导航:首页 > 蒸馏问题 > 烯丙基氯蒸馏

烯丙基氯蒸馏

发布时间:2021-03-27 03:26:57

⑴ 3氯丙烯制取丙三醇的合成路线是什么

甘油的工业生产方法可分为两大类:以天然油脂为原料的方法,所得甘油俗称天然甘油;以丙烯为原料的合成法,所得甘油俗称合成甘油. 1.天然甘油的生产 1984年以前,甘油全部从动植物脂制皂的副产物中回收.直到目前,天然油脂仍为生产甘油的主要原料,基中约42%的天然甘油得自制皂副产,58%得自脂肪酸生产.制皂工业中油脂的皂化反应.皂化反应产物分成两层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油,下层是废碱液,为含有盐类,氢氧化钠的甘油稀溶液,一般含甘油9-16%,无机盐8-20%.油脂反应.油脂水解得到的甘油水(也称甜水),其甘油含量比制皂废液高,约为14-20%,无机盐0-0.2%.近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甜水中一般不含无机酸,净化方法比废碱液简单.无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高,而且都含有各种杂质,天然甘油的生产过程包括净化、浓缩得到粗甘油,以及粗甘油蒸馏、脱色、脱臭的精制过程.这一过程在一些书刊中有详细介绍. 2.合成甘油的生产 从丙烯合成甘油的多种途径可归纳为两大类,即氯化和氧化.现在工业上仍在使用丙烯氯化法及丙烯不定期乙酸氧化法. (1)丙烯氯化法 这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解.环氧氯丙烷水解制甘油是在150℃、1.37MPa二氧化碳压力下,在10%氢氧化和1%碳酸钠的水溶液中进行,生成甘油含量为5-20%的含氯化钠的甘油水溶液,经浓缩、脱盐、蒸馏,得纯度为98%以上的甘油. (2)丙烯过乙酸氧化法 丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯为丙醇.后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油.过乙酸的生产不需要催剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%.上述后两步反应在特殊结构的反应精馏塔中连续进行.原料烯丙醇和含有过乙酸的乙酸乙酯溶液送入塔后,塔釜控制在60-70℃、13-20kPa.塔顶蒸出乙酸乙酯溶剂和水,塔釜得至甘油水溶液.此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程.生产1t甘油消耗烯丙醇1.001t,过乙酸1.184t,副产乙酸0.947t.目前,天然甘油和合成甘油的产量几乎各占50%,而丙烯氯化法约占合志甘油产量的80%.我国天然甘油占总产量90%以上

⑵ 氯丙烯工艺理论

生产方法:1.高温氯化法 丙烯和氯气在高温下进行氯化反应;工艺过程如下;干燥的丙烯(新鲜丙烯:循环丙烯=1:3)在加热中预热至350-400℃,在反应塔入口处,与氯气混合(氯气:丙烯=1:3),经特制的喷嘴喷入炉内,炉内温度为500℃左右,利用氯化反应热预热丙烯。丙烯单程转化率为25%,氯的转化为化学计算量,烯丙基氯的总收率为80-85%,除主产品烯丙基外,还有1,2-二氯丙烯、1,3-二氯丙烯、氯化氢、1,2,3-三氯丙烷及其他少量副产品。氯化反应物急冷到50-100℃,以除去氯化氢和丙烯,再经分馏而得丙烯氯。对于年产1。35万t烯丙基氯装置,每吨产品约消耗丙烯700kg,氯气1120kg。2.氧氯化法 以丙烯为原料,以碲为催化剂,通过下列反应得到烯丙基氯;丙烯、盐酸和氧按2.5-1:1:1-0.2(摩尔比)的例混合。反应在240℃,0.101MPa的条件下进行。反应器为流化床,催化剂是载于载体上的Te V2 O5 H3 PO4,并添加含氮物作促进剂。选择性90%以上,流化床的空时收率大于100g烯丙基氯/L催化剂·小时。在小批量生产时,可以通过烯丙醇氯化得到;于10-20℃将硫酸加到烯丙醇、氯化亚铜和盐酸中。加毕,保温反应5h。静置分层,分去下层混酸,上层液水洗1次,5%碳酸钠溶液洗1次,再水洗1次,分尽水后,蒸馏收集40℃以上馏分,得烯丙基氯。收率73%。
其制备方法有高温氯化法、丙烯氧氯化法、烯丙醇氯化法等。
高温氯化法
由丙烯高温所化制得。反应方程式:CH3CH=CH2+Cl2→ClCH2CH=CH2+HCl
将干燥的丙烯经350~400℃预热,液氯经加热气化,两种物料在高速喷射状态下混合并进行反应,丙烯与氯气的配比为4~5∶1(摩尔比),反应器停留时间1.5~2s,反应温度470~500℃。反应产物急冷至50~100℃以除去HCl和丙烯,再经分馏即得到产品。此法为国内外大多数生产企业所采用。
丙烯氧氯化法
按2.5~ (1∶1∶1) ~0.2 (摩尔比) 比例混合的丙烯、氯化氢和氧气在流化床反应器中进行反应,选用催化剂为载于载体上的Te、V2O5 或 H3PO4,并添加含氮物作促进剂,于240~260℃进行常压氧氯化反应,制得3-氯丙烯。反应方程式:CH3CH=CH2+HCl+1/2O2[催化剂]→CH2=CHCH2Cl+H2O
烯丙醇氯化法
反应方程式:CH2=CHCH2OH[Cu2Cl2,HCl]→CH2=CHCH2Cl+H2O
于10~20℃将硫酸滴入烯丙醇、氯化亚铜和盐酸中,滴加完毕后保温反应5h,静置分层,上层液用水、5%碳酸钠溶液、水各洗1次,分尽水后,蒸馏收集40℃以上馏分,即为3-氯丙烯。此法适用于小批量生产。

⑶ 进行有毒实验的操作注意的事项有哪些

在化学实验室里,储存摆放着各种各样的化学药品,进行着各种化学试验。在试验过程中要接触一些易燃、易爆、有毒、有害、有腐蚀性药品,且经常使用水、气、火、电等,潜藏着诸如爆炸、着火、中毒、灼伤、割伤、触电等危险性事故,这些事故的发生常会给我们带来严重的人身伤害和财产损失。
在化学实验室里,储存摆放着各种各样的化学药品,进行着各种化学试验。在试验过程中要接触一些易燃、易爆、有毒、有害、有腐蚀性药品,且经常使用水、气、火、电等,潜藏着诸如爆炸、着火、中毒、灼伤、割伤、触电等危险性事故,这些事故的发生常会给我们带来严重的人身伤害和财产损失。如果我们掌握相关的实验室安全知识以及事故发生时的应急处理知识,就能够正确、安全地使用化学药品及实验器械,从而可以尽可能的减少和避免实验室里安全事故的发生,即使在发生紧急事故时,也能够不慌不乱,把伤害和损失减少到最少程度。
化学实验常常伴随着危险,无论怎样简单的实验,都不能粗心大意。在做化学试验时,如果能够端正态度,认真细致的做好每一道必须的工作,就会避免许多事故的发生。
1.实验时根据试验的情况和性质进行必要的防护。根据试验可能发生的危险事故佩戴必要的防护工具,例如穿好试验服,戴橡胶手套,防护面具,防毒面具等。实验前,要注意清理试验场周围的安全隐患。检查试验装置、药品和相关物品是否有不符合要求的情况等。
2.遵循化学药品的性质和化学反应的规律,不盲目蛮干和主观臆测化学反应的过程。应根据化学反应的性质和过程选择匹配的反应装置,不可图省事省去必要的安全措施。
3.经常估计到实验的危险性
实验事故虽不可预测,但其危险性的大小是可以估计到的。即使对不大了解的实验,也必须推测其危险程度而制订相应的预防措施。象下面这类实验,必须十分注意,使之万无一失。
①不了解的反应及操作;
②存在多种危险性的实验(如发生火灾、毒气等);
③在严酷的反应条件(如高温、高压等)下进行的实验。
4.充分作好发生事故时的预防措施并加以检查。
平时注意熟悉需要关闭的主要龙头、电气开关,灭火器的位置及操作方法,避免发生事故时才四处寻找应急的物品。
5.实验的后处理。实验的后处理工作,亦属实验过程的组成部份。特别不可忽略回收溶剂和废液、废弃物等的处理。
危险物质的使用处理及注意事项
危险物质,是指具有着火、爆炸或中毒危险的物质。使用这类物质的时候应该特别小心注意以下事项:
1.使用危险物质前,要充分了解所使用物质的性状,特别是着火、爆炸及中毒的危险性。
2. 贮藏。通常,危险物质要避免阳光照射,把它贮藏于阴凉的地方。注意不要混入异物。并且必须与火源或热源隔开。实验室冰箱和超低温冰箱使用注意事项:定期除霜、清理,清理后要对内表面进行消毒;储存的所有容器,应当标明物品名称、储存日期和储存者姓名;除非有防爆措施,否则冰箱内不能放置易燃易爆化学品溶液,冰箱门上应注明这一点。
3. 在使用危险物质之前,必须预先考虑到发生灾害事故时的防护手段,并做好周密的准备。使用有火灾或爆炸危险的物质时,要准备好防护面具、耐热防护衣及灭火器材等;对于毒性物质,则要准备橡皮手套、防毒面具及防毒衣之类用具。
4.在情况允许下,尽可能少用或不用危险物质。并且,对不了解性能的物质,需进行预备试验。
5. 对于有毒药品及含有毒物的废弃物时,使用完毕后进行适宜的处理,避免污染水质和大气。
着火性物质
具有着火危险的物质非常多。通常有因加热、撞击而着火的物质,也有由于相互接触、混合而着火的物质。下面按照表1的分类,叙述其处理方法。
表1 着火性物质的分类

