先放入少部分,破碎后弃之。岩石破碎粒度视岩石结构粗细而定,原则是既不让大的锆石晶体因破碎过度变成晶屑,也不宜因破碎粒度不够,让锆石晶体普遍带有连晶。对于花岗岩,一般过0.1mm和0.25mm两级筛,从<0.1mm与0.1~0.25mm两级岩粉中选出锆石。过筛分级过程中注意清洗筛网布,绝不能在筛孔中塞有其他试样的锆石。

B.摇床分选。<0.1mm与0.1~0.25mm两级岩粉分别上摇床,在流水作用下利用重力分选原理,选取重矿物部分。上试样前先用6mol/LHCl对塑料床面进行刷洗和水冲洗。

C.重液分离和电磁选。经摇床分离后的重矿物部分先用U形磁铁吸去磁铁矿等强磁性矿物,然后用重液(二碘甲烷、三溴甲烷)分选,或用小淘砂盘淘洗,使锆石进一步富集。当试样中混有大量黄铁矿时,用上述方法很难选纯锆石,此时可将试样倒入7mol/LHNO3中缓慢加热,2~3min后黄铁矿逐渐浮至液面,锆石仍沉于容器底部,迅速而准确地将浮于液面的黄铁矿倒出,反复多次。这个方法对于黄铁矿-锆石的分离十分有效。利用分液漏斗,环形电炉加热,效果更好。最后使用电磁仪,有时还可以使用袖珍筛,将一个锆石大样按电磁性强弱及粒度不同,分成若干分样。

D.双目显微镜下挑选。可使锆石纯度达到100%,同时观测研究锆石矿物学特征,包括颜色、透明度、光泽、结晶形态、晶棱晶面磨损程度、裂纹、蜕晶化程度,有无包裹体及包裹体特征等,做好记录。有条件情况下进一步进行阴极发光、背散射电子图像研究,将晶体外部与内部结构特征保存下来。

E.锆石样清洗。被测锆石置于10mL聚四氟乙烯烧杯中先用(1+1)HNO3浸泡30~60min,在超声波清洗机中处理5min,倒出硝酸后用超纯水清洗,加入超纯丙酮在超声波清洗机中处理5min,倒出丙酮加入超纯水微热30min,再在超声波清洗机中处理5min,最后倒掉水溶液,加入超纯丙酮在超声波清洗机中处理5min,倒掉丙酮,电热板上低温烤干,待测。

U-Pb化学分离流程

1)称样、溶样、加入238U稀释剂。称取2~5mg(精确至0.01mg)经过预处理的锆石,置于溶样闷罐中(可在天平内对着秤盘放一个镅源以消除静电,否则细小锆石晶体极容易被静电吸附在容器壁上,很难处理)。加入2~3mL超纯HF,2~3滴超纯HNO3,盖上盖子后套上热缩套,放入不锈钢套中拧紧,放入不锈钢烘箱中,在(180±10)℃衡温下加热7昼夜。然后从烘箱中取出,冷却至室温。打开不锈钢套,用超纯水清洗闷罐外壁,打开闷罐检查锆石是否完全溶解。在确认锆石全部被分解情况下,小心拍打闷罐使沾在内壁上的液珠聚集于底部,在电热板上于110℃温度下缓慢蒸干,冷却至室温后加入2~3滴238U稀释剂溶液,称量(精确至0.00001g)(称量时需要在闷罐上盖一薄膜以隔离大气,否则天平不容易稳定)。在已加入238U稀释剂的闷罐中加入2mL3mol/L超纯盐酸,再次盖上盖子套上热缩套,放入不锈钢套中,再放入烘箱在180℃度下加热过夜,以保证试样与238U稀释剂达到完全混合。如果发现锆石没有完全分解,需要恢复原状再次放入烘箱中,适当延长溶样时间。

2)分液。取两组10mL氟塑料烧杯分别标以ID和IC。按上述程序取出闷罐,将锆石已完全分解并与238U稀释剂达到完全平衡的溶液,按1∶2比例分别倒入ID和IC两个烧杯中,准确称出每份溶液质量,在ID份中加入3~5滴208Pb稀释剂溶液,称量(精确至0.00001g)。小心摇匀,让两者完全混合。ID份用于测定U、Pb浓度,IC份用于测定铅同位素组成。

