導航:首頁 > 凈水問答 > 無鈉陽離子交換

無鈉陽離子交換

發布時間:2025-09-14 07:27:39

❶ 陽離子交換質量作用方程

(一)陽離子吸附親合力

就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。

按各元素吸附親合力的排序如下:

水文地球化學基礎

上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。

值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。

(二)陽離子交換質量作用方程

按質量作用定律,陽離子交換反應可表示為:

水文地球化學基礎

式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。

以Na-Ca交換為例,其交換反應方程為:

水文地球化學基礎

(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。

在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。

Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。

上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。

摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下

水文地球化學基礎

式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。

按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:

水文地球化學基礎

式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。

以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:

水文地球化學基礎

式中,

稱為選擇系數,其他符號含義同前。選擇系數已為許多學者所應用。從理論上講,該方程(1.150式)提供了一個預測陽離子交換反應對地下水陽離子濃度影響的有效方法。

從理論上講,

基本上是一個常數,但隨水的離子強度的改變,稍有變化。它的數值的大小,能說明各種離子在競爭吸附中,優先吸附何種離子。如

說明B離子比A離子更易被吸附;反之,則相反。選擇系數方面的信息在文獻中已很普遍。就

來說,在(Mgx)/(Cax)和水中離子強度變化比較大的范圍內,

在0.6—0.9間,變化很小。

值的范圍說明,Ca2+比Mg2+更易被吸附。

在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。

例題1.8

在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。

假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數

計算步驟:

(1)求新的地下水進入該地段前的NCa和NMg

按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則

NCa=NMg=0.5

(2)求新的地下水剛進入該地段時,起始狀態的

按質量作用定律,Ca-Mg交換方程為:

水文地球化學基礎

交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。

設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。

把上述假設代入(1.151)式,則

水文地球化學基礎

因達到新的交換平衡時,

把它代入(1.152)式,經整理後,得:

水文地球化學基礎

因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:

水文地球化學基礎

把(1.154)式代入(1.153)式,得:

水文地球化學基礎

由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:

水文地球化學基礎

式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。

整理(1.156)式,得:

水文地球化學基礎

把(1.157)式代入(1.155)式,整理後得:

水文地球化學基礎

解方程(1.158),得:

Z=0.250046,即交換平衡後,Cax=0.250046mmol/g

那麼,Mgx=0.5-0.250046=0.249954mmol/L

按上述計算摩爾分數的方法,得:

NCa=0.50009,NMg=0.49991

把所算得的Z值代入(1.157),得:

x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L

那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L

上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。

上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。

(三)地下水系統中的Na-Ca交換

地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。

地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:

水文地球化學基礎

(2.159)反應最常用的質量作用方程是Gappn方程:

水文地球化學基礎

在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:

水文地球化學基礎

式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。

(1.161)式左邊項表示為:

水文地球化學基礎

式中的ESR稱為「交換性鈉比」。

(1.16l)式右邊項表示為:

水文地球化學基礎

式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:

水文地球化學基礎

(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。

表1.20Na-Ca交換的回歸方程

表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。

表1.21Na-Ca試驗中某些參數的變化〔2〕

表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;

(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。

表1.22SAR值不同的污水現場試驗結果〔2〕

註:硬度以CaCO3計(mg/L)。

(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。

SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。

❷ 離子交換器工作原理

離子交換器的工作原理是基於離子的交換過程。在運行時,陽樹脂(H-R)與陽離子(M+)結合,形成(M-R)和氫離子(H+),而陰樹脂(OH-R)與陰離子(X-)結合,生成(X-R)和氫氧根離子(OH-)。這個過程的逆過程即為樹脂的再生。



在離子交換除鹽水處理中,常見的是一級復床系統,由陽床和陰床組成。單元制系統中,陽床和陰床會同時再生當其中任意一方失效;而在母管制系統中,陽床與陽床或陰床與陰床並聯運行,失效時只需再生對應失效的交換器。



檢測和控制離子交換器的失效主要依據侍鄭樹脂層的保護層穿透。陽離子交換器通過監測鈉離子(Na+)的泄漏來判斷失效,因為Na+的吸附能力最弱;陰離子交換器則通過監測硅離子(HSiO3-)的泄漏,HSiO3-的吸附能力最弱。其反應方程分別描述了這兩個過程。



控制點和方法上,母管制系統的優勢在於能更高雹喚效地使用樹脂和提高出水能力。以成都生物製品研究所的純水站為例,該系統採用了母管制結構,通過單元失效控制策略,實現了對系統失效的有效管理。



