㈠ 加压蒸馏的原理
利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。广泛应用于炼油、化工、轻工等领域。 其原理以分离双组分混合液为例。将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的气相直接接触,以进行汽液相际传质,结果是气相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入气相,也即同时实现了液相的部分汽化和汽相的部分冷凝。 液体的分子由于分子运动有从表面溢出的倾向。这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压。实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关。 将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果。在常压下进行蒸馏时,由于大气压往往不是恰好为0.1MPa,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差2.7KPa,这项校正值也不过±1℃左右,因此可以忽略不计。 将盛有液体的烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成。溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用。这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由于液柱所产生的压力时,蒸气的气泡就上升逸出液面。因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难。这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”。一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”。因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳。助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等。另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下)。在任何情况下,切忌将助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险。如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入。如果沸腾中途停止过,则在重新加热前应加入新的助沸物。因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效。另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20C,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间的温差,而且可使蒸气的气泡不单从烧瓶的底部上升,也可沿着液体的边沿上升,因而可大大减少过热的可能。 纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定的沸点。不纯物质的沸点则要取决于杂质的物理性质以及它和纯物质间的相互作用。假如杂质是不挥发的,则溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是不纯溶液的沸点,而是逸出蒸气与其冷凝平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点)。若杂质是挥发性的,则蒸馏时液体的沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。因此,沸点的恒定,并不意味着它是纯粹的化合物。 蒸馏沸点差别较大的混合液体时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏器内,这样,可达到分离和提纯的目的。故蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作,必须熟练掌握。但在蒸馏沸点比较接近的混合物时,各种物质的蒸气将同时蒸出,只不过低沸点的多一些,故难于达到分离和提纯的目的,只好借助于分馏。纯液态化合物在蒸馏过程中沸程范围很小(0.5~1℃)。所以,蒸馏可以利用来测定沸点。用蒸馏法测定沸点的方法为常量法,此法样品用量较大,要10 mL以上,若样品不多时,应采用微量法。
㈡ 一杯的蒸馏器能不能提出玫瑰精油
一.精油的来源 精油是从各种植物提炼而得,而且每一种植物 可供萃取制造精油的部份不同:桉树的叶,玫瑰的花 ,鼠尾草的花和叶,佛手柑是果皮,经过专业仪器及 实验检定,视其有效部位,再用专业技术与机器提炼 萃取制成。 你或许觉得市面上的精油怎麼会一小瓶就要价若 干,这实在是精油来源可贵,取之不易的关系。一公 斤的玫瑰精油需要 陆000 公斤的玫瑰花瓣,而至少也 要 吧,000,000 朵的茉莉花才能够制造出一公斤的茉 莉花精油。既然精油的来源与价钱如此珍贵,所以使 用的时候呢,也不要为了求得快又强的疗效,硬是不 按照规定,超过剂量使用;恰如其分才能获得最确实 的效果。 二.精油的制造 制造精油的方式有几种,最常被运用的有蒸馏法 、溶剂法、脂吸法,还有榨取法。 蒸馏法 蒸馏法又是所有制造精油的方法中,最早被应用 来制造精油,也是最普遍常见的一种。 这种制造方法,是先将确定要用来制造经由的植 物各部位,例如像黑胡椒的果实、柠檬的果皮,又或 是薄荷的花,将这些植物来源搜集妥当,清洗乾净, 稍微晾乾,再放进蒸馏器的容器里。 植物放进容器之后,就用水或者是水蒸气在蒸馏 器底下加热,使得这些植物不管是花、叶或树干中的 水蒸气,因此而完全散发出来,并且在蒸馏器里留下 该植物的精油浓缩液。 但这并不就是精油喔,还要将浓缩液中的水和油 隔离,隔离之后所获得的油质部份,便是该植物的精 油,再经过简易的加工制作成罐装,便是我们在市面 买到的精油。 溶剂法 如果是利用植物的花朵来制作精油的话,大半就 是以萃取法来搜集植物精油。 怎麼做呢?首先将花朵与石油精以一定的比例完 全融合,泡置一段时间,再一起将混合溶液放到特制 的容器当中。 接著再以电热的方式加热前述的容器,以温火慢 慢加热,让混合溶液因此取得一定量的芬芳物质,这 份液体物质就是该植物精油的最原始状态。 然后便把这份液体物质经过过滤,便会再生成一 份深黑色的稠状物。接著把准备好一定份量的酒精倒 进这份稠状物,顺同一方向慢慢地搅拌,务必使酒精 能够充份与稠状物调合。 待稠状物溶解至酒精中并冷却后,再经过过滤的 手续,让酒精成份慢慢蒸发掉,余留的物质便是我们 要的精油。 脂吸法 关於精油制作的方法中,最新奇有趣的当属脂吸 法。这是利用一种特制的脂肪来吸取植物具有利用价 值部位的精油,不过这种脂肪的配方,是各种制作精 油者的最高机密外人还真是无法一窥究竟。 一旦要利用脂吸法来提制精油,制造者会在乾净 的镶嵌玻璃片的木框上先涂满薄薄的脂肪,再把采集 而来的花朵,假设是橙花,将橙花铺满在涂抹过脂肪 的玻璃上,橙花也不要放得太密集,花与花之间距离 疏密有致。 大约经过一天至三十六个小时的时间,橙花中的 精油便会被特制的脂肪给吸收完毕。这时只要将玻璃 木框反置,毋须你动手,玻璃上的橙花便会自己掉下 来。再把玻璃木框反过来,就可以再铺上其他的橙花 花朵。 当玻璃上满满是脂肪吸收的橙花精油之后,便用 酒精将这些精油给洗下来,并予以适当的酒精份量加 以搅拌,经过滤蒸发后,便是橙花精油了。 压榨法 压榨法者,顾名思义就是利用机器将植物经由给 压榨出来。像本书所介绍的佛手柑、橘子及柠檬等, 便都是用压榨法,从他们的果皮中取得它们的精油。 其实,这种压榨法早期是利用人为大小均匀的力 道,压榨出植物果皮中的精油成份,晚近才发明出合 适的机器来压榨果皮。 同样是利用压榨的道理,这儿姑且先教你一招小 小的 DIY。 柠檬与橘子,这两种水果都是台湾冬天 常见的水果,可以将青绿色果皮的柠檬与金黄色的橘 子皮,拨下一小片置於食指与拇指之间,往你的耳颊 方向轻轻地按果皮,你的皮肤会感觉到果皮中有少少 的汁喷射,连同芳香的味道扑鼻而来;柠檬皮与橘子 皮的油脂与清香,让你全身舒爽,提振你的精神。不 信的话,就赶快来个压榨法 DIY ,试试效果如何吧! 精油应该保存在深色的玻璃瓶里,并远离光线、热和潮湿。不用的时候,请把盖子盖紧,以防有效成份散