分类

特点

有关物质

强氧化性物质

因加热、撞击而分解,放出的氧气与可燃性物质剧烈燃烧,有时会发生爆炸

氯酸盐,过氧化物等

强酸性物质

若与有机物或还原性物质混和,即会发生作用而发热,有时会着火

无机酸类,氯磺酸等

低温着火性物质

在较低温度下着火而燃烧迅猛的可燃性物质

黄磷,金属粉末等

自燃物质

在室温下,接触空气即着火燃烧

有机金属化合物,金属催化剂等

禁水性物质

与水反应而着火,有时还由于产生的气体而发生爆炸的物质。

金属钠,炭化钙等

1.1 强氧化性物质
强氧化性物质包括:
[氯酸盐]:MClO3(M=Na、K、NH4、Ag、Hg(Ⅱ)、Pb、Zn、Ba)。
[高氯酸盐]:MClO4(M=Na、K、NH4、Sr)。
[无机过氧化物]:Na2O2、K2O2、MgO2、CaO2、BaO2、H2O2。
[有机过氧化物]:烷基氢过氧化物R—O—O—H(特丁基—,异丙苯基—)、二烷基过氧化物R—O—O—R'(二特丁基—,二异丙苯基—)、二酰基过氧化物R—CO—O—O—COR'(二乙酰基—,二丙酰基—,二月桂酰基—,苯甲酰基—)、酯的过氧化物 R—CO—O—O—R'(醋酸或安息香酸特丁基—)、酮的过氧化物
H(或OH)-(-O-RCR’-O-)n-H(或OH)(甲基乙基酮-,甲基异丁基酮-,环已酮—)。
[硝酸盐]:MNO3(M=Na、K、NH4、Mg、Ca、Pb、Ba、Ni、Co、Fe)。
[高锰酸盐]:MMnO4(M=K、NH4)。
注意事项
1).此类物质因加热、撞击而发生爆炸,故要远离烟火和热源。要保存于阴凉的地方,并避免撞击。
2).若与还原性物质或有机物混合,即会氧化发热而着火。
3).氯酸盐类物质与强酸作用,产生ClO2(二氧化氯),而高锰酸盐与强酸作用,则产生O3(臭氧),有时会发生爆炸。
4).过氧化物与水作用产生O2,与稀酸作用,则产生H2O2并发热,有时会着火。
5).碱金属过氧化物能与水起反应,因此,必须注意此类物质的防潮。
6).有机过氧化物,在化学反应中能作为副产物生成,并且,在有机物贮藏的过程中也会生成。因此,必须予以注意。
防护方法
有爆炸危险时,要戴防护面具。若处理量大时,要穿耐热防护衣。
灭火方法
由此类物质引起的火灾,一般用水灭火。但由碱金属过氧化物引起着火时,不宜用水,要用二氧化碳灭火器或砂子灭火。
事故例子
踩到跌落地上的氯酸钾而着火。◆用有机质匙子将二乙酰过氧送去称量的过程中发生着火。◆将过氧化氢浓溶液密封贮存的过程中塞子飞出,过氧化氢溢出而着火(用透气的塞子塞着较好)。◆用硅胶精制二特丁基过氧化物,于布氏漏斗过滤时,发生爆炸(因在过滤板上析出过氧化物之故)。◆用过氧化氢制氧气时,一加入二氧化锰即急剧的起反应而使烧瓶破裂。
1.2 强酸性物质
此类物质包括:HNO3(发烟硝酸、浓硝酸)、H2SO4(无水硫酸、发烟硫酸、浓硫酸)、HSO3Cl(氯磺酸)、CrO3(铬酐)等。
注意事项
1).强酸性物质若与有机物或还原性等物质混合,往往会发热而着火。注意不要用破裂的容器盛载。要把它保存于阴凉的地方。
2).如果加热温度超过铬酐的熔点时,CrO3即分解放出O2而着火。
3).洒出此类物质时,要用碳酸氢钠或纯碱将其覆盖,然后用大量水冲洗。
防护方法
加热处理此类物质时,要戴橡皮手套。
灭火方法
对由强酸性物质引起的火灾,可大量喷水进行灭火。
事故例子
热的浓硝酸沾到衣服而引起着火。◆将渗透浓硫酸的破布与沾有废油的破布丢弃在一起而着火。◆装有热的浓硫酸的熔点测定管发生破裂,浓硫酸沾到手上而烧伤。
1.3 低温着火性物质
此类物质有:P(黄磷、红磷)、P4S3、P2S5、P4S7(硫化磷)、S(硫黄)、金属粉(Mg、Al等)、金属条(Mg)等。
注意事项
1).因为此类物质一受热就会着火,所以,要远离热源或火源。要把它保存于阴凉的地方。
2).此类物质若与氧化性物质混合,即会着火。
3).黄磷在空气中会着火,故要把它放入PH值7~9的水中保存,并避免阳光照射。
4).硫黄粉末吸潮会发热而引起着火。
5).金属粉末若在空气中加热,即会剧烈燃烧。并且,当与酸、碱物质作用时产生氢气而有着火的危险。
防护方法
处理量大时,要戴防护面具和手套。
灭火方法
由此类物质引起火灾时,一般用水灭火较好,也可以用二氧化碳灭火器。但由大量金属粉末引起着火时,最好用砂子或粉末灭火器灭火。
事故例子
装有黄磷的瓶子,从药品架上跌落,洒出黄磷而着火。◆铝粉着火时,用水灭火,火势反而更猛烈。◆将熔融的黄磷倒入水中制成小颗粒时,烧杯倾歪了,洒出黄磷而引起着火,并烧着衣服,致使烧伤。
1.4 自燃物质
这类物质有:有机金属化合物RnM(R=烷基或烯丙基,M=Li、Na、K、Rb、Se、B、Al、Ga、Tl、P、As、Sb、Bi、Ag、Zn)及还原性金属催化剂(Pt、Pd、Ni、Cu—Cr)等。
注意事项
1).这类物质一接触空气就会着火,因此,初次使用时,必须请有经验者进行指导。
2).将有机金属化合物在溶剂中稀释而成的东西,若其溶剂一飞溅出来就会着火。因此,要把其密封保管。并且,不要将可燃性物质置于其附近。
防护方法
处理毒性大的自燃物质时,要戴防毒面具和橡皮手套。
灭火方法
由这类物质引起的火灾,通常用干燥砂子或粉末灭火器灭火。但数量很少时,则可以大量喷水灭火。
事故例子
将盛有经溶剂稀释的三乙基铝的瓶子,放入纸箱搬运的过程中,瓶子破裂发生泄漏而引起着火。◆在滤纸上洗涤还原性镍催化剂,其后把滤纸丢入垃圾箱中而引起着火。◆在通风橱内,用LiAlH■进行还原反应,于放有LiAlH4的烧瓶中加入乙醚时发生着火。
1.5 禁水性物质
禁水性物质包括:Na、K、CaC2(碳化钙)、Ca3P2(磷化钙)、 CaO(生石灰)、NaNH2(氨基钠)、LiAlH4(氢化锂铝)等。
注意事项
1).金属钠或钾等物质与水反应,会放出氢气而引起着火、燃烧或爆炸。因此,要把金属钠、钾切成小块,置于煤油中密封保存。其碎屑也贮存于煤油中。要分解金属钠时,可把它放入乙醇中使之反应,但要注意防止产生的氢气着火。分解金属钾时,则在氮气保护下,按同样的操作进行处理。
2).金属钠或钾等物质与卤化物反应,往往会发生爆炸。
3).碳化钙与水反应产生乙炔,会引起着火、爆炸。
4).磷化钙与水反应放出磷化氢(PH3为剧毒气体),由于伴随着放出自燃性的P2H4而着火,从而导致燃烧爆炸。
5).金属氢化物之类物质,与水(或水蒸汽)作用也会着火。若把它丢弃时,可将其分次少量投入乙酸乙酯中(不可进行相反的操作)。
6).生石灰与水作用虽不能着火,但能产生大量的热,往往使其它物质着火。
防护方法
使用这类物质时,要戴橡皮手套或用镊子操作,不可直接用手拿。
灭火方法
由这类物质引起火灾时,可用干燥的砂子、食盐或纯碱把它覆盖。不可用水或潮湿的东西或者用二氧化碳灭火器灭火。
事故例子
将经甲醇分解的金属钠丢入水中时,由于金属钠尚未分解完全而引起着火、燃烧(因为当用甲醇进行分解时,在金属钠的表面,生成粘稠的醇盐膜,使其难于分解)。
2. 易燃性物质
可燃物的危险性,大致可根据其燃点加以判断。燃点越低,危险性就越大。但是,即使燃点较高的物质,当加热到其燃点以上的温度时,也是危险的。据报道,由此种情况发生的事故特别多。因此,必须加以注意。下面按照表3的分类叙述其处理方法。
表2 易燃物质的分类