至於出水水質,一級復床處理後的水,其電導率在25℃時低於10μS/cm,硅含量低於100μg/L,這表明系統的除鹽效果顯著,能滿足大部分應用需求。



(2)無鈉陽離子交換擴展閱讀

離子交換器鈉離子交換器、陰陽床、混合床等種類。鈉離子交換器是源談凱用於去除水中鈣離子、鎂離子,製取軟化水的離子交換器。有機玻璃離子交換裝置耐腐蝕與無色透明、適用於食品、醫葯、製糖及電子工業小規模純水制備。

❸ 離子交換設備的工作原理

抄離子交換系統是通過陰陽離子樹脂對水中的陰陽離子進行置換的處理工藝,離子交換設備中的陰陽離子交換樹脂按照不同的比例進行搭配,組成離子交換陽床系統、離子交換陰床系統和離子混床系統三種。混床系統是在反滲透處理工藝後用來製取超純水。離子交換設備採用離子交換方法,把水中的陰陽離子清除,用氯化鈉代表水中無機鹽類,水質除鹽的基本反應方程式如下:

陽離子交換樹脂:R—H+Na+ R—Na+H+

陰離子交換樹脂:R—OH+Cl- R—Cl+OH-

陽、陰離子交換樹脂總的反應式為:

RH+ROH+NaCl——RNa+RCL+H2O

從而看出,水中的氯化鈉已分別被樹脂上的氫離子和氫氧根離子所取代,生成水,達到清除水中鹽的作用。

❹ 濾水壺什麼為什麼這么火

稍微了解軟水原理的人都知道,現在國內市面上見到的家用軟水機基本都是使用鈉離子交換樹脂,也就是用鈉離子置換水中的鈣鎂離子,當樹脂飽和後再用鹽水(氯化鈉)還原。這類軟水機主要是因為對額外攝取鈉離子還是比較有戒備,畢竟鈉離子攝取過多還是和高血壓等心血管疾病有某些關聯,我想也正是因為如此,國家才一直提倡控鹽吧。 Brita既然不用鈉離子來置換鈣鎂離子,那它是什麼原理呢?正在使用Brita和打算使用brita的諸位都了解一下! 在介紹Brita濾芯軟水功能時,官網如是說: 無鈉離子交換樹脂:硬水軟化的專家對石灰質(鈣、鎂離子)、重金屬(鉛銅鋁)等無機污染能有效去除,也就是說brita還是使用的某種陽離子交換樹脂,以一種非鈉陽離子置換鈣鎂離子。 在FAQ里又有這么兩段有關內容: Q12:BRITA濾水壺會降低水的 pH 質嗎 ? pH值會影響水的口味嗎? 解答 : 在德國,自來水公司所提供的飲用水為pH6.5到8.5(視水的種類而定) 。這個標准受自來水公司監視、控制。該數值范圍使自來水與水管材質最為相容,可確保水質。 在過濾的過程中,水中的暫時硬度會被過濾掉。從水管中釋出的重金屬離子含量也會降低。依水質而定,當使用一個新的濾芯時,過濾水的pH值會降低到4.5左右。 之後, pH質會隨濾芯使用的時間而增高。 使用新的濾芯會使過濾水的pH質降到4.5,像其他pH4.5的礦泉水一樣,這種水喝起來口味微酸(微甘)。隨著濾芯使用的時間增長,這種效果會慢慢減低,直到回覆到和原來自來水的pH質一樣。 這里提供幾種飲料的pH質以供比較: 可樂 約pH 2.3 檸檬汁 約pH 2.5 葡萄柚汁 約pH 3.0 蕃茄汁 約pH 4.0 BRITA 過濾水 約pH 4.5 Q21:BRITA過濾水中含有鉀離子嗎? 這對健康有影響嗎? 解答: BRITA濾芯中之鉀離子來自生產程式及天然活性碳的釋出,這些鉀離子在過濾時會遞減式地釋出,釋出量與水之硬度有關聯,水質越硬,鉀離子就釋出得更快。 最高劑量應該為每公升90毫克左右(你吃25公克的香蕉或15公克的馬鈴薯就會達到此量),但過濾10-30公升(當然和硬度有關聯)後,鉀的釋出量就大約會低於每公升10毫克了。水質愈硬前頭釋出量就愈多,但後頭就會比軟水區釋出得少,因為鉀離子量是有限的。 尤其應該注意的是頭兩壺的過濾水,我們建議(見說明)要倒掉或澆花,因為這兩壺的含鉀量是最高的。 其實鉀為人體所必須,尤其有益於細胞再生。由於被認為是有益人體的礦物質,所以在飲用水標准中並無設定最高含量値,比起若干其他食物中的鉀含量(見下列)BRITA過濾水中之鉀含量是微量的,尤其對於一般人是不足掛齒的。 有腎疾人士或是必須控制鉀攝取量的人士較應該注意的是第一壺過濾水的鉀含量而需找醫生諮詢一下。 例證: 0.1公升的BRITA過濾水--最高9毫克的鉀離子含量 0.1 公斤的蘋果--約144毫克的鉀離子含量 0.1公斤的全麥麵包--約291毫克的鉀離子含量 0.1公斤的香蕉--約382毫克的鉀離子含量 0.1公斤的花生--約777毫克的鉀離子含量 0.1公斤的炸薯條--約926毫克的鉀離子含量 通過這兩段FAQ內容可以分析出brita所採用的陽離子交換樹脂應該是氫離子型而不是鉀離子型,也就是用氫離子置換鈣鎂離子,結果是置換出來的水呈酸性,PH值最低可達4.5,這也是有人說brita濾出的水有甜味的原因。但是引用酸性水到底對人體有什麼影響我還沒深入研究,有了解的版友可以來說說。 另外,brita官網承認過濾後的水內鉀離子含量和原水硬度有關,但又說明這些鉀離子是來源於活性炭而非樹脂。但是不是飲用水過濾用的活性炭里都含鉀我也不太清楚,又了解的版友請科普一下。但有一點是要注意的,就是腎病患者對攝入鉀還是要謹慎。 最後,根據上面分析的brita濾芯軟水原理,我試想,是不是可以用某種酸來再生濾芯里的樹脂呢?這樣的話可以延長濾芯的壽命,畢竟brita濾芯從8周改為4周使用周期後還是蠻貴的 三鹵甲烷跟重金屬都會透過皮膚接觸而累積體內,所以我覺得不只是喝的水需要注意,我更要考量我家庭小孩的問題,因為我看醫學雜志上他說重金屬累積體內長期會影響小孩智力發展 BRITA他的活性碳還是傳統顆粒狀的,吸附力不夠,他還是會隨著水流而被沖刷下來,除了活性碳會流到我喝的水之外,甚至連氯,或其他臟東西也會跟著出來 他沒辦法過濾大部分我們常見的細菌,對人體還是有傷害

