導航:首頁 > 凈水問答 > 常用陽離子交換

常用陽離子交換

發布時間:2025-08-25 08:18:18

㈠ 陽離子交換

1.陽離子交換

按質量作用定律,陽離子交換反應可以表示為

水文地球化學基礎

式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧指活度。

在海水入侵過程中,准確模擬陽離子交換作用是預測陽離子在含水層中運移的前提條件。按照質量作用定律可以用一個平衡常數把離子交換作為一種反應來描述。例如Na+、Ca2+的交換:

水文地球化學基礎

平衡常數為:

水文地球化學基礎

式(3—115)表明,交換反應是等當量的,是個可逆過程;兩個Na+交換一個Ca2+。如果水中的Na+與吸附在固體顆粒表面的Ca2+(即CaX)交換,則反應向右進行;反之,則向左進行。如果反應向右進行,Ca2+是解吸過程,而Na+是吸附過程。所以,陽離子交換實際上是一個吸附—解吸過程。Na+、Ca2+的交換是一種最廣泛的陽離子交換。當海水入侵淡水含水層時,由於海水中Na+遠高於淡水,而且淡水含水層顆粒表面可交換的陽離子主要是Ca2+,因此產生Na+、Ca2+之間的離子交換,Na+被吸附而Ca2+被解吸,方程(3—115)向右進行;當淡水滲入海相地層時,則Na+被解吸而Ca2+被吸附,反應向左進行。

2.質量作用方程

描述離子交換反應的方程式有多種,通常主要是通過對實驗數據的最佳擬合來決定選擇哪一種方程式,眾多的研究者很難達成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因為目前並沒有一個統一的理論來計算吸附劑上的離子活度,而前面提到的迪拜—休克爾方程、戴維斯方程都是適用於水溶液中的離子活度計算。

交換性陽離子活度有時用摩爾分數來計算,但更為常用的是當量分數作為交換位的數量分數或者作為交換性陽離子的數量分數。在一種理想的標准狀態下,交換劑只被一種離子完全占據,交換離子的活度等於1。對於等價交換使用哪一種方程式沒有區別,但是對於非等價交換影響十分顯著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函數形式:

水文地球化學基礎

即為交換位濃度(單位質量吸附劑的摩爾數)與無單位函數

)和

)的乘積。這些函數依賴於溶液中陽離子的活度。

海水入侵過程中的交換反應主要為Na+與Ca2+之間的交換,通常寫作:

水文地球化學基礎

X為—1價的表面交換位,交換位X的總濃度為

水文地球化學基礎

式中:S指每單位質量固體的總交換位濃度,mol/g。這種情況下S的量等於陽離子交換容量(只要單位換算統一即可)。

水文地球化學基礎

式(3—120)的書寫方式符合Gaines—Thomas方程式,Gaines(蓋恩斯)和Thomas(托馬斯)(1995)最先給出交換性陽離子熱動力學標准態的嚴格定義。它使用交換性陽離子的當量分數作為吸附離子的活度。若式(3—120)使用摩爾分數,則遵守Vanselow(1932)公式。

如果假定吸附陽離子的活度和被離子占據的交換位的數目成正比,反應式(3—115)則可寫成

水文地球化學基礎

式(3—122)符合Gapon(加彭)方程式。在Gapon方程式中,摩爾分數和當量分數是一樣的,都是電荷為—1的單一交換位。

還有一種交換形式為:

水文地球化學基礎

Y指交換位的電荷為—2,這種反應式同樣是交換反應的一種有效熱力學描述。它假定交換位Y的總濃度為

水文地球化學基礎

S則為陽離子交換容量的二分之一。Cernik(采爾尼克)等根據當量分數利用反應式(3—123),將交換系數表示為:

水文地球化學基礎

3.質量作用方程擬合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式對在砂樣中進行的試驗所獲得的數據進行擬合,根據擬合結果作出 Na+、Ca2+、Mg2+、K+吸附等溫線(劉茜,2007),如圖3—4~圖3—7所示。

圖3—4 Na+吸附等溫線和擬合數據

由吸附等溫線可以看出,砂樣對Na+、Mg2+、K+的吸附量均隨著溶液中離子濃度的增加而逐漸增加,而Ca2+發生解吸。圖3—4中,砂樣對Na+的吸附量隨溶液中離子濃度的增加而緩慢增加。圖3—5中,在Ca2+濃度較低時,解吸量迅速增大,當Ca2+濃度較高時,隨濃度增加解吸量增加緩慢,逐漸趨於平穩狀態。