㈢ 简单蒸馏的原理
蒸馏是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、吸附等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。
利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。广泛应用于炼油、化工、轻工等领域。
其原理以分离双组分混合液为例。把料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的气相直接接触,以进行汽液相际传质,结果是气相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入气相,也即同时实现了液相的部分汽化和汽相的部分冷凝。
液体的分子由于分子运动有从表面溢出的倾向。这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压。实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关。
把液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。很明显,蒸馏可把易挥发和不易挥发的物质分离开来,也可把沸点不同的液体混合物分离开来。但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果。在常压下进行蒸馏时,由于大气压往往不是恰好为0.1MPa,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差2.7KPa,这项校正值也不过±1℃左右,因此可以忽略不计。
暴沸
把盛有液体的烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成。溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用。这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由于液柱所产生的压力时,蒸气的气泡就上升溢出液面。因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难。这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”。一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至把液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”。因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳。助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等。另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下)。在任何情况下,切忌把助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而把大量液体从蒸馏瓶口喷出造成危险。如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入。如果沸腾中途停止过,则在重新加热前应加入新的助沸物。因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效。另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20℃,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间的温差,而且可使蒸气的气泡不单从烧瓶的底部上升,也可沿着液体的边沿上升,因而可大大减少过热的可能。
过程
纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定的沸点。不纯物质的沸点则要取决于杂质的物理性质以及它和纯物质间的相互作用。假如杂质是不挥发的,则溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是不纯溶液的沸点,而是逸出蒸气与其冷凝平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点)。若杂质是挥发性的,则蒸馏时液体的沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。因此,沸点的恒定,并不意味着它是纯粹的化合物。
蒸馏沸点差别较大的混合液体时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏器内,这样,可达到分离和提纯的目的。故蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作,必须熟练掌握。但在蒸馏沸点比较接近的混合物时,各种物质的蒸气把同时蒸出,只不过低沸点的多一些,故难于达到分离和提纯的目的,只好借助于分馏。纯液态化合物在蒸馏过程中沸程范围很小(0.5~1℃)。所以,蒸馏可以利用来测定沸点。用蒸馏法测定沸点的方法为常量法,此法样品用量较大,要10 mL以上,若样品不多时,应采用微量法。
分馏
定义:分馏是利用分馏柱把多次气化—冷凝过程在一次操作中完成的方法。因此,分馏实际上是多次蒸馏。它更适合于分离提纯沸点相差不大的液体有机混合物。
进行分馏的必要性:(1)蒸馏分离不彻底。(2)多次蒸馏操作繁琐,费时,浪费极大。
混合液沸腾后蒸气进入分馏柱中被部分冷凝,冷凝液在下降途中与继续上升的 蒸气接触,二者进行热交换,蒸汽中高沸点组分被冷凝,低沸点组分仍呈蒸气上升,而冷凝液中低沸点组分受热气化,高沸点组分仍呈液态下降。结果是上升的蒸汽中低沸点组分增多,下降的冷凝液中高沸点组分增多。如此经过多次热交换,就相当于连续多次的普通蒸馏。以致低沸点组分的蒸气不断上升,而被蒸馏出来;高沸点组分则不断流回蒸馏瓶中,从而把它们分离。
㈣ 瀚斯源妙蕾真的可以缩阴吗
一点用都没有,买之前对你很好,一直关心你,买了之后就基本不理你了,而版且才用三天就开始权腹痛出血,去医院检查是清洁度4级,本来好好的,就用了这个导致出了问题,被男朋友骂的要死,他们小若还说没问题,你说那么多,他就一句话,他产品没有问题,做这些伤天害理的事情,希望遭报应
㈤ 关于化学元素发现史的问题
浅 谈 元 素 发 现 的 历 史
我们都知道,自然界的元素一共有92种,世间的万物都有这些元素中的一种或者几种构成。这些元素成员之间,特点各不一样,甚至差异极大,比如从体积来看,氢原子体积很小,而铀原子相对于它来说则是庞然大物了。有限的元素之间经过不同的排列组合还组成了五彩缤纷的物质世界,既有月球上的岩石,也可以组成芭比娃娃,既可以成为一只猴子,也可以是一架空中客车。我们人类发现了它们,找到了它们,也分析了它们,而且我们还把其中的一些进行拆分,重新组合,获得了属于我们自己的元素。如今元素周期表中列出的118中元素,就包括了由人类自己合成或分裂的26种元素。
现在没有任何人会再去怀疑关于元素的观点,但是我们必须承认元素发现的过程相对于人类在这一领域探索的历程相比还是显得十分短暂的。在元素不断发现的过程中,人们曾经困惑、忧虑、也曾争论过。本文即从化学史的角度来探究元素的发现的故事。
一、 思考世界到“四分”之说
“世间万物是由为数不多的简单物质构成的。”这种思想产生于公元前六世纪希腊的艾奥尼亚地区,即现在的土耳其西南海岸。在古代,此地的一些流放罪犯是一些思想理论的创建者,这些理论就是后来的自然哲学。希腊人的好奇心也是这一思想的直接推动因素,他们永不停息地思索着世界运作的奥秘。其中最重要和最基本的问题就是:物质的本质是什么?