3)U-Pb分离。将ID和IC两份溶液分别倒入两根已准备好的阴离子树脂交换柱中,待溶液流干后加3mL3.0mol/L超纯HCl淋洗锆等离子,流干后加3mL(1+1)超纯HCl解析铅,下面用10mL氟塑料烧杯承接,最后用3mL超纯水解析铀,另换10mL氟塑料烧杯接收。为了增大强度,ID和IC两个分样中的铀分样可以合并一起进行质谱分析。接收的溶液在电热板上于110℃温度下蒸干,薄膜封盖,待质谱分析。

U、Pb同位素分析

1)铅同位素测定。加有208Pb稀释剂的ID与未加稀释剂的IC试样分别进行测定。下面的操作过程是以MAT261质谱计为例,其他类型质谱计大同小异。

A.装样。铼带的预处理将铼带用无水乙醇清洗,用点焊机将铼带点焊在灯丝支架上,将支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流下,每组带预烧15min,以除去铼带上的铀、铅杂质。

铅同位素分析采用单带源。将已烧好铼带的转盘移至超净工作柜中,取下电离带,接上蒸发带电源。用微量取样器在蒸发带中心部位先后加一滴硅胶和一滴饱和硼砂溶液,依次在1A左右电流下烤干。用微量取样器加2~3滴稀超纯磷酸于待测试样中(ID和IC)将试样溶解,然后逐滴将试样加在已覆有一层硅胶-硼砂的蒸发带上,通电流加热使水分逐渐蒸发。加大电流使铼带上白烟散尽,残余酸根完全被驱赶,再继续加大电流将铼带烧至暗红后迅速将带电流降至零。转动转盘到下一个位置,按同样程序加下一个样。加样程序结束后,依原位插上电离带卡上屏蔽罩,此时的电离带仅起支架作用。将整个转盘送入质谱计离子源中,启动真空系统抽真空。

B.铅同位素数据采集。当离子源真空达到n×10-6Pa后,打开分析室隔离阀,给蒸发带加电流缓慢升温,此时真空度下降,注意不要下降过快,升温与抽真空交替进行。当分析室真空达到5×10-6Pa以上,蒸发带温度在1100~1300℃左右时,在测量系统处于手动状态下,于质量数204~208范围内寻找铅离子流。小心调节加到蒸发带上的电流并不断调整峰中心,使铅离子流达到足够强度(10-13~10-11A),并较长时间地保持稳定。启动自动程序采集铅同位素比值数据204Pb/206Pb、207Pb/206Pb和208Pb/206Pb。

根据所使用的质谱计类型不同,分析采用多接收极同时接收铅同位素离子流或采用单接收极跳峰扫描。每个试样每次测定采集4~6个数据块(Block)数据,每个数据块由8~10次扫描组成,由计算机自动处理数据,给出铅同位素比值平均值及相对偏差。

2)U同位素分析。

A.装样。铀同位素分析采用单带源或双带源。用微量取样器在蒸发带中心先后各加一滴硅胶和硼砂饱和溶液作发射剂,通电流依次缓慢加热烤干。另用微量取样器取2~3滴磷酸溶解试样,小心滴加到已烤干的发射剂上,加大电流驱赶酸根并使铼带烧至暗红,迅速将电流降至零。以后操作同铅同位素。

B.U同位素数据采集铀。基本操作同铅同位素,但是采集数据温度在1300℃以上,接收的离子为UO2+,质量数为267~270,采集的同位素比值为238U/235U。

3)质量分馏校正。由于自然界Pb同位素的3个比值是变化的,都不可能当作标准值,因此对Pb同位素分析中的质量分馏作用不可能做出直接校正。间接校正方法是,测定国际铀、铅标准物质,求出实测值与标准值之间的偏差系数,然后对试样相应比值进行修正。这种校正法存在问题是,测标准物质和试样是在两次独立操作中完成的,样品在Re带(灯丝)上的量(一般前者高出很多)、化学组成、激发状态以及发射温度、数据采集时间等等各项条件互不相同,因此质量分馏状态很可能不一样,校正效果存在不确定性。此外,可以采用双稀释法进行质量分馏校正,即在试样中同时加入分别富集204Pb和207Pb(或206Pb)的两种Pb稀释剂,在一次测定中同时采集混合物的相关比值用于校正。该方法对Pb同位素分析精度要求更高,实验程序也较复杂,目前应用还不广泛。鉴于上述原因,对于Pb同位素分析一般不做质量分馏校正,仅根据经验在分析最佳状态下采集数据和尽可能多的采集数据,使质量分馏减至最小。

