① 生物鹼離子交換法分離的條件是
1.利用生物鹼的鹼性差異進行分離
方法:酸水-鹼化-萃取法
注意:
①強鹼在弱酸性條件下能形成生物鹼鹽,易溶於水;弱鹼則需在較強酸性條件下形成生物鹼鹽而溶於水。
②成鹽後,弱鹼鹽在弱鹼條件下即可轉變成游離生物鹼,易溶於親脂性有機溶劑;強鹼鹽則需在較強鹼性條件下轉變成游離生物鹼,溶於親脂性有機溶劑。
總鹼中各生物鹼的鹼性不同,可用pH梯度萃取法進行分離。
具體方法有兩種:
①總生物鹼溶於親脂性有機溶劑, pH由高至低依次萃取,生物鹼可按鹼性由強至弱先後成鹽依次被萃取出而分離
②總生物鹼溶於酸水,逐步加鹼使pH值由低至高分離。
對於鹼性有差別的兩種生物鹼,可採用調pH後簡單萃取法分離。如從洋金花的乙醇浸出液中分離莨菪鹼和東莨菪鹼,利用二者鹼性差別,將乙醇浸出液濃縮後鹼化到pH 9~10,三氯甲烷萃取,三氯甲烷萃取液再用稀酸水萃取,將此酸水液用固體碳酸氫鈉鹼化後以三氯甲烷萃取,東莨菪鹼因鹼性小游離出來而被萃取出。水層再用氨水鹼化至pH l0,用三氯甲烷可萃取出鹼性稍強的莨菪鹼。
2.利用溶解度差異進行分離
游離生物鹼:如苦參中苦參鹼和氧化苦參鹼的分離
(氧化苦參鹼的極性大於苦參鹼,難溶於乙醚)
漢防己中漢防己甲素和漢防己乙素的分離
(漢防己甲素的極性小於漢防己乙素,可溶於冷苯)
生物鹼鹽:如麻黃中分離麻黃鹼、偽麻黃鹼
(在草酸中溶解度不同,麻黃鹼溶解度小於偽麻黃鹼)
3.利用特殊官能團進行分離
含羧基的生物鹼能與碳酸氫鈉生成羧酸鹽而溶於水,可與其他鹼分離;
酚性生物鹼的酚羥基具有弱酸性,可與氫氧化鈉溶液生成鹽溶於水,而與其他非酚性生物鹼分離。如在阿片生物鹼中,嗎啡具酚羥基而可待因無酚羥基,可用5%氫氧化鈉分離。
內酯或內醯胺結構的生物鹼可在鹼性水液中加熱開環生成溶於水的羧酸鹽而與其他生物鹼分離,在酸性下又環合成原生物鹼而沉澱,如喜樹鹼。
4.利用色譜法進行分離
(1)吸附柱色譜
常用氧化鋁或硅膠作為吸附劑,有時也用纖維素、聚醯胺等。以苯、氯仿、乙醚等親脂性有機溶劑或以其為主的混合溶劑系統作洗脫劑。
(2)分配柱色譜
對某些結構特別相近的生物鹼,可採用分配色譜法。
如三尖杉中的抗癌生物鹼三尖杉酯鹼和高三尖杉酯鹼的分離,兩者結構僅差一個亞甲基。具體方法是以硅膠為支持劑,以pH 5.0緩沖液為固定相,pH 5.0緩沖液飽和的三氯甲烷溶液洗脫,首先洗脫的是高三尖杉酯鹼,中間部分是二者的混合物,最後部分是三尖杉酯鹼。
5.高效液相色譜法(HPLC)
優點:分離效能好、靈敏度高、分析速度快。
色譜柱類型:硅膠吸附色譜柱,C18反相色譜柱。
此外,制備型薄層色譜、干柱色譜、中壓或低壓柱色譜等也常用於分離生物鹼。
水溶性生物鹼(季銨鹼)的分離
(一)沉澱法
實驗室常用雷氏銨鹽試劑純化季銨鹼。
(二)溶劑法
利用水溶性生物鹼能夠溶於極性較大而又能與水分層的有機溶劑(如正丁醇、異戊醇或氯仿-甲醇的混合溶劑等)的性質,用這類溶劑與含這類生物鹼的鹼水液反復萃取,使水溶性生物鹼與強親水性的雜質得以分離。
生物鹼的色譜檢識
常用方法:薄層色譜法、紙色譜法、高效液相色譜法和氣相色譜法
(一)薄層色譜法
1.吸附薄層色譜法
(1)吸附劑
吸附劑常用硅膠和氧化鋁。
硅膠適用注意:硅膠為酸性吸附劑,易造成拖尾或復斑,影響分離效果。可在塗鋪硅膠薄層時加稀鹼(0.1~0.5mol/L氫氧化鈉)或緩沖溶液,製成鹼性薄板;或使色譜過程在鹼性條件下進行,即在展開劑中加入少量鹼性試劑,如二乙胺、氨水等。
氧化鋁本身顯弱鹼性,不經處理便可用於分離和檢識生物鹼,一般較常用,特別適合分離親脂性較強的生物鹼。
(2)展開劑