摆脱了神学思想束缚的艾奥尼亚思想家和哲学家开始相信,自然界的事物和现象都应当由合乎逻辑的解释。在他们中间,一位名叫泰勒斯【1】的人被学界公认为是第一个思索了物质本质构成的人。在他的时代,希腊人绝大多数是商人,希腊的殖民地几乎遍及地中海周遭的地区。地区间的贸易迅速发展,主要的贸易物品有粮食、橄榄油、干鱼、葡萄酒、金属、木材和奴隶。贸易的兴起给泰勒斯游历各地带来的方便,在自己从事贸易行走于希腊各地的见闻促成他思考。他说,宇宙的基本原理,或者说要素,就是水。宇宙间的一切已知事物都是由水合成的,或者由水更动之后的变体而合成的。水形成水蒸汽,水蒸汽又飞入大气,由大气层下降之后才变成了雨。雨水打击着地面,让大地变紧实、变硬,最后变成坚硬的岩石。所以,一切事物最初都是由水开始,逐步演变而来,而又最终化成水而去。
泰勒斯的这种以水为基础的宇宙观念,说明了整个世界从本质上来讲是由一种元素演变而成的。他的观点引起了不少争论,他的得意门生阿那克西曼德【2】就是最激烈的反对者。他认为整个物质世界构成太丰富奇幻,根本无法想象会建立在如此简单平凡的一个元素——水的基础上。世界的基本元素一定要更为抽象,也更具有普遍性。阿那克西曼德还提出了一种名为apeiron【3】的看不见形式的原生物质,它有能力变换生成世间万物。而阿那克西曼德的得意门生阿那克西门斯(Anaximenes,585BC—525BC)也同样摒弃了aplasma的假说,照他看来,任何物质总得包含某一种物质构成成分,不能任何物质都不包含,他认为这“某一种物质”是空气,因为地球变面几乎到处都有空气。
随着争论的扩大化,其他的物质构成学说也开始出现。古希腊唯物哲学家赫拉克利特(Heraclitus,540BC—480BC)认为火是万物的本源,一切都在流变之中;变化居于宇宙最重要的地位。火——这个最为活跃的元素构成了宇宙最基本的建筑材料。这个世界由火生成,火升水,水再生土,土经液化又生成水,水继续变化又生成火,如此循环往复。此外,还有色诺芬尼的土为本源的假说,认为土是万物的根基。
在古希腊自然哲学的元素学说中,哲学家恩培多克勒(Empedocles,494BC-432BC)的贡献最大。他对宇宙物质基本构成的思考,可以说接近现代科学理论的观念。恩培多克勒把以前各位前辈有关一种基本元素构成世界万物的各种假说和设想组成了一个连贯一致的整体,派生出一个包含四种成分的模式。四种成分——水、气、火、土,各司其职、平等运作、相互关联。在他的《四元素学说》(Doctrine of the Four Elements)中,恩培多克勒指出:这四种基本元素,或单独或相互结合,组成了世界的各种物质。事物之所以表现出不同的形态,是因为它们的组合成分在外力的作用下,互相分离或又重新组合;这些外力分别有亲和力和冲击力。而四种元素在组成过程中的比例则决定了物质的形态。例如,恩培多克勒认为骨骼就是由火、水、土三者构成的,比例为4:2:2。恩培多克勒的思想与现代化学元素理论着极其相似的地方,比方他说,一切物质都有一定数量的某种或者某些物质组合而成的,而且其数量是不会消减的;这些物质按照一定的比例组合。其实,世界上其他的一些民族的文化中,也有类似的宇宙物质观。我国古代的阴阳五行说就是其中一例。古代印度人也提出了五种要素说——火、水、土、气、以太(ether),作为构成物质的要素。
二、由“四分”之说到燃素说
欧洲中世纪早期是愚昧黑暗的时代,然而中东的科学技术依然在繁荣与发展。古代欧洲四元素观念开始在阿拉伯炼金术士中慢慢发展。其中一个著名的研究者要算哈比尔伊本·赫扬(AbuMusa Jabir ibn Hayyan),大约诞生于14、15世界的几部最有影响的炼金术和冶金术著作都由他或者假托他的名义发表。其中有《完美的冶炼产品》(1678)、《熔炉之书》(1678)、《完美度的判定》(1678)、《真正的发明》(1678)。在这些书中,哈比尔伊本·赫扬对自己进行的全部重要的化学实验都作了详尽的描述,从他的描述中,我们发现,他不仅仅是一名普通的技术人员,而且他对一些简单的化学反应过程的领悟和理解已经达到了惊人的程度。这其中还包括了元素理论和解释和理解。哈比尔伊本·赫扬认为,所有金属元素,都由贡和硫组合而成,不过配比不一样。因而从理论上来说,任何金属都可以分解为贡和硫,然后按照另外的比例产生新的金属元素。
一个世纪以后,波斯医生阿尔·瑞兹又发展了这一理论。他将它所使用的化学药品依照物品的味道、可溶性或者质感细分为金属、硫酸、硼砂、食盐、石头,等等。这种划分方法是对化合物和元素的现代理论的最早尝试。阿尔·瑞兹为元素二分论添加了第三种因素——食盐,并提出一个假说,一切固体物质都是有这三种元素(贡、硫、食盐)依照不同比例组合而成的,因为这三种物质分别代表了可燃性、挥发性、和可溶性三种特质。