测定结果计算

这里仅涉及基本计算步骤与公式。

1)Pb含量计算。

A.ID分样中206Pb的量:

岩石矿物分析第四分册资源与环境调查分析技术

式中:206Pbpid为ID分样中206Pb的量,mol;c208t为铅稀释剂溶液中208Pb的质量摩尔浓度,mol/g;m208t为铅稀释剂溶液质量,g;R为206Pb/208Pb同位素比;右下角标p、t和m分别代表试样(未扣除本底)、稀释剂及两者的混合物;右上角标id和ic分别代表ID和IC分样。

B.全试样中Pb同位素的量:

岩石矿物分析第四分册资源与环境调查分析技术

式中:206Pbp207Pbp208Pbp204Pbp分别为全样中206Pb、207Pb、208Pb和204Pb的量(未扣除本底),mol;mid、mic分别为ID和IC分样的质量,g;

R7/6、R8/6、R4/6分别为试样的铅同位素比值:207Pb/206Pb、208Pb/206Pb和204Pb/206Pb,经测定IC分样后获得。

C.扣除本底后全样中Pb同位素的量:

岩石矿物分析第四分册资源与环境调查分析技术

式(86.18)~式(8.21)中:206Pb、207Pb、208Pb、204Pb分别为206Pb、207Pb、208Pb和204Pb的量,mol;右下角标s和p分别代表扣除本底铅后的量与实际测定的量;Pbb为全流程本底铅的量,mol,Fb206、Fb207、Fb208、Fb204分别为本底铅的206Pb、207Pb、208Pb和204Pb的同位素丰度,通过实测获得。

扣除本底铅后全样的铅含量为:

岩石矿物分析第四分册资源与环境调查分析技术

式中:wPb为试样中铅的质量分数,μg/g;ms为称取试样的质量,g;MPb为铅的摩尔质量,g/mol。

D.扣除普通铅后试样中放射成因铅的量:

岩石矿物分析第四分册资源与环境调查分析技术

岩石矿物分析第四分册资源与环境调查分析技术

式中:206Pbγ207Pbγ208Pbγ分别为扣除普通铅后试样中放射成因206Pb、207Pb、208Pb的量,mol;R(6/4)s、R(7/4)s、R(8/4)s分别为扣除本底后试样的206Pbs207Pbs208Pbs204Pbs之比;R(6/4)c、R(7/4)c、R(8/4)c分别为与试样同时代的普通铅206Pb/204Pb、207Pb/204Pb、208Pb/204Pb之比值,在实际运算中该组比值是根据地球铅演化模型应用叠代法确定。

试样中放射成因铅总量(Pbγ,mol)为:

岩石矿物分析第四分册资源与环境调查分析技术

2)U含量计算:

A.试样中238U与235U的量(mol):

岩石矿物分析第四分册资源与环境调查分析技术

B.试样中铀的质量分数:

岩石矿物分析第四分册资源与环境调查分析技术

式(86.27)~式(86.29)中:238Us235Us分别为试样中238U、235U的量,mol;wU为铀的质量分数,μg/g;R为238U/235U比值;右下角标s、t、m分别代表试样、稀释剂及两者的混合物;c235t为稀释剂溶液中235U的质量摩尔浓度,mol/g;m235t为称取稀释剂溶液质量,g;ms为试样质量,g;Ub为U的全流程本底,mol;MU为铀的摩尔质量,g/mol。

在自然界中,钍的同位素半衰期长的仅有232Th,因此钍的含量测定不能采用同位素稀释法,只能采用一般化学方法。

3)年龄计算。目前通行两种方法。

A.单个试样。将从(86.23)和(86.24)式得到的放射成因铅206Pb和207Pb的量,以及从(86.27)、(86.28)式得到的238U、235U的量分别代入(86.9)和(86.10)两式,即得到一个试样的两个U-Pb年龄(t206/238,t207/235),另外将(86.24)与(86.23)两式相除得到放射成因铅的同位素比