展開劑系統多以親脂性溶劑為主,一般以三氯甲烷為基本溶劑。
若Rf值太小,加入適量甲醇、丙酮等極性較大的溶劑;
若Rf值太大,加入適量苯、環己烷等極性較小的溶劑。
在展開劑中加入少量鹼性試劑,如二乙胺、氨水等,可改善分離效果。
2.分配薄層色譜
特別適用於分離有些結構十分相近的生物鹼。
(1)支持劑與固定相:
通常選用硅膠或纖維素粉作支持劑,以甲醯胺或水為固定相。
甲醯胺適合分離弱極性或中等極性的生物鹼;水適合分離水溶性生物鹼。
(2)展開劑:
分離脂溶性生物鹼,應以親脂性有機溶劑作展開劑,如三氯甲烷-苯(1:1)等;
分離水溶性生物鹼,則應以親水性的溶劑作展開劑,如BAW系統(正丁醇-乙酸-水=4:1:5,上層)。
在配製流動相時,需用固定相飽和。
3.顯色方法
①有色生物鹼可直接觀察斑點;
②具有熒光的生物鹼在紫外光下顯示熒光斑點;
③大多生物鹼的薄層色譜可用改良碘化鉍鉀試劑顯色,顯橘紅色斑點。(如碘化鉍鉀不顯色,可選用其他特殊顯色劑)
② 用離子交換法分離和富集水樣中的陽離子和陰離子的原理
離子交換樹脂是利用被分離離子交換能力的差別而實現分離的,一般情況下價態高的內離子選擇系數大,如鐵容離子的交換順序大於鈣離子,具體情況如下:對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
③ 分離和富集
釷和其他伴生元素的分離可用沉澱、萃取、離子交換和萃取色層等方法。
釷的沉澱分離方法很多。苛性鹼、氫氧化銨、吡啶、六次甲基四胺都能使釷生成白色氫氧化物沉澱。小量釷可以用鋁、鐵為聚集劑,沉澱在pH3.5即開始形成,不溶於過量試劑。與釷形成配合物的有機酸如酒石酸等不應存在。此法可將釷與鹼金屬、鹼土金屬、鋅、鎳、銅、銀等元素分離,用吡啶或六次甲基四胺還可將釷與稀土分離。在0.5~1.3mol/L硝酸或鹽酸介質中,草酸濃度為10~50g/L時,釷成草酸鹽沉澱而與鐵、鋁、鋯、鈦等元素分離,鈾(Ⅵ)、稀土、鈣同時沉澱。少量釷可用稀土和鈣做聚集劑。草酸釷不溶於水和稀酸,但溶於過量的草酸銨溶液中。在pH≥1.5時,過氧化氫能沉澱釷為過氧化釷而與鹼金屬、鈦、鈾、錫、鈹、稀土等元素分離,鈰部分共沉澱。在6mol/L硝酸溶液中可用碘酸鹽沉澱大量釷,在0.5~1mol/L硝酸溶液中,以亞汞為聚集劑,可用碘酸鹽沉澱微量釷,鈾(Ⅳ)、鈰(Ⅲ)及稀土元素等不沉澱,鈦、鋯、鐵、鈮、鉭、鈾(Ⅳ)和鈰(Ⅳ)同時被沉澱。碘酸釷不溶於過量試劑及強酸中,能溶於還原性酸中(如鹽酸)。在稀鹽酸溶液中,氫氟酸能將釷沉澱,成難溶的氟化釷,稀土元素同時被沉澱,與鈮、鉭、鋯、鈦、鎢等元素分離。大量氟化銨存在時能使鈧分離,氟化釷能溶於硼酸和硝酸中。在pH2~2.8的鹽酸或硝酸介質中,有機試劑如苯甲酸、間-硝基苯甲酸等都能沉澱釷,與鈹、錳、鋅、鎳、鈷、鈾、鹼土金屬等元素分離,嚴格控制溶液的酸度可與稀土元素定量分離。
萃取分離方法,適用於微量釷的分離。在飽和硝酸鋁的1.5mol/L硝酸溶液中,用異丙叉丙酮[即異丙烯基丙酮(CH3)2C=CHCOCH3]萃取釷,除鈾,釩及少量鋯以外,幾乎能與所有伴生元素分離。在pH>1的硝酸溶液中用等體積的0.25mol/LTTA(噻吩甲醯三氟丙酮)的苯溶液萃取釷,釙(Po)同時被萃取。另外在適當的介質中,磷酸三丁酯亦能萃取釷,與鈾、鐳等分離。在釷的3mol/LHCl溶液中用5g/L苯甲醯苯胲-三氯甲烷萃取鈦使與釷分離。