瑞士炼金术士帕拉切尔苏斯(Paracelsus,1493-1541)在对以上两种观点融会贯通之后,将燃烧物质作为探究物质组成的方法。据他的秘书记载“他的厨房里经常是火花闪耀,他那些碱土、冒烟的硫酸升华物、雷克斯药剂、信石油、砷粉、研磨芬、神秘莫测的樟脑制剂,以及一些天晓得的什么鬼玩意儿制成的调和物,闹得烟气腾腾。有一次他险些把我呛死,那天他吩咐我去看看他蒸馏器里面制作的烈酒,把我的投硬按到这种液体表面,一股子冒烟的怪气味直窜鼻孔和喉咙,有毒蒸汽几乎让我昏厥过去。”帕拉切尔苏斯根据类似的实验得出结论说古希腊人的四种基本元素的确就是构成一切物质的基本要素了,但是可以划分为阿拉伯人所说的三种要素(贡、硫、食盐)。他认为,树枝燃烧时分解出的四种物质,分别为烟(气)、火焰(火)、从断裂处喷出的液体(水)以及燃烧后留下的灰烬(土)。上升的烟雾为贡,火焰代表硫磺、灰烬则是盐。
对于树枝燃烧的现象,1658年英国化学家罗伯特·波义耳(Rober Boyle)出:“至于青枝燃烧之说,燃烧时产生的火焰并不能令其分解为元素,而只能分解为一些混合物,所不同的是,这些混合物呈现为另一种形态。”波义耳主张化学研究必须使化学摆脱从属于炼金术或医药学的地位,发展成为一门专为探索自然界本质的独立科学。为了确定科学的化学,波义耳考虑到首先要解决化学中一个最基本的概念:元素。波义耳通过一系列实验,对传统的元素观产生了怀疑。他指出:这些传统的元素,实际未必就是真正的元素。固为许多物质,比如黄金就不含这些“元素”,也不能从黄金中分解出硫、汞、盐等任何一种元素。恰恰相反,这些元素中的盐却可被分解。波义耳认为,只有那些不能用化学方法再分解的简单物质才是元素。例如黄金,虽然可以同其它金属一起制成合金,或溶解于王水之中而隐蔽起来,但是仍可设法恢复其原形,重新得到黄金。水银也是如此。作为万物之源的元素,不是四种也不会是三种,而一定会有许多种。
三、拉瓦锡和道尔顿
继波义耳之后,1789年,法国化学家、现代化学的奠基人安东尼·拉瓦锡发表了《化学元素论文》。拉瓦锡在论文中将人类已知的元素进行了归纳列表,将它们分别归为气体、金属、非金属以及土族元素四类。当时,发现的元素总数为33种。拉瓦锡表示认为,元素的划分原则是“我们无法对它们进行进一步的分解了”,因而一切无法再分解的物质都被他称为元素。但是他又说“这绝不意味着我们已经有把握说,我们如今认为是单质的物质,今后永远不会被进一步分解成两种或两种以上的基本粒子了,……,除非今后的实验和观察结果能够推翻这个论点”。果然,由拉瓦锡定名的33种元素当中,后来证实有8重视可以在分解的化合物。这8中元素中有石灰、硅土、泻盐【4】,另外还有根本不是元素的光和热。其余的23种元素包括金Au、银Ag、铜Cu、铁Fe、贡Hg、锡Sn、铅Pb、锑Sb、硫S、碳C、锌Zn、砷As、铋Bi、磷P、铂Pt、镍Ni、钼Mo、锰M、氢H、氮N、氧O、钨W、钴Co。
拉瓦锡的的理论在英国化学家约翰·道尔顿得到了拓展。道尔顿由气象学半路出家到化学领域,并很快得出重要的成果。他创造性地把算术、量子化学融汇到古希腊的化学元素学说当中去,产生了自己的元素理论。道尔顿认为,元素其实是又无法再分开的微小颗粒组成;元素不同,其组成颗粒也不同,任何一种特定的元素只能由特定的颗粒组成。他称这些颗粒为原子(atom)。当这些原子按照一定比例组合时,就能产生出不同的化合物。由于化合物是由各种原子组成的,而原子又是不可分割的,所以化合物的各种元素比必定是简单的整数比。
与此同时,道尔顿开始计算各种元素原子的相对重量,他先从最轻量级的氢气开始。截至1810年,道尔顿已对二十余种元素建立了原子量表,其中包括氧、氮、磷、硫、铜、铁,等等。至此,人类看不见的原子终于被赋予了自己固有的实体规模、实质和特性。道尔顿还提出了第一套有化学含义的符号系统——每一种原子都用一个带有某种明确符号的圆圈来表示,比如氢原子就是个中心的有圆点的圆圈,氧原子是空心圆圈。但这一套符号因为花样太多,变化多端而没有被后人采用。
四、元素周期表与门捷列夫
19世纪化学研究的另一大困惑就是如何为全部元素进行分类。整个19世纪,化学家们都在试图找出一种符合逻辑的序列,能够把所有元素归并到其中。
瑞典化学家柏济力阿斯(Jacob Berzelius)提出把全部的物质划分为“不可称量的物质””,包括电、磁、光和热,以及“可称量的物质”,包括各种元素和化合物。元素又可划分为氧气类、非金属类和金属类;化合物则划分为矿物质和“组织机体”(organized bodies)。元素的排列顺序是以它们的电解性能为基础来排列的。1817年化学家约翰·德贝赖纳【5】首先观察到了不同元素的某些相似性,成为元素周期理论的先声。他提出按照化学性质的相似性每三个元素结成一组。譬如,锶的化学性质与钙和钡相似,而锶的原子量介于钙和钡之间,于是德贝赖纳就将这三个元素归为一类,类似于音乐的“三联音”。后来他又发现了更多的类似的“三联音”。尽管这个设想最终被认为是错误的,但它启发了人们更宽泛的思路。于是“五联音”的说法也被提出。
合并了“三联音”和“五联音”的发现后,人们组合成了一个有规律的元素表。1862年,亚历山大·钱考特斯(Chancourtois)【6】草拟了包含24种元素的世界上第一张元素周期表。钱考特斯观察到,将元素按照原子量排列成行,某些相同的特性就会反复出现,于是,他将各种元素的符号按原子量递增的顺序镌刻在一个圆柱体柱面上,这些元素就呈现出一条螺旋上升的状态。后来,英国化学家约翰·亚历山大·瑞纳·纽兰兹利发表文章称如果将元素按照原子质量递增排列,会发现一种元素的特性会在此序列上向前、向后各八个位置出现。纽兰兹将这种每隔八个位置出现的周期现象比喻为音乐中的八音程复规律,命名为“八音程律”周期。