❺ 離交柱的工作原理

離子交換柱的原理:採用離子交換方法,可以把水中呈離子態的陽、陰離子去除,以氯化鈉(NaCl)代表水中無機鹽類。

水質除鹽的基本反應可以用下列方程式表達:

1、陽離子交換樹脂:R—H+Na+→R-Na+H+

2、陰離子交換樹脂:R—OH+CL-→R-CL+OH+

陽、陰離子交換樹脂總的反應式即可寫成:RH+ROH+NaCL—RNa+RCL+H2O,由此可看出,水中的Nacl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。

概念

離子交換柱是指用來進行離子交換反應的柱狀壓力容器,是管柱法離子交換的交換設備。採用圓筒形交換柱,溶液從柱的一端通入,與柱內呈密實狀態的固定離子交換樹脂層或流動狀態離子交換樹脂床充分接觸,進行離子交換。

若交換後的溶液已達到預定要求,或離子交換樹脂已呈「飽和狀態」,就從生產線上切斷柱交換,在同一柱中或其他柱內用解吸液解吸,離子交換樹脂再生後用於下次交換。

以上內容參考:網路-離子交換柱

閱讀全文

與無鈉陽離子交換相關的資料

熱點內容
銳志用什麼機油濾芯比較好 瀏覽:581
輻射4凈水器哪裡能建 瀏覽:662
聚乙烯樹脂是化學 瀏覽:607
無機陶瓷膜超濾技術 瀏覽:108
中性的污水怎麼處理啊 瀏覽:309
密理博盒式超濾膜包 瀏覽:693
地熱過濾器裝反 瀏覽:740
污水泵加油加多少 瀏覽:121
前端過濾和pp 瀏覽:529
水處理超濾膜組件漏水 瀏覽:928
純水機沖洗後不排水怎麼回事 瀏覽:509
移動的飲水機安娜是什麼動漫 瀏覽:850
排100噸污水什麼後果 瀏覽:931
農村主街道污水用的什麼管 瀏覽:708
凈化器用什麼消毒器 瀏覽:641
污水處理廠殺菌燈用什麼開關電源 瀏覽:293
長安平頭麵包車機油濾芯在哪裡 瀏覽:52
為什麼不能用草酸清洗超濾 瀏覽:444
反滲透膜質保協議書 瀏覽:181
無鈉陽離子交換 瀏覽:808