分类

特点

特别易燃物质

20℃时为液体,或在20℃-40℃时成为液体,着火温度在100℃以下,或者燃点在-20℃以下和沸点在40℃以下

一般易燃性物质

高度易燃物质

室温下易燃性高的物质,燃点在20℃以下

中等易燃物质

加热时易燃性高的物质,燃点在20℃-70℃

低易燃物质

高温加热时,由于分解出气体而着火的物质,燃点在70℃以上

注:所谓燃点,即在液面上,液体的蒸气与空气混合,构成能着火的蒸气浓度时的最低温度,称为该液体物质的燃点。而所谓着火点(着火温度),系可燃物在空气中加热而能自行着火的最低温度称之。物质的燃点或着火点,在相同的测定条件下,其所测得的结果产生微小的偏差,故很难说得上是物质的固有常数,但是,二者均为物质的重要物理性质。
2.1 特别易燃物质
此类物质有:乙醚、二硫化碳、乙醛、戊烷、异戊烷、氧化丙烯、二乙烯醚、羰基镍、烷基铝等。
注意事项
1).由于着火温度及燃点极低而很易着火,所以使用时,必须熄灭附近的火源。
2).因为沸点低,爆炸浓度范围较宽,因此,要保持室内通风良好,以免其蒸气滞留在使用场所。
3).此类物质一旦着火,爆炸范围很宽,由此引起的火灾很难扑灭。
4).容器中贮存的易燃物减少了时,往往容易着火爆炸,要加以注意。
防护方法
对有毒性的物质,要戴防毒面具和橡皮手套进行处理。
灭火方法
由这类物质引起火灾时,用二氧化碳或粉末灭火器灭火。但对其周围的可燃物着火时,则用水灭火较好。
事故例子
乙醚从贮瓶中渗出,由远离两米以外的燃烧器的火焰引起着火。◆正在洗涤剩有少量乙醚的烧瓶时,突然由热水器的火焰燃着而引起着火。◆将盛有乙醚溶液的烧瓶放入冰箱保存时,漏出乙醚蒸气,由箱内电器开关产生的火花引起着火爆炸,箱门被炸飞(乙醚之类物质要放入有防爆装置的冰箱内保存)。◆焚烧二硫化碳废液时,在点火的瞬间,产生爆炸性的火焰飞散而烧伤(焚烧这类物质时,应在开阔的地方,于远处投入燃着的木片进行点火)。
2.2 一般易燃性物质
高度易燃性物质(闪点在20℃以下)
它包括:(第一类石油产品)石油醚、汽油、轻质汽油、挥发油、己烷、庚烷、辛烷、戊烯、邻二甲苯、醇类(甲基—~戊基—)、二甲醚、二氧杂环己烷、乙缩醛、丙酮、甲乙酮、三聚乙醛等。
甲酸酯类(甲基—~戊基—)、乙酸酯类(甲基—~戊基—)、乙腈(CH3CN)、吡啶、氯苯等。
中等易燃性物质(闪点在20~70℃之间)
它包括:(第2类石油产品)煤油、轻油、松节油、樟脑油、二甲苯、苯乙烯、烯丙醇、环己醇、2—乙氧基乙醇、苯甲醛、甲酸、乙酸等。
(第3类石油产品)重油、杂酚油、锭子油、透平油、变压器油、1,2,3,4——四氢化萘、乙二醇、二甘醇、乙酰乙酸乙酯、乙醇胺、硝基苯、苯胺、邻甲苯胺等。
低易燃性物质(闪点在70℃以上)
它包括:(第4类石油产品)齿轮油、马达油之类重质润滑油,及邻苯二甲酸二丁酯、邻苯二甲酸二辛酯之类增塑剂。
(动植物油类产品)亚麻仁油、豆油、椰子油、沙丁鱼油、鲸鱼油、蚕蛹油等。
注意事项
1).高度易燃性物质虽不象特别易燃物质那样易燃,但它的易燃性仍很高。由电开关及静电产生的火花、赤热物体及烟头残火等,都会引起着火燃烧。因而,注意不要把它靠近火源,或用明火直接加热。
2).中等易燃性物质,加热时容易着火。用敞口容器将其加热时,必须注意防止其蒸气滞留不散。
3).低易燃性物质,高温加热时分解放出气体,容易引起着火。并且,如果混入水之类杂物,即会产生爆沸,致使引起热溶液飞溅而着火。
4).通常,物质的蒸气比重大的,则其蒸气容易滞留。因此,必须保持使用地点通风良好。
5).闪点高的物质,一旦着火,因其溶液温度很高,一般难于扑灭。
防护方法
加热或处理量很大时,要准备好或戴上防护面具及棉纱手套。
灭火方法
此类物质着火,当其燃烧范围较小时,用二氧化碳灭火器灭火。火势扩大时,最好用大量水灭火。
事故例子
蒸馏甲苯的过程中,忘记加入沸石,发生爆沸而引起着火。◆将还剩有有机溶剂的容器进行玻璃加工时,引起着火爆炸而受伤。◆把沾有废汽油的东西投入火中焚烧时,产生意想不到的猛烈火焰而烧伤。◆用丙酮洗涤烧瓶,然后置于干燥箱中进行干燥时,残留的丙酮气化而引起爆炸。干燥箱的门被炸坏飞至远处。◆将经过加热的溶液,于分液漏斗中用二甲苯进行萃取,当打开分液漏斗的旋塞时,喷出二甲苯而引起着火。◆将润滑油进行减压蒸馏时,用气体火焰直接加热。蒸完后,立刻打开减压旋塞,于烧瓶中放入空气时发生爆炸。◆将油浴加热到高温的过程中,当熄灭气体火焰而关闭空气开关时,突然伸出很长的摇曳火焰而使油浴着火(熄灭气体火焰时,要先关闭其主要气源的旋塞)。◆对着火的油浴覆盖四氯化碳进行灭火时,结果它在油中沸腾,致使着火的油飞溅反而使火势扩大。
3. 爆炸性物质
爆炸有两种情况:一是可燃性气体与空气混合,达到其爆炸界限浓度时着火而发生燃烧爆炸;一是易于分解的物质,由于加热或撞击而分解,产生突然气化的分解爆炸。下面按照表4的分类,叙述其处理方法。
表4 爆炸性物质的分类