最终解决化学元素分类的人是我们熟知的俄国化学家季米特里·门捷列夫。在门捷列夫按照原子量升序排列已知的63种元素时,他发现这些元素的化合价也呈现出有节奏的的往复现象。化合价是原子形成该元素化学联接能力的一种指证。沿着这个表格观察,门捷列夫发现元素的化合价呈有规律的起伏状态——1,2,3,4,3,2,1;而且如此循环往复。
门捷列夫受单人纸牌玩法的启发将元素的名字都写在纸牌的背面,按照玩纸牌的顺序排好,横向符合原子质量顺序,纵向符合化合价顺序。不仅如此,按照此法排列的元素周期表还有预测没被发现的元素的功能,因为元素在表中排列的位置预言了未被发现的元素的化学性质、化合价和原子量。
门捷列夫于1869年发表了题为《元素新体系》的论文,但是西方主流学术界并不以为然,因为当时的化学家们早已厌倦了形形色色的分类体系。直到1875年8月27日,法国一位酿酒商的儿子发现了新元素镓,原子量为69,化合价为3,镓的化学性质、化合价、原子量正好和门捷列夫的元素周期表中预言的介于铝和铀的元素“类铝”相一致。人们终于认识到了门捷列夫理论的准确性。后来的科学发展证明,门捷列夫的元素周期表对当时以及后来的化学发展起到了决定性的作用。人们为了纪念门捷列夫,将1955年发现的第101号元素命名为钔(mendelevium)。
五、结语
人类如今已经生活在了信息时代,我们已经清楚的知道了成千上万种物质的原子排列,但还有无数的未解之谜等待着我们去发现。科学的道路不可能是一帆风顺的,科学和科学家的任务依然任重而道远。当我们享受着现代文明带来的方便与舒适时,请别忘了我们一切的文明的成果都是我们的祖先汗水与智慧的结晶。
注释
【1】泰勒斯:624BC-546BC,古希腊哲学界,数学家,天文学家,主张朴素的唯物论的米粒都学派创始人。
【2】阿那克西曼德:Anaximander,610BC-546BC,被尊称为天文学奠基人。
【3】apeiron:希腊语中“无限小的”、“不确定的”的意思。
【4】泻盐,即氧化镁,Mgo。
【5】约翰·德贝赖纳: Johann Dobereiner, 1780-1849,德国化学家。
【6】亚历山大·钱考特斯:又译贝吉耶·德·尚古尔多阿,1820-1886,法国地质学家。
参考文献及书目:
1.《科学历史·一个化学者的评论》〖美〗艾伦·G·狄博斯 著,河北科学技术出版社 2000年 石家庄
2.《水气火土——元素发现史话》〖英〗丽贝卡·鲁普 著,宋军岭 译,商务印书馆 2008年 北京
3.《化学哲学新体系》〖英〗约翰·道尔顿 著,李家玉 译,武汉出版社 1996年 武汉
4.《化学哲学概论》邱道骥 著,南京师范大学出版社 2007年 南京
㈥ 工作上的问题,中国传统的白酒源自哪个朝代
白酒起源与发展
--------------------------------------------------------------------------------
2005年7月25日11:56 今夜中国上海站
我国是制曲酿酒的发源地,有着世界上独创的酿酒技术。日本东京大学名誉教授坂口谨一郎曾说中国创造酒曲,利用霉菌酿酒,并推广到东亚,其重要性可与中国的四大发明媲美。白酒是用酒曲酿制而成的,为中华民族的特产饮料,又为世界上独一无二的蒸馏酒,通称烈性酒,成为全球酒类饮料产销大国,对中国政治、经济、文化和外交等领域发挥着积极作用。
白酒起源于何时?何人始创?迄今说法尚不一致。从商代甲骨文中已有“醴”字,淮南子说:“清醴之美,始于耒稆”。《尚书说命》记载:“若作酒醴,尔为曲糵”。最早的文献记录是“鞠糵”,发霉的粮食称鞠,发芽的粮食称糵,从字形看都有米字。米者,粟实也。由此得知,最早的鞠和糵,都是粟类发霉发芽而成的。《说文解字》说:“糵,芽米也”。“米,粟实也”。以后用麦芽替代了粟芽,糵与曲的生产方式分家以后,用糵生产甜酒(醴)。商、周一千多年到汉朝,糵酒还很盛行。北魏时用榖芽酿酒,所以在《齐民要术》内无糵曲的叙述。1636年宋应星著《天工开物》内说:“古来曲造酒,糵造醴,后世厌醴味薄,逐至失传”。据周朝文献记载,曲糵可作酒母解释,也可解释为“酒”。例如杜甫《归来》诗里有“恁谁给曲糵,细酌老江乾”;陈騊声有“深深曲糵日方长”的诗句,这里“曲糵”也是指“酒”。
曲在《辞源》的解释为酒母,酿酒或制酱的发酵物,亦作“曲”。曲或鞠的简化字为曲。酒曲的发展,经过不断地技术改良,由散曲发展到饼曲,终于形成了大曲和小曲。大曲中主要微生物是曲霉,适宜于北方天气寒冷的各省。制造大曲的原料为大麦、豌豆或小麦,例如前者为汾酒、西凤酒大曲,后者为茅台、泸州酒曲等。因制曲原料为麦类,常称为麦曲,其形状似砖,又称砖曲,其曲块大和用曲量多,通称大曲,用于酿造我国的传统工艺名优白酒。小曲酒主要微生物是根霉和毛霉,在南方亚热带的温暖气候,有利于生产小曲及其小曲酒。制造小曲的原料为大米或稻糠,有的加入中草药,如邛崃米曲、董酒米曲;有的不用中草药,如厦门白曲、稗木镇糠曲等。1982年,法国微生物学家卡尔麦提(Calmette)在中国小曲中发现一种糖化力强的根霉,利用此种霉菌生产酒精,定名为阿明诺法或淀粉法(Amolproetzz),1985年正式投产。1956年,方心芳先生开始将小曲分离出的根霉分类及重要的生理特性的研究,确定了根霉是小曲的主要糖化菌。