萃取色層分離方法,同樣也適用於微量釷的分離和富集。目前胺類萃取劑,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(國產胺型萃取劑);中性配位劑,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋樹脂(苯乙烯-二乙烯苯為骨架,含有60%TBP共聚物)、5208萃淋樹脂(異烷基磷酸二丁酯);酸性配位劑,P507(2-乙基己基磷酸單2-乙基己酯)等結合載體聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附樹脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附樹脂(聚二乙烯苯)、交聯聚甲基丙烯酸型樹脂和泡沫塑料等組成固定相,均能達到在一定濃度的硝酸溶液中富集釷分離鈦、鋯、鈾、稀土等干擾離子。在分析實踐中應用較好的是N263、P350、CL-TBP萃淋樹脂和5208萃淋樹脂等。N203和X-5型聚二乙烯苯或DA201樹脂組成固定相,用2mol/LHNO3(1~7mol/L)上柱液通過色層柱,從而使釷與大量鈾、鋯、磷、鐵和稀土等分離,最後用4~5mol/LHCl淋洗釷。P350與X-5型聚二乙烯苯組成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介質上柱可使釷與大量鐵、鋁、鈣、鎂、鉬、銅,鈦、稀土等元素分離,最後以5mol/LHCl解脫釷。CL-TBP萃淋樹脂是在4mol/LHNO3(3~8mol/L)中富集釷與稀土、鈮、鉭等雜質分離,最後用3~5mol/LHCl解脫釷。5208萃淋樹脂是在0.1~6mol/LHNO3中富集釷與大量鈾、鈦、鋯、鋅、鉬(Ⅵ)、砷(Ⅴ)、稀土元素等分離,最後用0.1~6mol/LHCl淋洗解脫釷。
離子交換分離方法,也適用於微量釷的分離。在2~7mol/LHCl介質中,鈦、鋯、鈾、稀土等在743大孔陽離子交換樹脂上的分配系數與釷差別較大。因此,適用於釷與許多元素的分離,特別適用於釷與高量鈦、鋯和稀土元素的分離。根據試樣中鈦,鋯和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去這些元素,用氯化銨溶液淋洗,使氫型陽離子交換樹脂轉變為銨型,最後以草酸銨溶液淋洗釷,用光度法測定釷。也有在8mol/LHNO3介質中,用742大孔陰離子交換樹脂富集釷,分離鈾和稀土等干擾,最後以水解脫釷,光度法完成測定。
④ 稀土總量的測定
61.3.1.1 草酸鹽分離-重量法
方法提要
試樣經鹼熔分解,熱水提取(含鐵高的試樣用!=5%三乙醇胺提取),沉澱過濾後再用鹽酸溶解,在pH1~3的微酸性溶液中,用草酸沉澱稀土元素,釷、鈣同時被沉澱以及較大量的鈦、鋯可能被帶下外,可與大多數雜質分離。用六次甲基四胺沉澱釷。對鈦、鋯、鈮、鉭較高的試樣,可用氟化物沉澱分離。最後將稀土沉澱成氫氧化物再轉化為草酸鹽,於850℃灼燒成稀土氧化物稱量。
試劑
過氧化鈉。
抗壞血酸。
鹽酸羥胺。
氟化銨。
鹽酸。
硝酸。
氫氟酸。
高氯酸。
過氧化氫。
氫氧化銨。
鹽酸。
三乙醇胺。
氫氟酸-鹽酸洗液2mLHF加2mLHCl,用水稀釋至100mL。
氫氧化鈉溶液(10g/L)。
草酸丙酮溶液(400g/L)。
草酸溶液(10g/L)調節至pH1.5~2.5。
苯甲酸溶液(10g/L,2g/L)。
六次甲基四胺(200g/L)。
六次甲基四胺-氯化銨洗液(10g/L)稱取1g六次甲基四胺、1gNH4Cl溶於水中,稀釋至100mL,用稀鹽酸調節至pH4.4~5.0。
氯化銨-氫氧化銨溶液稱取2gNH4Cl溶於100mL氫氧化銨,pH8.6~9.0。