分类

特点

示例

可燃性气体

爆炸界限浓度:下限10%以下,或者上下限之差在20%以上的气体

氢气,乙炔等

分解爆炸性物质

加热或撞击可以引起着火、爆炸的可燃性物质

硝酸酯,硝基化合物等。

爆炸品之类的物质

以其产生爆炸作用为目的的物质

火药、炸药、起爆器材等

3.1 可燃性气体
[由C、H元素组成的可燃性气体]:氢气、甲烷、乙烷、丙烷、丁烷、乙烯、丙烯、丁烯、乙炔、环丙烷、丁二烯。
[由C、H、O元素组成的可燃性气体]:一氧化碳、甲醚、环氧乙烷、氧化丙烯、乙醛、丙烯醛。
[由C、H、N元素组成的可燃性气体]:氨、甲胺、二甲胺、三甲胺、乙胺、氰化氢、丙烯腈。
[由C、H、X(卤素)元素组成的可燃性气体]:氯甲烷、氯乙烷、氯乙烯、溴甲烷。
[由C、H、S元素组成的可燃性气体]:硫化氢、二硫化碳。
注意事项
1).如果漏出可燃性气体并滞留不散,当达到一定浓度时,即会着火爆炸。填充有此类气体的高压筒形钢瓶,要放在室外通风良好的地方。保存时,要避免阳光直接照射。
2).使用可燃性气体时,要打开窗户,保持使用地点通风良好。
3).乙炔和环氧乙烷,由于会发生分解爆炸,因此,不可将其加热或对其进行撞击。
防护方法
根据需要准备好或戴上防护面具、耐热防护衣或防毒面具。
灭火方法
当此类物质着火时,可采用通常的灭火方法进行灭火。泄漏气体量大时,如果情况允许,可关掉气源,扑灭火焰,并打开窗户,即离开现场(隐蔽起来);若情况紧急,则要立刻离开现场。
事故例子
搬运装有乙炔的钢瓶时,不慎跌落而发生爆炸。
3.2 分解爆炸性物质
分解爆炸性物质的危险程度,分别用下列符号表示:A=灵敏度大、威力大;B=灵敏度大、威力中等;C=灵敏度大、威力小;A'=灵敏度中等、威力大;B'=灵敏度中等、威力中等;C'=灵敏度中等、威力小。
注意事项
1).此类物质常因烟火、撞击或摩擦等作用而引起爆炸。因此,必须充分了解其危险程度。
2).由于这些物质能作为各类反应的副产物生成,所以实验时,往往会发生意外的爆炸事故。
3).因为此类物质一接触酸、碱、金属及还原性物质等,往往会发生爆炸。因此,不可随便将其混合。防护方法根据需要准备好或戴上防护面具、耐热防护衣或防毒面具。
灭火方法
可根据由此类物质爆炸而引起延续燃烧的可燃物的性质,采取相应的灭火措施。
事故例子
在蒸馏硝化反应物的过程中,当蒸至剩下很少残液时,突然发生爆炸(因在蒸馏残物中,有多硝基化合物存在,故不能将其过份蒸馏出来)。◆用旧的乙醚进行萃取操作,然后把由萃取液蒸去乙醚而得到的物质,放在烘箱里加热干燥时发生爆炸,烘箱的门被炸碎。◆将四氢呋喃进行蒸馏回收时,用剩下残液的同一烧瓶蒸馏数次,即发生爆炸(因生成乙醚和四氢呋喃的过氧化物之故)。◆当拔出30%浓度的过氧化氢试剂瓶的塞子时,常会发生爆炸。◆用过氧化氢制氧气的过程中,当加入二氧化锰时,剧烈地发生反应,致使烧瓶破裂。
3.3 爆炸品
爆炸品包括:
[火药]黑色火药、无烟火药、推进火药(以高氯酸盐及氧化铅等为主要药剂)。
[炸药]雷汞、叠氮化铅、硝铵炸药、氯酸钾炸药、高氯酸铵炸药、硝化甘油、乙二醇二硝酸酯、黄色炸药、液态氧炸药、芳香族硝基化合物类炸药。
[起爆器材]雷管、实弹、空弹、信管、引爆线、导火线、信号管、焰火。
这类物品在我们实验室基本不用,这里略过。
4. 有毒物质
实验室中大多数化学药品都是有毒物质。通常,进行实验时,因为用量很少,除非严重违反使用规则,不会由于一般性的药品而引起中毒事故。但是,对毒性大的物质,倘若一旦用错就会发生事故,甚至会有生命危险。因此,在经常使用的药品中,对于危险程度大的物质,必须遵照有关的规定进行使用。下表为有毒物质的分类。
表5 有毒物质的分类

分类

特点

示例

毒气

容许浓度在200mg/m3(空气)以下的气体

光气、氰化氢等

剧毒物

口服剂量为每kg体重30mg以下的物质

氰化钠、汞

毒物

口服致命剂量为每kg体重30-300mg的物质

硝酸、苯胺等

4.1 毒气
毒气包括下列气体:
[容许浓度在0.1毫克/米3(空气)以下的毒气]氟气、光气、臭氧、砷化氢、磷化氢。
[容许浓度在1.0毫克/米3(空气)以下的毒气]氯气、肼、丙烯醛、溴气。
[容许浓度在5.0毫克/米3(空气)以下的毒气]氟化氢、二氧化硫、氯化氢、甲醛。
[容许浓度在10毫克/米3(空气)以下的毒气]氰化氢、硫化氢、二硫化碳。
[容许浓度在50毫克/米3(空气)以下的毒气]一氧化碳、氨、环氧乙烷、溴甲烷、二氧化氮、氯丁二烯。
[容许浓度在200毫克/米3(空气)以下的毒气]一氯甲烷。
注意事项
1).当被上述毒气中毒时,通常发生窒息性症状。毒性大的毒气还会腐蚀皮肤和粘膜。
2).一吸入浓度大的毒气,瞬间即失去知觉,因而往往不能跑离现场。
3).容许浓度低的毒气,要特别注意。即使很微量的泄漏也不允许。要经常用气体检验器检测空气中毒气的浓度。
防护方法
处理毒气时,要准备好或戴上防毒面具。
事故例子
◆误认为充有氯气的钢瓶空了,但当打开阀门时,喷出大量氯气而中毒。◆将丙烯与氨的混合气体进行加压反应的过程中,发现阀门有少量漏气。在修理过程中,泄漏增大,以致不能进行修理并中毒(在加压情况下进行修理很危险)。◆于自制的容器中填充氨气,用帆布包裹,在搬运过程中,由于容器的焊缝破裂,冲出氨气而冻伤。并且,呼吸器官也受到损害。◆直接闻到溶解在反应生成物中未起反应的氨的臭味而摔倒、受伤。◆长时间吸入氯气、硫化氢及二氧化硫等的低浓度气体后,心情烦燥,并感到头痛、恶心。
4.2 毒物、剧毒物及其它有害物质
使用有毒物质的注意事项
1).因为有毒物质能以蒸气或微粒状态从呼吸道被吸入,或以水溶液状态从消化道进入人体,并且,当直接接触时,还可从皮肤或粘膜等部位被吸收。因此,使用有毒物质时,必须采取相应的预防措施。
2).毒物、剧毒物要装入密封容器,贴好标签,放在专用的药品架上保管,并做好出纳登记。万一被盗窃时,必须立刻报告导师。
3).在一般毒性物质中,也有毒性大的物质,要加以注意。
4).使用腐蚀性物质后,要严格实行漱口、洗脸等措施。
5).特别有害物质,通常多为积累毒性的物质,连续长时间使用时,必须十分注意。
防护方法
使用有毒物质时,要准备好或戴上防毒面具及橡皮手套,有时要穿防毒衣。
事故例子
使用氰化钾后,在拿茶碗喝茶时,不知不觉的把沾到手上的氰化钾吞食了。约经过半分钟,眼睛眩晕发黑,产生“氰酸钾”中毒症状,同时很快失去知觉。附近的同事发现后,立刻把他送到医院进行洗胃才得救。