白酒所应用的酒曲,大概可分为小曲、大曲和麸曲三类。小曲到南北朝时,已相当普遍生产,到了宋代时又有重要的改进,其根霉小曲成了世界最好的酿酒菌种之一。这种根霉小曲传播很广,如朝鲜、越南、老挝、柬埔寨、泰国、尼泊尔、不丹、马来西亚、新加坡、印度尼西亚、菲律宾和日本(在绳纹末期从中国传入了稻作技术和造酒技术)都有根霉小曲酿酒,产品受到国外人民的青睐。
麸曲是方心芳先生研究高粱酒的改良,提倡用曲霉制造酒曲,又称快曲,因制曲时间短而得名。制曲后,麸曲直接作为糖化剂,一般用量较大,仍有误称为大曲。酿酒必先制曲,好曲酿出好酒,这是培养有益菌类,利用自然界或人工分离的微生物,分泌出许多复杂的酶,利用它的化学性能来完成的。
白酒酿造始于何人?其说法不一。从战国时期《世本·作》:“仪狄做酒醪变五味”,这是造酒最早的文字记载,传至周朝,更有汉朝许慎《说文解字》“古者仪狄作酒醪,禹口尝之而美,逐疏仪狄。杜康作秫酒”。至今杜康造酒之说广为传颂,及至日本人将酿酒工统称“杜氏”。更有曹操《短歌行》:“对酒当歌,人生几何?何以解忧,唯有杜康”。有人认为杜康是酿酒的祖师爷,这是一种悖论。宋高承在其《事物纪原》一书中说:“不知杜康何世人,而古今多言其酿酒也”,说明杜康究竟是哪个时代人,尚未搞清楚,何况当年杜康酿造的酒绝非今日的蒸馏酒。
人类社会的发展及微生物学原理推测,认为酒的起源,最早出来是水果酒,其次是奶酒,最后发现为粮食(谷物)酿造的蒸馏酒,这是讨论的课题。水果中含有糖类的果汁,如暴露于皮外,果皮上常附有酵母,在温度适宜的条件下,果汁就会发酵成酒。动物家畜的乳汁,其中含有乳糖,同样经酵母发酵为奶酒。谷物酿酒要复杂很多,粮食中为碳水化合物不是糖而是淀粉,淀粉需要经淀粉酶分解为糖,然后由酵母的酒化酶将糖变成酒。我国粮食酒中最早出现是黄酒,称为酿造酒,又称发酵酒,是不经过蒸馏的,随后才会出现为现在的蒸馏酒,即中国白酒,这与蒸馏器有关。
白酒在唐朝又称为烧酒,历代诗句中常出现烧酒。白香山有诗云:“荔枝新熟鸡冠色,烧酒初开琥珀香”;雍陶亦有诗云:“自到成都烧酒熟,不思身更入长安”,可见当时的四川已生产烧酒。古诗中又常出现白酒,例如李白的“白酒新熟山中归”;白居易的“黄鸡与白酒”,说明唐朝的白酒就是烧酒,亦名烧春。研究白酒的起源,必先以蒸馏器为佐证。方心芳先生认为宋朝已有蒸馏器(《自然科学史》6卷2期,1987年),但他在1934年时曾说我国唐代即有蒸馏酒(《黄海化学工业研究社调查报告》第7号)。1975年在河北承德市青龙县出土的金代铜质蒸馏器,其制作年代最迟不超过1161年的金世宗时期(南宋孝宗时),认为可信无疑。据西方在10或11世纪发现蒸馏法以后,就可能由发酵的饮料中得到较早的乙醇(酒精)。但在16世纪以来,由谷物原料直接制备乙醇,其酒精和水的类似饮料产品,就被广泛应用。
新中国成立以来,白酒行业迅速发展。从白酒质量看,1952年全国第一届评酒会评选出全国八大名酒,其中白酒4种,称为中国四大名酒。随后连续举行至第五届全国评酒会,共评出国家级名酒17种,优质酒55种;1979年全国第三届评酒会开始,将评比的酒样分为酱香、清香、浓香、米香和其他香五种,称为全国白酒五大香型,嗣后其他香发展为芝麻香、兼香、凤型、豉香和特型5种,共计称为全国白酒十大香型。从白酒产量看,1949年全国白酒产量仅为10.8万吨,至1996年发展到顶峰为801.3万吨,是建国初期的80倍,近几年来基本稳定在350万吨左右,全国注册企业达3.7万家,从业人员约几十万。从白酒税利看,每年为国家创税利约120亿以上,仅次于烟草行业,其经济效益历来是酒类产品的前茅。从白酒科技看,中央组织全国科技力量进行总结试点工作,如烟台酿酒操作法,四川糯高粱小曲法操作法、贵州茅台酿酒、泸州老窖、山西汾酒和新工艺白酒等总结试点,都取得了卓越的成果。业内人士一致认为总结试点就是科研,科研就是发展发生力。从白酒工艺看,它的生产可分小曲法、大曲法、麸曲法和液态法(新工艺白酒),以传统固态发酵生产名优白酒,新工艺法为普遍白酒,已占全国白酒总产量70%。从白酒发展看,全国酿酒行业的重点,在鼓励低度的黄酒和葡萄酒,控制白酒生产总量,以市场需求为导向,以节粮和满足消费为目标,以认真贯彻“优质、低度、多品种、低消耗、少污染和高效益”为方向。
白酒是我国世代相传的酒精饮料,通过跟踪研究和总结工作,对传统工艺进行了改进,如从作坊式操作到工业化生产,从肩挑背扛到半机械作业,从口授心传、灵活掌握到有文字资料传授。这些都使白酒工业不断得到发展与创新,提高了生产技术水平和产品质量,一批厂家成为我国酿酒的大型骨干企业,为国家做出了重要的贡献。我们应继承和发展这份宝贵的民族特产,弘扬中华民族的优秀酒文化,使白酒行业发扬光大。
中国酒网
㈦ 源森泰合成油,真的假的
从业多年,给你些建议。个人原创!