麝香草酚藍指示劑(1g/L)。
甲基橙指示劑(0.1g/L)。
酚酞指示劑(4g/L)。
分析步驟
稱取0.2~0.5g(精確至0.0001g)試樣,置於高鋁坩堝中,加4gNa2O2,攪勻後再覆蓋一層,加蓋,置於高溫爐中於650~700℃熔融5~15min,取出冷卻,置於300mL燒杯中,加約50mL熱水提取[含鐵高的試樣用(5+95)三乙醇胺提取],洗出坩堝及蓋,將燒杯加蓋表面皿,置於控溫電熱板上加熱煮沸,取下冷卻,洗去表面皿,用中速濾紙過濾,用氫氧化鈉溶液洗滌6~8次。將沉澱連同濾紙置於原燒杯中,加入2mLHCl、20mL水,用玻璃棒將濾紙搗碎,加熱溶解沉澱,加入20~25mL草酸丙酮溶液加熱至近沸,加入1滴麝香草酚藍指示劑,用(1+4)NH4OH調節溶液變橙色(pH1.5~2.5),加水稀釋至80mL,保溫1h以上,取下冷卻,用緻密濾紙過濾。將沉澱全部轉移到濾紙上,用草酸溶液洗滌7~8次,將沉澱連同濾紙置於瓷坩堝中低溫灰化,於高溫爐中650~700℃灼燒0.5h,取出冷卻,將灼燒物移入250mL燒杯中,加入15mLHCl及0.5~1mLH2O2,加蓋表面皿,加熱溶解。用下列方法之一分離釷。
苯甲酸沉澱分離法。於上述鹽酸溶液中,加2滴麝香草酚藍指示劑,用(1+1)NH4OH中和至橙紅色,加入0.1~0.3gNH2OH·HCl還原Ce4+,再加(1+1)NH4OH至橙紅色(pH2.0~2.2),加熱煮沸,加入100mL10g/L苯甲酸溶液,微沸片刻,趁熱過濾,以2g/L苯甲酸溶液洗滌8次,濾液收集於燒杯中,將沉澱連同濾紙置於瓷坩堝中低溫灰化後,於850℃灼燒0.5h,即得氧化釷。
六次甲基四胺分離法。於上述鹽酸溶液中,用水調整體積為50~60mL,加入0.1g~0.2g抗壞血酸還原四價鈰,加2滴甲基橙指示劑,用(1+1)NH4OH中和至剛變橙色[如有渾濁,滴加(1+1)HCl至溶液清亮]。加熱至近沸,在攪拌下加入六次甲基四胺溶液至甲基橙剛變黃色(pH4.4~5.0),補加抗壞血酸少許,冷至室溫過濾,以六次甲基四胺-氯化銨洗液(pH4.4~5.0)洗滌8~10次,濾液收集於燒杯中,沉澱連同濾紙置於瓷坩堝中低溫灰化,置於高溫爐中850℃灼燒0.5h,即得氧化釷。
將分離釷後的濾液,加幾滴酚酞指示劑用氫氧化銨中和至紅色並過量10mL,加熱至近沸,使沉澱凝聚,取下冷卻,過濾,以NH4Cl-NH4OH溶液(pH8.6~9.0)洗滌6~8次,將沉澱連同濾紙移入原燒杯中,加15mL草酸丙酮溶液和85mL水,充分攪拌。加2滴麝香草酚藍指示劑,用(1+1)NH4OH中和至橙紅色(pH1.5~2.5),加熱保溫1h以上,過濾,用草酸溶液洗滌8~10次,將沉澱連同濾紙置於已恆量的瓷坩堝中低溫灰化,置於高溫爐中於850℃灼燒0.5h,取出冷卻,迅速稱量,灼燒至恆量即得稀土氧化物總量。
試樣中含鈮、鉭或鋯、鈦較高時,可用氟化物沉澱稀土,分離除去:將沉澱連同濾紙置於塑料燒杯中,加5mLHCl,將濾紙搗碎,再加10mLHF、2gNH4F、90mL熱水,置於80~90℃水浴中保溫1h,取下冷卻,用塑料漏斗或塗蠟的玻璃漏斗以中速濾紙過濾,用HF-HCl洗液洗滌6~8次,濾液棄去。將沉澱連同濾紙置於原燒杯中,加20mLHNO3浸透濾紙,加入3~5mLHClO4,用玻璃棒將濾紙搗碎,加蓋表面皿,置於電熱板上加熱至冒白煙20min,取下,冷卻後,加入20mLHCl和50mL水,加熱溶解鹽類(如有白色不溶物,即是二氧化硅。如測定釷,應過濾除去)。然後按前述方法之一分離釷,並以草酸沉澱法測定稀土氧化物總量。