⑷ 求教:甲基丙烯酸烯丙酯 怎么合成的

甲基丙烯酸烯丙酯 是一种重要的交联剂,可提供第二阶段有效的双功能基交联,具有很好的抗药品性、冲击强度、粘合力、硬度和低缩水性等。用于牙科材料,工业漆,有机硅中间体,抗光剂,光学高分子,弹性体及部分乙烯类、丙烯酸酯类聚合物体系。
甲基丙烯酸烯丙酯的合成方法,它以甲基丙烯酸与烯丙醇反应,以对甲苯磺酸为催化剂,在阻聚剂对苯二酚存在下回流制得,反应过程中不断除去生成的水,反应完成后经分馏回收过量的烯丙醇,经减压蒸馏纯化产物。本发明方法简单,节约原料,无污染,原料与产品不发生聚合,产品产率与纯度高,产率为90-92%,纯度为98-99%。
它包括下列步骤,以甲基丙烯酸与烯丙醇反应以对甲苯磺酸或硫酸为催化剂,在阻聚剂对苯二酚存在下回流制得,反应过程中加苯或甲苯不断除去生成的水,反应完成后分馏回收过量的烯丙醇,经减压蒸馏纯化产物,以对苯二酚或吩噻嗪或两者为阻聚剂,以苯或甲基为除水剂,反应不产生凝胶。

⑸ 氯丙烯的用途与合成方法

1.高温氯化法 丙烯和氯气在高温下进行氯化反应;工艺过程如下;干燥的丙烯(新鲜丙烯:循环丙烯=1:3)在加热中预热至350-400℃,在反应塔入口处,与氯气混合(氯气:丙烯=1:3),经特制的喷嘴喷入炉内,炉内温度为500℃左右,利用氯化反应热预热丙烯。丙烯单程转化率为25%,氯的转化为化学计算量,烯丙基氯的总收率为80-85%,除主产品烯丙基外,还有1,2-二氯丙烯、1,3-二氯丙烯、氯化氢、1,2,3-三氯丙烷及其他少量副产品。氯化反应物急冷到50-100℃,以除去氯化氢和丙烯,再经分馏而得丙烯氯。对于年产1。35万t烯丙基氯装置,每吨产品约消耗丙烯700kg,氯气1120kg。2.氧氯化法 以丙烯为原料,以碲为催化剂,通过下列反应得到烯丙基氯;丙烯、盐酸和氧按2.5-1:1:1-0.2(摩尔比)的例混合。反应在240℃,0.101MPa的条件下进行。反应器为流化床,催化剂是载于载体上的Te V2 O5 H3 PO4,并添加含氮物作促进剂。选择性90%以上,流化床的空时收率大于100g烯丙基氯/L催化剂·小时。在小批量生产时,可以通过烯丙醇氯化得到;于10-20℃将硫酸加到烯丙醇、氯化亚铜和盐酸中。加毕,保温反应5h。静置分层,分去下层混酸,上层液水洗1次,5%碳酸钠溶液洗1次,再水洗1次,分尽水后,蒸馏收集40℃以上馏分,得烯丙基氯。收率73%。
其制备方法有高温氯化法、丙烯氧氯化法、烯丙醇氯化法等。
高温氯化法
由丙烯高温所化制得。反应方程式:CH3CH=CH2+Cl2→ClCH2CH=CH2+HCl
将干燥的丙烯经350~400℃预热,液氯经加热气化,两种物料在高速喷射状态下混合并进行反应,丙烯与氯气的配比为4~5∶1(摩尔比),反应器停留时间1.5~2s,反应温度470~500℃。反应产物急冷至50~100℃以除去HCl和丙烯,再经分馏即得到产品。此法为国内外大多数生产企业所采用。
丙烯氧氯化法
按2.5~ (1∶1∶1) ~0.2 (摩尔比) 比例混合的丙烯、氯化氢和氧气在流化床反应器中进行反应,选用催化剂为载于载体上的Te、V2O5 或 H3PO4,并添加含氮物作促进剂,于240~260℃进行常压氧氯化反应,制得3-氯丙烯。反应方程式:CH3CH=CH2+HCl+1/2O2[催化剂]→CH2=CHCH2Cl+H2O
烯丙醇氯化法
反应方程式:CH2=CHCH2OH[Cu2Cl2,HCl]→CH2=CHCH2Cl+H2O
于10~20℃将硫酸滴入烯丙醇、氯化亚铜和盐酸中,滴加完毕后保温反应5h,静置分层,上层液用水、5%碳酸钠溶液、水各洗1次,分尽水后,蒸馏收集40℃以上馏分,即为3-氯丙烯。此法适用于小批量生产。

⑹ 聚烯丙基胺在水处理中的应用

聚烯丙基胺的合成与性能研究

赵洪池,魏朝巧,郭娟丽,邓奎林
(河北大学化学与环境科学学院,河北 保定 071002)

摘要 以烯丙基胺盐酸盐(AH)为单体,过硫酸铵/亚硫酸氢钠为氧化还原引发体系,采用本体聚合法合成了聚烯丙基胺(PAH)。利用傅立叶变换红外光谱仪(FTIR)、核磁共振光谱仪(NMR)和热重分析仪(TGA)对聚合物的结构及性能进行了研究。同时考察了引发剂用量对聚合反应转化率和聚合物相对粘度的影响。结果表明:红外谱图中998cm-1处碳碳双键的特征吸收峰消失以及核磁共振谱图中聚合物和单体的峰形、峰面积和化学位移明显不同,都证明AH聚合生成了PAH;PAH分两个阶段热分解,在650℃完全分解具有较高的热稳定性。随引发剂用量增大,单体转化率增加,同时聚合物相对粘度减小。引发剂用量为单体质量的20%时,单体转化率和聚合物相对粘度分别为42.1%和1.0348。
关键词 聚烯丙基胺盐酸盐;本体聚合;热稳定性;相对粘度