岩石矿物分析第四分册资源与环境调查分析技术

,代入(86.11)式得t207/206年龄。在锆石自结晶以后其U-Pb体系一直处于单阶段封闭状态演化的情况下,它的t206/238、t207/235和t207/2063个年龄在±5%的测定误差范围内应该一致。如果不一致,则确定该矿物的形成年龄比较困难,一般取t206/238年龄作为参考值。

B.一致曲线图解。当矿物中的U-Pb体系不处于封闭状态演化时,它的t206/238、t207/235和t207/2063个年龄会出现明显不一致。对于一组试样来说,此时宜用一致曲线图解方法处理。应用该方法的条件是,该组试样具有相同结晶年龄和相同演化历史,并且普通铅的同位素组成相同。在当前应用得比较成熟的是U-Pb体系两阶段演化模式。在206Pb/238U-207Pb/235U坐标图上,满足上述条件的试样采用最小二乘拟合将能形成一条直线,该直线与一致曲线的上、下交点年龄即所求年龄。

计算锆石U-Pb一致曲线年龄,目前最流行的程序是美国地质调查局提供的Ludwig(1996)程序以及它的最新版本。该方法除了206Pb/238U-207Pb/235U形式外,还有207Pb/206Pb-206Pb/238U形式,后者适用于年轻且两个阶段年龄间隔很短的试样。

⑽ 次、痕量元素的电感耦合等离子体质谱法测定(一)

方法提要

试样经硝酸、氢氟酸、高氯酸密闭分解,在开放体系中蒸发除去氢氟酸,用盐酸加热溶解盐类,并转化为硝酸介质,电感耦合等离子体质谱法测定44种次、痕量元素。

次、痕量元素的测定限见表76.10。

仪器装置

双聚焦高分辨电感耦合等离子体质谱仪(主要技术指标见表76.7)。

聚四氟乙烯密闭溶样罐容积为20mL,具密封盖和过压保护功能。

表76.7 高分辨电感耦合等离子体质谱仪主要技术指标

试剂

硝酸经亚沸石英蒸馏器蒸馏。

氢氟酸。

高氯酸。

盐酸。

单元素标准储备溶液用光谱纯金属、金属氧化物或其盐类配制成单元素标准储备溶液,或使用市售有证单元素标准溶液,或直接采用市售有证ICP-MS专用多元素标准溶液。

多元素标准储备溶液用标准储备溶液按表76.8配制多元素标准储备溶液,保存于塑料瓶中。

表76.8 多元素标准储备溶液分组

多元素标准工作溶液ρ(B)=20.0ng/mL由多元素标准储备溶液稀释,介质Φ(HNO3)=2%。高含量元素可增加100、500ng/mL浓度标准溶液。

干扰校正用单元素标准溶液用标准储备溶液逐级稀释配制成钡、锰、钛浓度为10μg/mL;镧、铈、钕浓度为1μg/mL的单元素标准溶液。以上溶液均含铑,其浓度为0.01μg/mL,介质为!(HNO3)=2%。

内标溶液ρ(Rh)=20ng/mL。

分析步骤

称取0.05g(精确到0.0001g)烘干试样,置于聚四氟乙烯密闭溶样罐中,加1mL重蒸HNO3,3mLHF,摇匀,加盖密闭,在自动控温电热板上160~180℃分解48h,取下冷却,开启密闭盖,蒸至近干,加1mLHClO4,蒸至白烟冒尽。冷却后加2mLHCl,在自动控温电热板上加热使盐类溶解,蒸至近干,加2mL重蒸HNO3,蒸至近干以除去氯离子。加1.5mL重蒸HNO3,加盖旋紧密闭,在自动控温电热板上160~180℃加热溶解12h,冷却后开启密闭盖,加入0.5mL铑内标溶液,加盖摇匀,于自动控温电热板上80℃保温12h,冷却至室温,开启密闭盖,用(2+98)HNO3移入50mL容量瓶中,并用其稀释至刻度,摇匀,待测。

电感耦合等离子体质谱仪测量条件如下。

———ICP条件:载气流量0.99L/min;冷却气流量13.00L/min;射频功率1350W;辅助气流量0.85L/min;玻璃同心雾化器;带水冷的玻璃雾室。