按下式計算稀土氧化物總量的含量:
岩石礦物分析第三分冊有色、稀有、分散、稀土、貴金屬礦石及鈾釷礦石分析
式中:w[RE2O3(T)]為稀土氧化物總量的質量分數,%;m1為試樣溶液中稀土氧化物的質量,g;m0為試樣空白溶液中稀土氧化物的質量,g;m為稱取試樣質量,g。
注意事項
1)草酸稀土的定量沉澱,必須嚴格控制酸度,並盡量避免引入鹼金屬離子;否則將增加草酸稀土的溶解度,使結果偏低。特別是釔組稀土的定量沉澱,損失更為顯著。
2)氫氧化銨必須不含碳酸根,否則鈣分離不完全。不含二氧化碳氫氧化銨的處理方法如下:用兩個塑料杯分別裝入濃氫氧化銨及水各半杯,同時放入密閉容器內,一天後水吸收氨,即成為無二氧化碳氫氧化銨。
61.3.1.2 PMBP-苯萃取分離-偶氮胂Ⅲ光度法
方法提要
在pH2.4~2.8緩沖溶液中,偶氮胂Ⅲ與稀土元素生成藍綠色配合物,可用作光度法測定。鐵、釷、鈾,鋯、鉿,鈣、鉛、銅、鉍、鎢和鉬等元素干擾測定,必須預先分離除去。
試樣經鹼熔,三乙醇胺提取,濾去硅、鋁、鐵、鎢和鉬等雜質。沉澱用鹽酸溶解,在pH5.5的乙酸-乙酸鈉緩沖溶液中,PMBP與稀土金屬離子生成的配合物為苯所萃取。同時被萃取的還有釷、鈾、鈧、鉍、鐵(Ⅲ)、鈮,鉭、鉛、鋁和少量鈣、鍶、鋇、錳,以及部分鈦、鋯的水解物(調節pH前加入磺基水楊酸可掩蔽鈦、鋯)。用甲酸-8-羥基喹啉溶液反萃取,除稀土元素和部分鉛轉入水相外,其他元素仍留在有機相中被分離。
儀器
分光光度計。
試劑
過氧化鈉。
三乙醇胺。
鹽酸。
氫氧化銨。
1-苯基-3-甲基-苯基醯吡唑酮(PMBP)-苯溶液(0.01mol/L)稱取2.78gPMBP溶於1000mL苯中。
乙酸-乙酸鈉緩沖溶液(pH5.5)稱取164g無水乙酸鈉(或272g結晶乙酸鈉),溶解後過濾,加入16mL冰乙酸,用水稀釋至1000mL。以精密pH試紙檢查,必要時用(5+95)HCl或氫氧化鈉溶液調節。
甲酸-8-羥羥基喹啉反萃取液(pH2.4~2.8)稱取0.15g8-羥基喹啉,溶於1000mL(1+99)甲酸中。用精密pH試紙檢查。
偶氮胂Ⅲ溶液(1g/L)過濾後使用。
抗壞血酸溶液(50g/L)。
磺基水楊酸溶液(400g/L)。
六次甲基四胺溶液(200g/L)。
稀土氧化物標准儲備溶液ρ[RE2O3(T)]=200.0μg/mL稱取於0.1g從本礦區提純的稀土氧化物或按礦區稀土元素比例配製的鈰、鑭、釔氧化物(850℃灼燒1h),加5mLHCl及數滴H2O2,加熱溶解,冷卻後,移入500mL容量瓶中,用水稀釋至刻度,混勻。
稀土氧化物標准溶液ρ[RE2O3(T)]=5.0μg/mL用稀土氧化物標准儲備溶液稀釋製得。
混合指示劑溶液取0.15g溴甲酚綠和0.05g甲基紅,溶於30mL乙醇中,再加70mL水,混勻。
強鹼性陰離子樹脂水洗至中性,用(1+9)HCl浸泡2h,再水洗至中性,用150g/LNH4Ac溶液浸泡過夜,水洗至中性備用。樹脂再生處理相同。
校準曲線
移取0mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL稀土氧化物標准溶液,分別置於一組分液漏斗中,用水補足體積至10mL,加入1mL抗壞血酸溶液、1mL磺基水楊酸溶液及2滴混合指示劑,混勻。用(1+4)NH4OH調節至溶液剛變綠色(有鐵存在時是橙紫色),再用(5+95)HCl調至紫色,此時應約pH5(必要時可用精密pH試紙檢查)。加入3mL乙酸-乙酸鈉緩沖溶液,15mLPMBP-苯溶液,萃取1min,放置分層後,棄去水相。再加入3mL緩沖溶液,稍搖動洗滌一次,水相棄去,用水洗分液漏斗頸。於有機相中,准確加入15mL甲酸-8-羥基喹啉反萃取液,萃取1min,分層後,水相放入乾燥的25mL比色管中。有機相可收集回收使用。於比色管中准確加入1mL偶氮胂Ⅲ溶液,混勻。用3cm比色皿,以試劑空白溶液作參比,於分光光度計波長660nm處測量其吸光度,繪制校準曲線。