1 前言
聚烯丙基胺(PAH)是一种带有伯胺基团的高分子电解质,由于氨基的高反应性,PAH易被改性得到功能高分子材料,应用于造纸[1]、水处理和金属络合等领域;在自组装[2-3]、催化[4]、膜分离[5]、交换树脂[6]、水凝胶[7]、微胶囊[8]和复合材料[9]等方面的应用也十分广泛。由于烯丙基化合物在自由基聚合过程中链转移严重[10]特别是氨基的存在加剧了链转移的发生,所以PAH并不能通过烯丙基胺(AH)直接聚合得到[11]。主要通过两种方法合成PAH:一是高分子材料的化学改性[12];二是烯丙基胺无机酸盐的自由基聚合[14-15]。二十世纪四十年代Parker等人[12]研究了聚丙烯腈的催化加氢反应合成了PAH,但产物结构复杂,常含有氰基、氨基和亚氨基。Panzer等人[13]利用聚氯丙烯与三甲胺反应得到高分子季胺盐用作絮凝剂。由于高分子化学改性反应条件的限制,只能得到含有一定量氨基的产品。鉴于此,1976年Kabanov等在磷酸中用60Co引发,得到PAH但转化率低。1984年Harada[14]发现像2,2’-偶氮-二-(2-甲基丙基二胺)盐酸盐这类水溶性偶氮引发剂,在水中非常容易引发烯丙基胺聚合且转化率较高,但这类引发剂价格高且用量较大,目前没有在工业中得以应用。而欧洲专利[15]报道以金属盐酸盐/H2O2为引发体系、焦磷酸钠为络合剂,引发烯丙基胺聚合可以得到PAH,但聚合度不高。基于这些方法的优缺点,本论文采用第二种方法制备了PAH,即烯丙基胺无机酸盐的自由基聚合。因为引发剂和单体易得、价格便宜、反应条件简单、转化率较高且可以得到高分子量的PAH。

2 实验部分
2.1 试剂和仪器
所用试剂:烯丙基胺(山东鲁岳化工有限公司,含量≥99.5%);浓盐酸(天津市华东试剂厂,AR);过硫酸钾(K2S2O8,天津市华东试剂厂,AR),经蒸馏水重结晶精制;过硫酸铵((NH4)2S2O8,天津(香港)新通精细化工有限公司,AR),经蒸馏水重结晶精制;亚硫酸氢钠(NaHSO3,天津市天达净化材料精细化工厂,AR);甲醇(CH3OH,天津市华东试剂厂,AR);氢氧化钠(NaOH,天津市北方天医化学试剂厂,AR);去离子水。
所用仪器:傅立叶变换红外光谱仪(FT-IR, NICOLET380,美国Thermo electron公司),超导核磁共振波谱仪(NMR, AVANCE400,德国BRUKER公司),热重分析仪(TGA, Pyris 6,美国Perkin-Elmer公司),乌氏粘度计。
2.2 聚合反应机理
烯丙基胺聚合属于自由基链式均聚反应,聚合过程中存在严重的链转移难以得到高分子量的PAH。本实验将烯丙基胺转变成盐酸盐形式,从而使氨基变为铵离子以增强其吸电性,有利于聚合反应的发生。氧化-还原引发剂热分解生成自由基引发单体聚合,反应式如下:

2.3 合成工艺
将26.5mL烯丙基胺加入三口瓶中,在0-4℃的温度下滴加浓盐酸31mL,得到pH为5.0的烯丙基胺溶液[16],减压浓缩至所需浓度(70%)。然后取20mL上述溶液加入到三口瓶中,磁力搅拌下升温至50℃,通氮气0.5h除氧,然后加入K2S2O8(或 (NH4)2S2O8)和NaHSO3(物质的量之比为1:1),50℃聚合24h得到黄色粘稠状液体。将该粘稠液体滴加到120mL甲醇中,搅拌析出淡黄色粉末状固体,抽滤得到产品。加少量水将其溶解,用1mol/L的NaOH溶液调节pH至弱碱性,然后加水200mL减压蒸馏,当得到黄色粘稠液体时停止蒸馏。将该溶液用甲醇沉淀,然后再用少量水-甲醇溶解沉淀一次,抽滤得淡黄色粉末,50℃真空(真空度0.1MPa)干燥24h称重计算转化率。
2.4 结构表征与性能测试
2.4.1 转化率的测定:
将真空干燥产品称重,按下式计算转化率(C%):C% = 产品质量/烯丙基胺的质量×100%
2.4.2 红外光谱分析:
将烯丙基胺溶液和聚合物进行FT-IR分析,采用KBr压片法制样。烯丙基胺溶液涂在KBr薄片上进行FT-IR分析。
2.4.3 核磁共振波谱分析:
将单体及聚合物进行1HNMR分析,用D2O作溶剂。
2.4.4 聚合物热稳定性测试:
干燥样品在氮气气氛下、氮气流量为20mL/min,以20℃/min升温速率从30 ℃升至800 ℃,记录样品的热失重行为。
2.4.5 聚合物相对粘度的测定:
用乌氏粘度计对聚合物溶液粘度进行测定。0.25g聚合物用12.5mL浓度为2mol/L的NaCl溶液溶解,转移至25mL容量瓶中用去离子水定容。在30℃下恒温20min,测定流动时间。重复三次求平均值得相对粘数hr,hr=t/t0,其中t和t0分别为待测样品和1mol/L NaCl溶液在乌氏粘度计中的流动时间。

3 结果与讨论
3. 1红外光谱分析
图1是烯丙基胺溶液和PAH的红外光谱图。从图中可以看出:在波数为3400cm-1左右为N-H伸缩振动峰;1600cm-1左右为N-H面内变形振动峰;1500cm-1左右为C-H变形振动峰;1100cm-1左右是C-N伸缩振动峰;曲线A中998cm-1处为CH2=CH中双键变形振动特征峰,946cm-1是C-H变形振动峰。曲线B中998cm-1特征峰消失,说明双键断裂。通过聚合前后红外谱图比较,可以看出聚合后双键特征峰已经消失,说明单体已经聚合生成聚合物。

图1 红外光谱图AH溶液;B,PAH
Fig.1 FITR spectra of AH solution (A); PAH(B)

图2 烯丙基胺1HNMR谱图(D2O)
Fig.2 1HNMR spectra of allylamine (D2O)

3.2 核磁共振光谱分析
图2和图3分别为单体烯丙基胺和聚合物的1HNMR谱图。从图2中可以看出有三种氢质子,其中d为5.10ppm的吸收峰是与双键相连的亚甲基上的质子(a)吸收峰,由于两个氢质子所处化学环境不同其吸收峰分裂为四重峰;d为5.85ppm的吸收峰是次甲基上的质子(b)吸收峰;d为3.08ppm的吸收峰是与氨基相连的亚甲基上的质子(c)吸收峰。三种吸收峰的积分面积之比与分子式中三种氢原子个数之比相符合。从图3中可以看出也有三种质子,其中d为1.43ppm的吸收峰归属于主链上的亚甲基-CH2-的质子(a)吸收峰;d为1.98ppm的吸收峰归属于主链上次甲基-CH-的质子(b)吸收峰;d为2.95ppm的吸收峰归属于与氮相连的次甲基-CH-的质子(c)吸收峰,这是由于氮的电负性比较大,引起去屏蔽作用,使得共振频率向低场移动化学位移增大。这三种吸收峰的积分面积之比与聚合物分子式中三种氢原子个数之比一致。从这两个图中可以明显看出,各类质子的积分面积明显不同,聚合物与单体的峰位置发生变化。聚合物的吸收峰形状与单体的有着明显的区别,不再是单体那样的尖峰,说明烯丙基胺已经聚合。

图3 PAH 1HNMR谱图(D2O)
Fig.3 1HNMR spectra of PAH (D2O)

3.3 聚合物热失重分析
图4是聚合物(引发体系:(NH4)2S2O8/NaHSO3,引发剂用量为单体质量的10%,反应温度50℃,反应时间24h)的热失重曲线。从热失重曲线上看出,聚合物在100℃左右开始失重,这可能是小分子溶剂水引起的。聚合物失重明显分为两个阶段,第一阶段从280℃左右至400℃左右,失重率为52%左右,可能首先是聚合物侧链(-NH3Cl)的分解造成的;第二阶段从400℃左右开始至650℃左右几乎完全分解,失重率为40%左右,可能是聚合物主链的分解造成的。两个阶段失重率的数据和聚合物主侧链的分子量比例相当。总体上聚合物的热稳定性是比较好的。