圖3—6中Mg2+濃度較低時,吸附量增加較慢,在較高濃度時增加較快,但並沒有出現Ca2+的解吸等溫線中的平穩狀態,依然為直線型,且直線的斜率大於低濃度狀態時的斜率,說明Na+、Mg2+的吸附速率在低濃度(海水含量為20%左右)時較小,在高濃度時,吸附速率變大;Ca2+的解吸在高濃度時基本達到平衡,而Na+、Mg2+還有增長趨勢,也較好證明了試驗所用砂樣的交換位主要為Ca2+所佔據。圖3—7中K+實測值的吸附等溫線則沒有出現Ca2+、Na+、Mg2+的規律,雖然整體上隨著溶液離子濃度的增加,吸附量也是增長趨勢,但並沒有出現直線規律。究其原因,主要是陽離子交換吸附作用不大,主要是化學吸附,因為K+的水化膜較薄,所以有較強的結合力,K+被吸附後,大多被牢固吸附在黏土礦物晶格中。

圖3—5 Ca2+吸附等溫線和擬合數據

圖3—6 Mg2+吸附等溫線和擬合數據

圖3—7 K+吸附等溫式和擬合數據

由吸附等溫線模擬圖(圖3—4~圖3—7)及公式與試驗數據擬合的相關系數(表3—17)看出,GT方程式擬合效果較好,能夠很好地預測離子交換趨勢。因此,在多組分離子交換模擬計算中採用Gaines—Thomas方程,為陽離子交換的定量研究提供了依據。

表3—17 GT、GP、VS方程式擬合的相關系數

所以根據Gaines—Thomas方程式(3—126)~式(3—131)計算離子交換系數(表3—18)。由於 9 種配比濃度的離子強度不同,所以各自的交換系數也有所差別。對比

可知3種離子的吸附親和力順序為Mg2+>K+>Na+。但是由於海水中Na+、Mg2+含量遠遠高於地下水,尤其是Na+的含量比地下水高出3個數量級,因此,海水入侵過程中以Ca2+、Na+交換為主,其次為Ca2+、Mg2+交換,交換量最少的為Ca2+、K+

水文地球化學基礎

表3—18 試驗土樣不同濃度下的交換系數

㈡ 2. 陽離子交換的原則是什麼

離子交換樹脂水處理中的應用基於一種獨特的化學反應機制。當含有特定離子的水與樹脂接觸時,樹脂會與水中的離子進行交換,從而達到凈化水的效果。例如,H型陽離子交換樹脂遇到含有Ca2+和Na+的水時,會發生如下反應:2RH + Ca2+ → R2Ca + 2H+,RH + Na+ → RNa + H+。這里,樹脂上的H+和Na+離子與水中的Ca2+和Na+離子進行交換。同樣,OH型陰離子交換樹脂遇到含有Cl-和SO42-的水時,反應如下:ROH + Cl- → RCl + OH-,2ROH + SO42- → R2SO4 +2OH-。這些反應的結果是水中的雜質離子(如Ca2+、Na+、Cl-、SO42-等)被樹脂吸附,樹脂則轉變為Ca型、Na型和Cl型SO4型,而樹脂上的H+和OH-則進入水中,相互結合形成水,從而去除水中的雜質離子,制備出純水

離子交換樹脂之所以能夠與水中的離子進行交換,是因為樹脂本身具有可交換的活性離子。此外,由於離子交換樹脂具有多孔結構,即樹脂顆粒內部存在許多水能夠滲透的小網孔,這使得樹脂與水有較大的接觸面,不僅可以在樹脂顆粒的外表面進行離子交換,還可以在與水接觸的網孔內進行這一過程。這種多孔結構增加了樹脂的活性位點,提高了其交換能力。

離子交換樹脂的多孔結構還賦予了其較高的機械強度和化學穩定性。樹脂顆粒內部的網孔可以容納更多的水分子,從而提高了樹脂的吸水性和吸附能力。這種結構不僅有利於離子交換過程的進行,還使得樹脂在使用過程中更加耐用,不易破碎或損壞。

在實際應用中,離子交換樹脂通常會與多種其他處理技術結合使用,以實現更高效的水處理效果。例如,它可以與反滲透超濾等技術配合使用,進一步去除水中的雜質。此外,通過選擇不同類型的離子交換樹脂,可以根據需要去除特定類型的離子,從而實現對水質的精細化調控。

離子交換樹脂在水處理領域的應用已經非常廣泛,不僅限於去除水中的雜質離子,還可以用於去除重金屬離子、有機污染物等。隨著技術的進步,離子交換樹脂的應用范圍還將不斷擴大,為水資源的保護和利用提供更加有效的解決方案。

㈢ 土壤陽離子交換量怎麼算

在一定的pH值條件下(一般pH為7),每千克干土所吸收的全部交換性陽離子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)總量。