分析步驟
稱取0.1~0.5g(精確至0.0001g)試樣,置於剛玉坩堝(或鐵坩堝)內,加3~4gNa2O2,拌勻,再覆蓋一薄層。在700℃熔融5~10min,冷卻,放入預先盛80mL(5+95)三乙醇胺溶液的燒杯中,用水洗出坩堝(如氫氧化物沉澱太少,加入約含10mgMg的MgCl2溶液作載體),加熱煮沸10min以逐去過氧化氫。用水稀釋至120mL,攪勻。冷後用中速定性濾紙過濾,用10g/LNaOH溶液洗滌燒杯及沉澱6~8次。以數毫升熱的(1+1)HCl溶解沉澱,用50mL容量瓶承接,用水洗滌並稀釋至刻度,混勻。
分取10.0mL試液,置於分液漏斗中,以下按校準曲線進行測定。
按下式計算稀土氧化物總量的含量:
岩石礦物分析第三分冊有色、稀有、分散、稀土、貴金屬礦石及鈾釷礦石分析
式中:w[RE2O(T)]為稀土氧化物總量的質量分數,%;m1為從校準曲線上查得分取試樣溶液中稀土氧化物的質量,μg;m0為從校準曲線上查得分取試樣空白溶液中稀土氧化物的質量,μg;V1為分取試樣溶液體積,mL;V為試樣溶液總體積,mL;m為稱取試樣的質量,g。
注意事項
1)稀土元素在礦物中一般以鈰、鑭、釔為主,在不同的礦物中,相互間的比例也各不相同。由於釔的相對原子質量最小,故其摩爾吸光系數最大。因此,配製混合稀土標准溶液時,必須與被測試液中稀土元素的組分,特別是鈰和釔的比例大致相似。目前,稀土氧化物標准大多是選擇所分析的礦區中具有代表性的礦石,從中提取純稀土氧化物而配製。
2)PMBP-苯萃取稀土適宜的酸度為pH5.5。稀土元素由於「鑭系收縮」,離子半徑從鑭到鑥逐漸變小,故鑭系元素的鹼性由鑭到鑥逐漸減弱。當pH<5,鈰組稀土萃取不完全,而釔組稀土可完全萃取;如pH>5,鈰組能萃取完全,而釔組有所偏低。增加PMBP濃度有利於提高稀土元素的萃取率。濃度太大,反萃取時大量PMBP被帶下來,給以後操作增加困難。
3)稀土氧化物能吸收空氣中的二氧化碳和水分,氧化釹和氧化鑭吸收作用最強。鈰及釔組氧化物吸收作用最弱,氧化釔能吸收氨,故必須於850℃灼燒1h逐去上述雜質,並在乾燥器中冷卻後稱取。
4)硫化礦需預先在高溫爐中灼燒將硫除去。如試樣中含鐵量不高,又能用酸分解時可用王水或高氯酸分解,含硅高的可滴加少量氫氟酸。
5)磷酸根的存在能抑制稀土-PMBP配合物的形成,使萃取不完全,0.5~1mg五氧化二磷即有干擾,可在萃取前用強鹼性陰離子樹脂將磷靜態吸附除去,處理後60mg以下磷酸根不幹擾(將稀土沉澱為草酸鹽或氟化物也可使磷酸根分離)。除磷酸根操作:於原燒杯中加入一小片剛果紅試紙,用(1+1)NH4OH調節至剛變為紅紫色,加2mL冰乙酸、2~3g強鹼性陰離子樹脂。混勻後,加入15mL六次甲基四胺溶液,過濾入50mL容量瓶中,用水洗凈並稀釋至刻度,混勻。
6)鉛與偶氮胂Ⅲ生成有色配合物,少量存在便干擾稀土測定,使結果偏高。可在萃取前加入2mL20g/L銅試劑溶液使之與鉛配位,以消除鉛的影響。在反萃取稀土後的有機相中,再用(1+1)鹽酸將釷反萃取,利用此性質還可以連續測定釷。
61.3.1.3 陽離子交換樹脂分離-重量法
方法提要