图4 聚合物的热失重曲线
Fig.4 Thermogravimetric curve of polymer

3.4 引发剂用量对转化率的影响
引发剂分解后,只有一部分用来引发单体聚合,还有一部分引发剂由于诱导分解和(或)笼蔽效应伴随的副反应而损耗。因此引发剂用量的多少直接影响着转化率和分子量大小。本实验分别考察了引发剂质量为单体质量的2%、5%、10%、15%和20%时对转化率的影响(Fig.5)。(所用烯丙基胺溶液的浓度均为70%)。

图5 引发剂用量对转化率的影响
Fig.5 The effects of initiator concentration on conversions

由图5可以看出:随着引发剂用量的增多单体转化率明显提高。当引发剂((NH4)2S2O8/NaHSO3体系)用量为20%时,转化率可达42.1%。由自由基聚合微观动力学可知: R=Rp=kp(fkd/kt)1/2[I]1/2[M]。这是因为引发剂浓度越大,形成初级自由基的速率就会越高,引发速率就会越高,初级自由基与单体加成生成的单体自由基也就随之增多,聚合总速率就会提高。这样单体自由基继续与其他单体聚合的速率就会越高,因此单体转化率也随之提高。这与自由基聚合规律是一致的。
不同引发剂体系其转化率也有不同。在引发剂用量大于5%以后,K2S2O8/NaHSO3体系比(NH4)2S2O8/NaHSO3体系的转化率低,这是由于K2S2O8溶解度相对于(NH4)2S2O8来说比较小,所以随着引发剂用量的增多,转化率增加的幅度相对较小。因此本实验中采用 (NH4)2S2O8/NaHSO3体系作为氧化还原引发剂体系。

图6 引发剂用量对聚合物相对粘度的影响
Fig.6 The effects of initiator concentration on polymer relative viscosity

3.5 引发剂用量对聚合物相对粘度的影响
图6是聚合物的相对粘度与引发剂用量的关系图。从图中看出随着引发剂浓度的增大,聚合物相对粘度明显降低。因为聚合物的分子量与粘度成正比,所以聚合物分子量也随着引发剂浓度增大而减小。根据公式n=kp[M]/2(fkdkt)1/2[I]1/2可知:动力学链长与引发剂浓度平方根成反比,因此引发剂用量越多,在链引发阶段生成的初级自由基就越多,在链终止阶段生成的高分子链就会越短,即动力学链长n就会减小,分子量就会减小。这与自由基聚合规律也是一致的。

4 结论
(1)以K2S2O8/NaHSO3 或(NH4)2S2O8/NaHSO3作为引发剂采用本体聚合合成了聚烯丙基铵盐酸盐;选择(NH4)2S2O8/NaHSO3体系作为引发剂时单体转化率较高,引发剂用量为单体质量的20%时转化率可达42.1%。
(2)红外谱图中998cm-1处碳碳双键的特征吸收峰消失以及核磁共振谱图中聚合物和单体的峰形、峰面积和化学位移明显不同,都证明AH聚合生成了PAH。
(3)PAH失重明显分为两个阶段:第一阶段可能是聚合物侧链的分解造成的;第二阶段可能是聚合物主链的分解造成的。两阶段的失重率和聚合物主侧链的分子量比例相当。
(4)随引发剂用量减少聚合物相对粘度增大,其分子量也随之增大。

REFERENCES
[1] XiMei Zhang, Hiroo Tanaka. Journal of Applied Polymer Science. 2001, 80: 334-339.
[2] João M.C. Lourenço, Paulo António Ribeiro, Ana Maria Botelho do Rego, Maria Raposo. Journal of Colloid and Interface Science. 2007, 313: 26-33.
[3] Rikard Lingström, Shannon M. Notley, Lars Wågberg. Journal of Colloid and Interface Science. 2007 , 314: 1-9.
[4] Jensen,A.W., Daniels, C. Journal of Organic Chemistry. 2003, 68(2): 207-210.
[5] Kato, D., Sakata, M., Hirayama, C., et al. Chemistry Letters. 2002, 12: 1190-1191.
[6] Kim, U.J., Shigenori, K. Journal of Chromatography A. 2002, 955: 191-196.
[7] Seon Jeong Kim, Sang Jun Park, Mi-Seon Shin, Sun I. Kim. Journal of Applied Polymer Science. 2002, 86: 2290-2295.
[8] Alexei A. Antipov, Gleb B. Sukhorukov, Yuri A. Fetik, et al. Langmuir. 2002, 18: 6687-6693.
[9] 范忠雷, 李殿卿. 应用化学. 2003, 20(9): 867-870.
[10] 潘祖仁主编.高分子化学,第三版.北京:化学工业出版社,2002, 52-53.
[11] Hiroshi Ochidi, Miho Handa, Hiromi Matsumoto, et al. Makromol. Chem. 1985, 186: 2547-2556.
[12] James H. Parker, Berkeley, Callf. Polyallyl amine and related polymerical amines. US2456428, 1948.
[13] Panzer, H. P.; Bardoliwalla, D. F. Process for preparing poly(allyltrialkylammonium) salt flocculants, US4053512, 1977.
[14] Susumu, H., Sakuro, H. Chem., Rapid Commun. 1984, 5: 27-31.
[15] Blocker, W.C. Process for procing polymers of monoallylamine. EP 242791, 1986.
[16] 唐炳涛. 聚胺型可交联高分子染料的合成与应用. 大连理工大学博士学位论文. 2005,46.

⑺ 丙三醇的俗称是什么主要有哪些用途

丙三醇俗称甘油。

主要用途:

1、用作制造硝化甘油、醇酸树脂和环氧树脂。

2、在医学方面,用以制取各种制剂、溶剂、吸湿剂、防冻剂和甜味剂,配剂外用软膏或栓剂等。

3、在涂料工业中用以制取各种醇酸树脂、聚酯树脂、缩水甘油醚和环氧树脂等。

4、纺织和印染工业中用以制取润滑剂、吸湿剂、织物防皱缩处理剂、扩散剂和渗透剂。

5、在食品工业中用作甜味剂、烟草剂的吸湿剂和溶剂。

6、在造纸、化妆品、制革、照相、印刷、金属加工、电工材料和橡胶等工业中都有着广泛的用途。

(7)烯丙基氯蒸馏扩展阅读:

丙三醇的生产:

1、丙烯氯化法

这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解。环氧氯丙烷水解制甘油是在150℃、1.37MPa二氧化碳压力下,在10%氢氧化钠和1%碳酸钠的水溶液中进行。

2、丙烯过乙酸氧化法

丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯丙基醇。后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油。过乙酸的生产不需要催化剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%。

3、工业级甘油

工业级甘油量用1/2量的蒸馏水稀释,搅拌充分后,加入活性炭,并加热至60~70℃进行脱色处理,然后,真空过滤,保证滤液澄清透明。控制滴加速度,将滤液加到事先处理好的732型强酸阳树脂和717型强碱阴阳树脂混合的柱内。

参考资料来源:网络—丙三醇

⑻ 丙烯制1-氯-3-溴丙烷,合成路线,名称,反应条件

丙烯通过高温(500摄氏度)和Cl2(阿尔法氢活性)得CH2=CH-CH2Cl,直接在过氧有机化合物的条件下与HBr反应得到反马氏产物1-氯-3-溴丙烷。

丙烯和溴蒸汽高温光照反应,发生自由基取代,生成3-溴丙烯。在过氧化物的存在下与溴化氢发生加成反应,生成反马氏加成产物1,3-二溴丙烷。

(8)烯丙基氯蒸馏扩展阅读:

于装有搅拌器、回流冷凝器(装有氯化钙干燥管)、滴液漏斗、温度计的反应瓶中,加入烯丙基溴182g(1.5mol),250mL干燥的四氯化碳。冰盐浴冷至-5℃,由滴液漏斗滴加干燥的溴255g(1.6mol),滴加速度控制在部使反应液升至0℃,约1.5h加完。慢慢升至室温并继续搅拌反应30min。

减压蒸馏溶剂,而后收集92~93℃/1.33kpa的馏分,得几乎无色的液体1,2,3-三溴丙烷400g,收率95%。注:烯丙基溴在使用前最好进行处理,处理的方法如下:首先用无水氯化钙干燥,而后进行蒸馏,收集69~72℃的馏分。

⑼ 怎么做甘油

说到甘油大家第一反应就是其中的成分,根本没有什么好了解的,虽然可以拿来吃,也可以作为很多天然的原料,但是目前为止除了生活在加工行业的人们,很多普通的人对甘油的成分并不是太了解一种东西,如果不了解成分的话直接用,大家也会觉得不放心,那甘油的主要成分是什么?