———MS条件:镍锥,孔径0.8mm;双聚焦磁质谱系统;分辨率300~10000。

———进样方式:方式1,采用玻璃同心雾化器、玻璃雾室和蠕动泵进样;方式2,膜去溶装置进样。除特别指明外,均为方式1进样。

测定同位素及质谱干扰见表76.9。

表76.9 测定同位素及主要干扰

续表

各元素检出限见表76.10。

表76.10 各元素的测定下限

续表

仪器启动稳定00.5h后,经调试达到表76.7所列指标。以(2+98)HNO3为低点,多元素标准工作溶液为高点进行仪器校准。然后测定试样溶液。在校准和试液测定的全过程中将Rh内标溶液通过三通与试液混合后引入仪器雾化系统。

必要时,对较高含量元素的测定可分取一定体积试样溶液进行稀释,稀释后被测试样溶液中的各元素含量应在校准曲线范围内。

试样测定之间的清洗时间应不低于5min。

待试样测定完毕,进行干扰系数测定。其方法如下:

将干扰校正用单元素标准溶液视为试样溶液,测定各元素的浓度。将测得的各元素浓度与干扰校正用单元素标准溶液浓度之比,得到干扰元素j(钡、锰、钛、镧、铈、钕)对被测各元素i的干扰系数α(i,j)

按式(76.28)和式(76.29)计算各元素的含量。

岩石矿物分析第四分册资源与环境调查分析技术

式中:wB为测定元素的含量,μg/g;ρi为经干扰校正后试样溶液中各元素(i)的质量浓度,μg/mL;ρmi为未经干扰校正的试样溶液中各元素(i)的质量浓度,μg/mL;ρmj为试样溶液中干扰元素(j)的质量浓度,μg/mL;α(i,j)为干扰元素j对被测元素i的干扰系数;ρ0为试样空白溶液中各元素的质量浓度,μg/mL;V为试样溶液体积,mL;m为称取试样的质量,g。

注意事项

1)采用!(HNO3)=2%介质,对大多数元素的ICP-MS测定是合适的。海底沉积物中锰、钛、钡的含量高,容易形成ArO、MN、MO、MAr、MH、M2+等干扰物。这些干扰物将对镓、铌、铕、钆、钽、钨会产生一定的干扰。本方法采用干扰系数法校正上述3种元素对其他元素可能产生的干扰。

2)氯离子对V(35Cl16O、37Cl14N干扰)、Co(24Mg35Cl干扰)、Cu(26Mg37Cl干扰)、Lu(140Ce35Cl干扰)会产生正干扰,试样分解时必须除去氯离子。

3)应严格控制全流程空白小于测定下限的3倍,这是保证获得本法所述测定下限的关键。否则,测定下限应根据全流程空白值重新确定。氩气、水和酸的纯度是获得低本底的关键因素。每次进样后,清洗时间应足以使测量系统的本底值降低到接近进样前的水平。

4)采用高分辨率ICP-MS仪器、方式2进样或化学分离测定稀土元素,可以不校正钡对中重稀土元素的干扰。

阅读全文

与双瓶亚沸蒸馏相关的资料

热点内容
电离子去汗管瘤疤掉后很红 浏览:498
东风轻卡车空调滤芯怎么拆 浏览:191
污水使鱼生病英语怎么说 浏览:45
超纯水机水量下降怎么办 浏览:971
swro反渗透膜厂家 浏览:430
茅台酒的蒸馏技术原理 浏览:885
D301离子交换树脂废水脱氯 浏览:786
污水厂鼓风机房设计计算 浏览:63
外热式蒸发器能处理高盐废水吗 浏览:710
离子交换层析分段洗涤 浏览:577
净化器水处理废水比例多少最好 浏览:583
房屋水管接地处漏水处理 浏览:854
进口除垢净水器经销商 浏览:217
活性树脂补牙 浏览:486
安吉尔净水器推荐哪个 浏览:611
B树脂的作用 浏览:692
华为净化器怎么打开后盖 浏览:583
磁化水机和纯水机有什么区别 浏览:171
沁园净水桶mra1怎么样 浏览:761
为何选择反渗透净水器 浏览:481