在鹽酸溶液中稀土元素在陽離子交換樹脂上的分配系數與鋯、鉿和鈧相近,小於釷,稍大於鋇,比其他元素均大很多,可以用不同濃度的HCl洗提分離,在交換和淋洗液中加入少量酒石酸可有效的除去鋯、鉿、鈮和鉭等。在2mol/LHCl中加入乙醇能有效地淋洗鐵、鋁、鈦、鈾及大部分鈣等,並可防止重稀土的損失。用3mol/LHCl-(1+4)乙醇洗提稀土元素,並用氫氧化銨沉澱稀土元素而與殘留的鈣和鋇分離,最後灼燒為氧化物稱量。
試劑
碳酸鈉。
過氧化鈉。
酒石酸。
氫氧化鈉。
鹽酸。
酒石酸溶液
鹽酸-酒石酸淋洗液(0.2mol/LHCl-20g/L酒石酸)稱取20g酒石酸溶於水中,加入16.7mLHCl,用水稀釋至1000mL。
鹽酸-酒石酸洗滌液[(5+95)HCl-20g/L酒石酸]。
鹽酸-乙醇淋洗液A[2mol/LHCl-(1+4)乙醇]取300mLHCl,加360mL無水乙醇,用水稀釋至1800mL(用時配製)。
鹽酸-乙醇淋洗液B[3mol/LHCl-(1+4)乙醇]取500mLHCl,加400mL無水乙醇,用水稀釋至2000mL(用時配製)。
離子交換色譜柱20cm×1.13cm,樹脂Zerolit225H型,60~100目。
樹脂的處理:先用水浸透,再用6mol/LHCl浸泡過夜,水洗至中性,裝入交換柱中。先用200mL鹽酸-乙醇淋洗液B淋洗,繼用2.3mol/LH2SO4淋洗,最後用150~200mL水分兩次淋洗至中性備用。
分析步驟
稱取0.2~0.5g(精確至0.0001g)試樣,置於剛玉坩堝中,加入1~2gNa2CO3和2~3gNa2O2,置於高溫爐中於650~700℃熔融5~10min。冷卻後,置於250mL燒杯中,用熱水提取。洗出坩堝,用水稀釋至約100mL,加熱煮沸數分鍾,冷卻。用緻密濾紙過濾,以20g/LNaOH溶液洗滌沉澱5~6次,用熱的(1+1)HCl溶解沉澱於原燒杯中,用熱水洗至無氯離子,在電熱板上蒸干除硅。然後加3mLHCl潤濕殘渣,加入2g酒石酸、30mL水,加熱溶解鹽類。用緻密濾紙過濾於150mL燒杯中,以熱的(5+95)HCl洗滌燒杯及濾紙至70mL體積,再用熱水洗至l00mL,混勻。將溶液全部移入離子交換柱的儲液瓶中,用30mLHCl-酒石酸洗滌液洗滌燒杯,以0.5~0.8mL/min的速度進行交換。待溶液流完後繼續用300mL鹽酸-酒石酸淋洗液以同樣流速淋洗磷酸根、鋯、鈮和鉭。溶液流完後用100mL水淋洗,再用鹽酸-乙醇淋洗液A淋洗鐵、鋁、鈦、錳、鈾、鈣和鎂等,用450mL鹽酸-乙醇淋洗液B淋洗稀土元素。將稀土元素洗出液加熱蒸發至約15mL,用水稀釋至100mL,煮沸。加濃氫氧化銨至出現稀土沉澱,再過量溶液體積的10%,冷卻。用中速濾紙過濾,以(5+95)NH4OH洗滌燒杯和沉澱6~7次。將沉澱連同濾紙一起移入已恆量的瓷坩堝中,低溫灰化,在高溫爐中850℃灼燒至恆量,即得稀土氧化物總量。
稀土氧化物總量含量的計算參見式(61.1)。
注意事項
1)如試樣中含有鍶、鋇較高,將用鹽酸溶解沉澱的溶液中,加氫氧化銨沉澱稀土元素,並過量10%氫氧化銨,以分離鍶、鋇。氫氧化物沉澱再用熱(1+1)HCl溶解,然後蒸干除硅。
2)若要測定釷,可在淋洗稀土後用2.8mol/LH2SO4溶液淋洗釷。
61.3.1.4 陽離子交換樹脂分離-偶氮胂Ⅲ光度法
方法提要
在1~2mol/LHCl中稀土元素在強酸性陽離子交換樹脂上的分配系數很大,但隨稀土元素的原子序數增加而減小,鈰組稀土元素的分配系數大於釔組稀土元素。在0.5~1.0mol/LHCl中稀土元素、鋯和釷被陽離子交換樹脂強烈吸附,鈦、U6+、Fe2+、錳、鎂、Fe3+、鈣及鋁等也部分或全部被吸附,可用1.25mol/LHCl將上述元素淋洗下來,而稀土元素、鋯和釷仍留在柱上。