生产方法


甘油的工业生产方法可分为两大类:以天然油脂为原料的方法,所得甘油俗称天然甘油;以丙烯为原料的合成法,所得甘油俗称合成甘油。


天然甘油

1984年以前,甘油全部从动植物脂制皂的副产物中回收。至今为止,天然油脂仍为生产甘油的主要原料,其中约42%的天然甘油得自制皂副产,58%得自脂肪酸生产。制皂工业中油脂的皂化反应。皂化反应产物分成两层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油,下层是废碱液,为含有盐类,氢氧化钠的甘油稀溶液,一般含甘油9-16%,无机盐8-20%。油脂反应。油脂水解得到的甘油水(也称甜水),其甘油含量比制皂废液高,约为14-20%,无机盐0-0.2%。近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甜水中一般不含无机酸,净化方法比废碱液简单。无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高,而且都含有各种杂质,天然甘油的生产过程包括净化、浓缩得到粗甘油,以及粗甘油蒸馏、脱色、脱臭的精制过程。这一过程在一些书刊中有详细介绍。

合成甘油

从丙烯合成甘油的多种途径可归纳为两大类,即氯化和氧化。现在工业上仍在使用丙烯氯化法及丙烯不定期乙酸氧化法。

丙烯氯化法

这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解。环氧氯丙烷水解制甘油是在150℃、1.37MPa二氧化碳压力下,在10%氢氧化和1%碳酸钠的水溶液中进行,生成甘油含量为5-20%的含氯化钠的甘油水溶液,经浓缩、脱盐、蒸馏,得纯度为98%以上的甘油。

丙烯过乙酸氧化法

丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯为丙醇。后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油。过乙酸的生产不需要催剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%。

上述后两步反应在特殊结构的反应精馏塔中连续进行。原料烯丙醇和含有过乙酸的乙酸乙酯溶液送入塔后,塔釜控制在60-70℃、13-20kPa。塔顶蒸出乙酸乙酯溶剂和水,塔釜得至甘油水溶液。此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程。

生产1t甘油消耗烯丙醇1.001t,过乙酸1.184t,副产乙酸0.947t。目前,天然甘油和合成甘油的产量几乎各占50%,而丙烯氯化法约占合志甘油产量的80%。我国天然甘油占总产量90%以上。

工业级甘油

工业级甘油量用1/2量的蒸馏水稀释,搅拌充分后,加入活性炭,并加热至60~70℃进行脱色处理,然后,真空过滤,保证滤液澄清透明。控制滴加速度,将滤液加到事先处理好的732型强酸阳树脂和717型强碱阴阳树脂混合的柱内,以吸附除去甘油中的电解质和醛类、色素、酯类等非电解质杂质。

除去杂质后的甘油溶液进行减压蒸馏,控制真空度93326Pa以上,釜温在106~108℃,蒸出大部分水之后,再将釜温升到120℃快速脱水,不出水时停止加热,所得釜内物料即为成品。

⑽ 烯丙基氯的合成方法

1.高温氯化法 丙烯和氯气在高温下进行氯化反应;工艺过程如下;干燥的丙烯(新鲜丙烯:循环丙烯=1:3)在加热中预热至350-400℃,在反应塔入口处,与氯气混合(氯气:丙烯=1:3),经特制的喷嘴喷入炉内,炉内温度为500℃左右,利用氯化反应热预热丙烯。丙烯单程转化率为25%,氯的转化为化学计算量,烯丙基氯的总收率为80-85%,除主产品烯丙基外,还有1,2-二氯丙烯、1,3-二氯丙烯、氯化氢、1,2,3-三氯丙烷及其他少量副产品。氯化反应物急冷到50-100℃,以除去氯化氢和丙烯,再经分馏而得丙烯氯。对于年产1。35万t烯丙基氯装置,每吨产品约消耗丙烯700kg,氯气1120kg。2.氧氯化法 以丙烯为原料,以碲为催化剂,通过下列反应得到烯丙基氯;丙烯、盐酸和氧按2.5-1:1:1-0.2(摩尔比)的例混合。反应在240℃,0.101MPa的条件下进行。反应器为流化床,催化剂是载于载体上的Te V2 O5 H3 PO4,并添加含氮物作促进剂。选择性90%以上,流化床的空时收率大于100g烯丙基氯/L催化剂·小时。在小批量生产时,可以通过烯丙醇氯化得到;于10-20℃将硫酸加到烯丙醇、氯化亚铜和盐酸中。加毕,保温反应5h。静置分层,分去下层混酸,上层液水洗1次,5%碳酸钠溶液洗1次,再水洗1次,分尽水后,蒸馏收集40℃以上馏分,得烯丙基氯。收率73%。
2.高温氯化法 由丙烯高温所化制得。反应方程式:
将干燥的丙烯经350~400℃预热,液氯经加热气化,两种物料在高速喷射状态下混合并进行反应,丙烯与氯气的配比为4~5∶1(摩尔比),反应器停留时间1.5~2s,反应温度470~500℃。反应产物急冷至50~100℃以除去HCl和丙烯,再经分馏即得到产品。此法为国内外大多数生产企业所采用。
3.丙烯氧氯化法 按2.5~ (1∶1∶1) ~0.2 (摩尔比) 比例混合的丙烯、氯化氢和氧气在流化床反应器中进行反应,选用催化剂为载于载体上的Te、V2O5 或 H3PO4,并添加含氮物作促进剂,于240~260℃进行常压氧氯化反应,制得3-氯丙烯。反应方程式:
4.烯丙醇氯化法 反应方程式:
于10~20℃将硫酸滴入烯丙醇、氯化亚铜和盐酸中,滴加完毕后保温反应5h,静置分层,上层液用水、5%碳酸钠溶液、水各洗1次,分尽水后,蒸馏收集40℃以上馏分,即为3-氯丙烯。此法适用于小批量生产。

阅读全文

与烯丙基氯蒸馏相关的资料

热点内容
蒸馏水能用电测量吗 浏览:38
怎样去除锅底白色水垢 浏览:354
如何处理冶金工业废水 浏览:388
美特佳怎么换滤芯 浏览:639
用可口可乐能去水垢么 浏览:232
华迈空气净化器901多少钱 浏览:896
ro膜水与蒸馏水 浏览:423
济南20寸滤芯多少钱 浏览:342
净涂云全屋净水机怎么更换滤芯 浏览:507
家用净水器超滤膜机有废水吗 浏览:595
污水进洗衣机 浏览:123
万家乐空气净化器怎么取下来 浏览:286
脲醛树脂胶黏剂性能指标 浏览:969
萤石选厂废水好过滤吗 浏览:260
环氧树脂邻苯二甲酸酐 浏览:981
pvc排水管做鱼池过滤 浏览:188
反渗透膜纯水器原理图 浏览:310
霉菌为什么使用无菌蒸馏水 浏览:419
废水1立方等于多少千克 浏览:815
一体化污水处理设备有哪些类型 浏览:629