新手必读!节能环保油,合成油,常见问题解答
1。 这个油是真的吗?还是网上炒作?
首先明确一点,这个燃料是真实存在的,本人都做了六年,每月销量也有几百吨,但是为什么网上有人说是骗人的?那是因为他选择皮包公司加盟,没学到实用技术,做不起来,自然就认为是骗人的,选择不对,努力白费。
2。节能环保油是怎么做成的?
是以甲醇为主,加其它几种添加剂勾兑合成的。不需要特殊机器设备,一般只需要桶和泵之类就可以。
3。做油的原料当地能买到吗?对人体有害吗?
甲醇又叫工业酒精,全国各地都有卖的,正常接触对身体没有影响,只要不是大量食用,都无关紧要,甲醇属于微毒性。
4。这个油主要有哪些用途?
目前来说主要针对用量较大的餐饮,食堂,工厂,锅炉等,也可车用,至于民用,因涉及安装改灶,民用量不大,成本及各方面不划算,目前不是主要客户。
5。这个油安全性如何?客户容易接受吗?
能燃烧但不会爆炸,因为里面含水,很稳定。这行业出来也有五六年,目前很多地方都在推广,效果不错,客户接受很快,就我们附近城市来说,饭店,食堂等普及率达到80%。
6。这个油会挥发吗?冬天会结冰吗?
挥发肯定是有的,不过很少,可以通过辅助添加剂以及密封来控制挥发。冬天不会结冰,即使是北方零下30度也没关系。这个油零下70度才会结冰。
7。成品是液体还是气体?普通液化气灶能用吗?需要更换灶芯吗?
成品是液体的,目前市面上有两种,一种是以二甲醚,轻质油为原料做成,可变成气体燃烧,但是原料不易购,使用中存在很多问题,目前来说没有推广价值,市场上实用的还是液体燃料,原来的灶更换炉芯后使用,目前是很成熟的,随着从事的同行越来越多,技术不断更新,可以通过专用炉芯来实现液体变气体燃烧,效果很好,未来是趋势。
8。做这油成本是多少?利润多少?
成本根据各地原料进价有一定区别,北方原料便宜,南方贵点,因为化工厂家北方多。正常来说最好的燃料成本1600每吨,如果用粗醇,或则其它质量差点的甲醇勾兑出来成本也就一千左右,甚至几百元每吨。利润正常控制在1500每吨,如果用先进点的炉芯,零售价4000每吨以上,利润可以达到2000--3000每吨。
9。网上那么多招商加盟的,如何选择?
请选择实体,不要以为广告做的大就是实力大,很多电视打广告的都是靠赚取巨额加盟费来盈利,本身并不生产燃料,也不生产炉具。一旦你选择了这些所谓的公司,只会越陷越深,经营不下去,白忙一场。因为他们不做实体,没有实际经验。所谓的技术也是网上找来忽悠你的。至于选择哪家,请多了解多分析,做出正确的判断。毕竟我不能自卖自夸,有诋毁同行的嫌疑。
10。投资大吗?起步资金需要多少?多久能回本?
投资不大,一般起步有两三万足够,如果有个小仓库,有个送货车,一万都可以做,认真经营,做几家客户就能短时间回本。
11。能不能发燃料过来?
首先,燃料属于危险品,物流和快递是禁止托运的,除非用罐车,试想下,发一两吨运费根本划不来,物流费可能比燃料还要贵,如果发整罐车30吨你刚开始又消化不了。所以只能来学习技术,当地生产。再则你当地原料有可能比我这还便宜。
12。火力如何?比液化气,柴油能节省多少?和天然气比有优势吗?
论热值,比柴油,液化气会略低,所以通过更换炉芯,重新改装来集中热效率,正常温度能达到1200-1300度,是完全能满足厨房火力需求。不然我们也不可能做到今天。可以比液化气或柴油节能30%左右。虽然和天然气比经济优势不大,但天然气开户费昂贵,我们这燃料免费安装改灶,只要没有用天然气的都是我们的目标客户。
13,需要多久?容易学吗?
这技术不难,没有学历限制,不需要什么特别基础,一般三天都能会,如果你时间充裕,可以多实践几天,都提倡自己动身,实际操作,现场安装。学会为止。
创业需谨慎,广告误导人。
㈧ 蒸馏器作用大全
利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离.是一种属于传质分离的单元操作.广泛应用于炼油、化工、轻工等领域.
其原理以分离双组分混合液为例.将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离.两组分的挥发能力相差越大,则上述的增浓程度也越大.在工业精馏设备中,使部分汽化的液相与部分冷凝的汽相直接接触,以进行汽液相际传质,结果是汽相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入汽相,也即同时实现了液相的部分汽化和汽相的部分冷凝.