在H2SO4溶液中,鋯的分配系數變得很小,而稀土元素的分配系數反而增大。因此試樣中含微量鋯時,可在(1+99)H2SO4或(2+98)H2SO4中進行交換,以除去鋯,而釷仍留在柱上。或在1.25mol/LHCl淋洗後,繼續用0.36mol/LH2SO4溶液洗除鋯,最後用3mol/LHCl淋洗稀土元素,用偶氮胂Ⅲ光度法進行測定。
儀器
分光光度計。
試劑
過氧化鈉。
鹽酸。
硫酸。
抗壞血酸溶液(10g/L)。
氫氧化鈉溶液(0.1mol/L)。
氯化鈉溶液(20g/L)。
苯二甲酸氫鉀溶液(0.2mol/L)。
偶氮胂III溶液(1g/L)。
酚酞指示劑(10g/L)。
陽離子樹脂交換色譜柱Zerolit225樹脂,H+型,50~100目;柱1.5cm×10cm;流速為1~1.5mL/min。樹脂再生:用50mL水洗去柱中殘留鹽酸,用50mL200g/LNH4Cl溶液使樹脂轉變為銨型,50mL水洗去殘留的NH4Cl,再以240mL40g/L草酸溶液淋洗釷,50mL水洗去殘留在柱中的草酸銨溶液,以100mL4mo1/LHCl使之變為氫型,最後加入50mL(1+99)H2SO4流過交換柱,作下次使用。
稀土氧化物標准溶液ρ[RE2O3(T)]=10.0μg/mL配製方法參見61.3.1.2PMBP-苯萃取分離-偶氮胂Ⅲ光度法。
校準曲線
移取0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL稀土氧化物標准溶液,分別置於一組25mL容量瓶中,加水至10mL左右,加入0.5mL新配製的抗壞血酸溶液及1滴酚酞指示劑,用氫氧化鈉溶液中和至紅色出現,再用0.1mol/LHCl溶液中和至紅色褪去。加入2.8mL0.2mol/LHCl溶液及3.0mL0.2mol/L苯二甲酸氫鉀溶液,混勻,加入1mL1g/L偶氮胂III溶液,以水稀釋至刻度,混勻。在分光光度計上660nm波長處,用1cm比色皿,以水作參比測量吸光度,繪制校準曲線。
分析步驟
稱取0.1~0.5g(精確至0.0001g)試樣,置於剛玉坩堝中,加入4~6gNa2O2,攪勻,再覆蓋一層,置於已升溫至650~700℃的高溫爐中,保持此溫度至剛全熔。取出冷卻,放入已盛有60mL水的250mL燒杯中,蓋上表面皿,待劇烈作用停止後,用水洗出坩堝。置於電爐上加熱煮沸15~20min,使溶液體積濃縮至40mL以下。取下,加水稀釋至200mL左右,放置澄清後,用中速定性濾紙過濾,以20g/LNaCl溶液洗滌燒杯及濾紙共8~10次,濾液棄去。用50mL熱的(8+92)H2SO4溶液將沉澱溶解於原燒杯中,用水洗滌濾紙6~8次。將燒杯置於電熱板上加熱,並蒸發至冒三氧化硫白煙片刻。取下冷卻,加水至100mL(若含有鋯則加入1gNa2HPO4),加熱煮沸。取下冷卻後,用慢速定性濾紙過濾(除去二氧化硅及鋯),以(1+99)H2SO4溶液洗滌燒杯及濾紙共8~10次,濾液及洗液用400mL燒杯收集,並用水稀釋至250~300mL。將上述溶液傾入已再生好的陽離子交換色譜柱中,以1~1.5mL/min的速度流過,依次用150mL(1+99)H2SO4、500mL1.25mol/LHCl洗提除去鐵、鎂、錳、鈾、鐵、鋁等元素,流出液均棄去。然後用300mL3mol/LHCl淋洗稀土元素,以400mL燒杯承接,置於電熱板上加熱濃縮至約5mL,用水移入50mL容量瓶中並稀釋至刻度,混勻。
分取部分試液(約含40μg的稀土元素)於25mL容量瓶中,以下按校準曲線進行測定。
稀土氧化物總量含量的計算參見式(61.2)。