常用單位:每千克厘摩爾數cmol(+)/kg土

國際單位:mmol/kg土

(3)常用陽離子交換擴展閱讀:

土壤陽離子交換量(CEC)的大小,基本上代表了土壤可能保持的養分數量,即保肥性的高低。陽離子交換量的大小,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。

b、土壤質地越細,其陽離子交換量越高。

c、對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大。

d、土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大。

㈣ 離子交換纖維素色譜法離子交換的分類及常見種類

離子交換纖維素色譜法主要依據離子交換劑的類型和特性進行分類,包括陽離子交換劑和陰離子交換劑,這兩類又可以根據解離性強弱進一步細分為強酸性和弱酸性、強鹼性和弱鹼性。


1. 陽離子交換劑,如磺酸、磷酸、羧酸和酚羥基等酸性基團的交換劑,如國產的1×7樹脂和國際品牌的Dowex 50、Zerolit 225,它們屬於強酸型。反應方式包括強酸性R-SO3-H++Na+ R-SO3- Na+H+和弱酸性R-COOH+Na+ R-COONa+H+。


2. 陰離子交換劑,如伯胺、仲胺、叔胺和季胺等鹼性基團的交換劑,如國產的#201號樹脂和Dowex 1、Dowex 2、ZerolitFF,它們屬於強鹼型。反應方式有強鹼性R-N+(CH3)2 H·OH-+Cl R-N+(CH3)2 Cl+OH-和弱鹼性R-N+(CH3)2 H·OH-+Cl R-N+(CH3)2 HCl+OH-。


離子交換劑種類豐富,例如纖維素離子交換劑有CM-纖維素(陽離子)和氯代三乙胺纖維紗(DESE-纖維素,陰離子)。交聯葡聚糖離子交換劑如Sephadex,有陰離子和陽離子兩種,如DEAE-Sephadex A-25、A-50和CM-Sephadex C-50等,英文字頭A代表陰離子,C代表陽離子,數字表示型號。瓊脂糖離子交換劑如DEAE-Sephades和CM-Sepharose,是通過DESE-或CM-基團附著在Sepharose CL-6B上製成,具有優良的分離性能和穩定性。




(4)常用陽離子交換擴展閱讀

Sober和Peterson於1956年首次將離子交換基團結合到纖維素上,製成了離子交換纖維素,成功地應用於蛋白質的分離。從此使生物大分子的分級分離方法取得了迅速的發展。離子交換基團不但可結合到纖維上,還可結合到交聯葡聚糖(S-ephadex)和瓊脂糖凝膠(Sepharose)上。近年來離子交換色譜技術已經廣泛應用於蛋白質、酶、核酸、肽、寡核苷酸、病毒、噬菌體和多糖的分離和純化。

㈤ 陽離子交換能力大小順序

陽離子交換能力大小順序:Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4+>Na+>Li+。

離子交換樹脂對水中各種離子的交換能力是不同的,即有些離子易被離子交換樹脂吸著,但吸著後要把它解吸下來就比較困難;反之,有些離子則難被離子交換樹脂吸著,但易被解吸,這種性能稱為離子交換樹脂的選擇性。這種選擇性影響到離子交換樹脂的交換和再生過程。

含義

如水中的K+會被岩土吸附,而置換岩土吸附的Na+到水中。但是當某種離子的相對濃度增大,則其交替吸附能力也隨之增大,如海水入侵陸相沉積物(淡水含水層)時,水中的Na+將置換岩土吸附的部分Ca2+,形成富含Ca2+的地下水。

以上內容參考:網路-陽離子交換作用

閱讀全文

與常用陽離子交換相關的資料

熱點內容
鑒別星月菩提樹脂 瀏覽:407
飲水機冷凍多少度 瀏覽:142
中水回用設備工藝 瀏覽:79
php正則過濾html中img 瀏覽:552
越野車樹脂發動機護板 瀏覽:88
什麼工廠之類的會排污水 瀏覽:693
杭州興源過濾科技臨平 瀏覽:126
反滲透水處理怎麼軟化水 瀏覽:592
飲水機後面的水管怎麼去掉 瀏覽:887
pp樹脂的成型特性 瀏覽:746
樂高怎麼做飲水機可以接水材料包 瀏覽:703
翼搏機油濾芯什麼意思 瀏覽:441
教師反分裂反滲透心得 瀏覽:959
頂新碳粉樹脂有限公司電話 瀏覽:850
新污水處理需要加什麼池 瀏覽:642
反滲透膜在線化學清洗方法 瀏覽:232
海爾凈水凈化器怎麼樣 瀏覽:968
污水廠水量少濃度高怎麼辦 瀏覽:975
常用陽離子交換 瀏覽:565
美的凈水器為什麼換芯 瀏覽:51