工业蒸馏的方法有:①闪急蒸馏.将液体混合物加热后经受一次部分汽化的分离操作.②简单蒸馏.使混合液逐渐汽化并使蒸气及时冷凝以分段收集的分离操作.③精馏.借助回流来实现高纯度和高回收率的分离操作 ,应用最广泛.对于各组分挥发度相等或相近的混合液,为了增加各组分间的相对挥发度,可以在精馏分离时添加溶剂或盐类,这类分离操作称为特殊蒸馏,其中包括恒沸精馏、萃取精馏和加盐精馏;还有在精馏时混合液各组分之间发生化学反应的,称为反应精馏.
2.3.1 基本原理
液体的分子由于分子运动有从表面溢出的倾向.这种倾向随着温度的升高而增大.如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力.此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压.实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压.这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关.
将液体加热,它的蒸气压就随着温度升高而增大,当液体的蒸气压增大到与外界施于液面的总压力(通常是大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾,这时的温度称为液体的沸点.显然沸点与所受外界压力的大小有关.通常所说的沸点是在0.1MPa压力下液体的沸腾温度.例如水的沸点为100℃,即是指在0.1MPa压力下,水在100℃时沸腾.在其它压力下的沸点应注明压力.例如在85.3KPa时水在95℃沸腾,这时水的沸点可以表示为95℃/85.3KPa.
将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏.很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来.但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果.在常压下进行蒸馏时,由于大气压往往不是恰好为0.1MPa,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差2.7KPa,这项校正值也不过±1℃左右,因此可以忽略不计.
将盛有液体的烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成.溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用.这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心.在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由于液柱所产生的压力时,蒸气的气泡就上升逸出液面.因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难.这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”.一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”.因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳.助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等.另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下).在任何情况下,切忌将助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险.如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入.如果沸腾中途停止过,则在重新加热前应加入新的助沸物.因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效.另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20ºC,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间的温差,而且可使蒸气的气泡不单从烧瓶的底部上升,也可沿着液体的边沿上升,因而可大大减少过热的可能.
纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定的沸点.不纯物质的沸点则要取决于杂质的物理性质以及它和纯物质间的相互作用.假如杂质是不挥发的,则溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是不纯溶液的沸点,而是逸出蒸气与其冷凝平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点).若杂质是挥发性的,则蒸馏时液体的沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内.因此,沸点的恒定,并不意味着它是纯粹的化合物.
蒸馏沸点差别较大的混合液体时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏器内,这样,可达到分离和提纯的目的.故蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作,必须熟练掌握.但在蒸馏沸点比较接近的混合物时,各种物质的蒸气将同时蒸出,只不过低沸点的多一些,故难于达到分离和提纯的目的,只好借助于分馏.纯液态化合物在蒸馏过程中沸程范围很小(0.5~1℃).所以,蒸馏可以利用来测定沸点.用蒸馏法测定沸点的方法为常量法,此法样品用量较大,要10 mL以上,若样品不多时,应采用微量法.
蒸馏操作是化学实验中常用的实验技术,一般应用于下列几方面:(1)分离液体混合物,仅对混合物中各成分的沸点有较大的差别时才能达到较有效的分离;(2)测定纯化合物的沸点;(3)提纯,通过蒸馏含有少量杂质的物质,提高其纯度;(4)回收溶剂,或蒸出部分溶剂以浓缩溶液.
2.蒸馏操作
加料:将待蒸馏液通过玻璃漏斗小心倒入蒸馏瓶中,要注意不使液体从支管流出.加入几粒助沸物,安好温度计.再一次检查仪器的各部分连接是否紧密和妥善.
加热:用水冷凝管时,先由冷凝管下口缓缓通入冷水,自上口流出引至水槽中,然后开始加热.加热时可以看见蒸馏瓶中的液体逐渐沸腾,蒸气逐渐上升.温度计的读数也略有上升.当蒸气的顶端到达温度计水银球部位时,温度计读数就急剧上升.这时应适当调小煤气灯的火焰或降低加热电炉或电热套的电压,使加热速度略为减慢,蒸气顶端停留在原处,使瓶颈上部和温度计受热,让水银球上液滴和蒸气温度达到平衡.然后再稍稍加大火焰,进行蒸馏.控制加热温度,调节蒸馏速度,通常以每秒1~2滴为宜.在整个蒸馏过程中,应使温度计水银球上常有被冷凝的液滴.此时的温度即为液体与蒸气平衡时的温度,温度计的读数就是液体(馏出物)的沸点.蒸馏时加热的火焰不能太大,否则会在蒸馏瓶的颈部造成过热现象,使一部分液体的蒸气直接受到火焰的热量,这样由温度计读得的沸点就会偏高;另一方面,蒸馏也不能进行得太慢,否则由于温度计的水银球不能被馏出液蒸气充分浸润使温度计上所读得的沸点偏低或不规范.
观察沸点及收集馏液:进行蒸馏前,至少要准备两个接受瓶.因为在达到预期物质的沸点之前,带有沸点较低的液体先蒸出.这部分馏液称为“前馏分”或“馏头”.前馏分蒸完,温度趋于稳定后,蒸出的就是较纯的物质,这时应更换一个洁净干燥的接受瓶接受,记下这部分液体开始馏出时和最后一滴时温度计的读数,即是该馏分的沸程(沸点范围).一般液体中或多或少地含有一些高沸点杂质,在所需要的馏分蒸出后,若再继续升高加热温度,温度计的读数会显著升高,若维持原来的加热温度,就不会再有馏液蒸出,温度会突然下降.这时就应停止蒸馏.即使杂质含量极少,也不要蒸干,以免蒸馏瓶破裂及发生其他意外事故.
蒸馏完毕,应先停止加热,然后停止通水,拆下仪器.拆除仪器的顺序和装配的顺序相反,先取下接受器,然后拆下尾接管、冷凝管、蒸馏头和蒸馏瓶等.
㈨ ff14 巴哈姆特真源怎么开启
首先通关巴哈T9,然后去沙之家于里昂热接个任务,做完就开了
真源在北萨青磷精炼所进本,现在只有组满8人才能进,2.55之后没限制