導航:首頁 > 凈水問答 > 納濾氯分離

納濾氯分離

發布時間:2024-04-29 10:42:09

納濾膜為什麼可以在較低的操作壓力條件下實現較高的脫鹽率

應用納濾膜對溶液中的溶質進行分離時,它的截留率會受到一些因素回的影響,從而呈現出不同的變化答規律,對這個規律進行詳細的了解有利於更好的應用納濾膜的分離性能。
這里我們將主要針對納濾膜在對溶液進行分離的過程中,其根據處理溶質的不同所呈現的一些變化規律做以下詳細介紹:
一、若保持系統的壓力恆定,那麼納濾膜的截留率將會隨著溶液濃度的增加而降低。

二、這種膜的截留率與溶質的摩爾質量變化成正比,當摩爾質量減少時,那麼截留率也將隨之降低。
三、如果溶液的濃度保持恆定時,那麼膜的截留率將同其兩側壓差變化形成正比,壓差降低將導致截留率也隨之下降。
四、對於溶液中一些常見的陰離子,膜的截留率將按照硝酸根離子、氯離子、氫氧離子、硫酸離子的順序依次升高。
五、對於溶液中一些常見的陽離子,膜的截留率將按照氫離子、鈉離子、鉀離子、鈣離子、鎂離子、銅離子的順序依次升高。

Ⅱ GE納濾膜對礦物質飲用水處理有什麼作用能達到什麼樣的效果

ge納濾膜
而各種膜分離過程,首先是在水處理方面得到應用,而後推廣到冶金、石油、化工、儀器、醫葯、仿生等諸多領域。
微濾、超濾、納濾、反滲透、滲析、電滲析等技術己經廣泛在給水處理、純水制備、海水淡化、苦鹹水淡化等水處理領域中得到推廣和應,並在水處理的各個方面,ge濾芯安裝給傳統的水處理工藝以巨大的沖擊和挑戰。膜分離技術有著傳統的給水處理工藝不可比擬的優點:
首先,膜分離技術可適用於從無機物到有機物,從病毒、細菌到微粒甚至特殊溶液體系的廣泛分離,可充分確保水質,且處理效果不受原水水質、運行條件等因素的影響。
第二,膜分離過程為物理過程,不需加入化學葯劑,提高了人們對水處理過程的信賴程度,易於為群眾接受,屬為人們稱道的「綠色」技術。
第三,膜分離技術分離裝置簡單,佔地面積小,系統集成容易,便於運輸、拆卸、安裝,運行環境清潔、整齊,可稱之為真正意義上的「造水工廠」。
第四,膜分離過程系統簡單、操作容易,且易控制,便於維修,有利於生產自動化的推廣與普及。作為一種新興的水處理技術,膜分離以其無可非議的先進性得到了世界各國學者們的廣泛關注。
2納濾技術概述
膜分離技術被稱為「二十一世紀的水處理技術」,自70年代應用於水處理領域後,得到了廣泛的研究和空前的發展,受到世界各國水處理工作者的普遍關注,開展了不同水平。不同層次的理論研究和技術開發、應用。在給水處理領域應用最為廣泛的是一系列的低壓膜,如納濾膜、反滲透膜等。其中,納濾膜法水處理技術以其特殊的優勢,獲得了世界各國的水處理工作者的普遍關注,在水處理技術的研究和開發領域取得了可喜的成績。
納濾技術是從反滲透技術中分離出來的一種膜分離技術,是超低壓反滲透技術的延續和發展分支。一般認為,納濾膜存在著納米級的細孔,且截留率大於95%的最小分子約為1mm,所以近幾年來這種膜分離技術被命名為:Nanofiltration,簡稱:NF,中文譯為:納濾。在過去的很長一段時間里,納濾膜被稱為超低壓反滲透膜(LPRO:LowPressureReverseOsmosis),或稱選擇性反滲透膜或鬆散反滲透膜(LooseRO:LooseReverseOsmosis)。日本學者大谷敏郎曾對納濾膜的分離性能進行了具體的定義:操作壓力≤1.50mPa,截留分子量200~1000,NaCl的截留率≤90%的膜可以認為是納濾膜[1]。納濾技術已經從反滲透技術中分離出來,成為介於超濾和反滲透技術之間的獨立的分離技術,己經廣泛應用於海水淡化、超純水製造、食品工業、環境保護等諸多領域,成為膜分離技術中的一個重要的分支。
3納濾膜
納濾過程的關鍵是納濾膜。對膜材料的要求是:具有良好的成膜性、熱穩定性、化學穩定性、機械強度高、耐酸鹼及微生物侵蝕、耐氯和其它氧化性物質、有高水通量及高鹽截留率、抗膠體及懸浮物污染,由兩部分結構組成:一部分為起支撐作用的多孔膜,其機理為篩分作用;另一部分為起分離作用的一層較薄的緻密膜,其分離機理可用溶解擴散理論進行解釋。對於復合膜,可以對起分離作用的表皮層和支撐層分別進行材料和結構的優化,可獲得性能優良的復合膜。膜組件的形式有中空纖維、卷式、板框式和管式等。其中,中空纖維和卷式膜組件的填充密度高,造價低,組件內流體力學條件好;但是這兩種膜組件的製造技術要求高,密封困難,使用中抗污染能力差,對料液預處理要求高。而板框式和管式膜組件雖然清洗方便、耐污染,但膜的填充密度低、造價高。因此,在納濾系統中多使用中空纖維式或卷式膜組件。
在我國,對納濾過程的理論研究比較早,但對納濾膜的開發尚處於初步階段。在美國、日本等國家,納濾膜的開發已經取得了很大的進展,達到了商品化的程度,如美國Filmtec公司的NF系列納濾膜、日本日東電工的NTR-7400系列納濾膜及東麗公司的UTC系列納濾膜等都是在水處理領域中應用比較廣泛的商品化復合納濾膜。
對於一般的反滲透膜,脫鹽率是膜分離性能的重要指標,但對於納濾膜,僅用脫鹽率還不能說明其分離性能。有時,納濾膜對分子量較大的物質的截留率反而低於分子量較小的物質。納濾膜的過濾機理十分復雜。由於納德膜技術為新興技術,因此對納濾的機理研究還處於探索階段,有關文獻還很少。但鑒於納濾是反滲透的一個分支,因此很多現象可以用反滲透的機理模型進行解釋。關於反滲透的膜透過理論[2]有朗斯代爾、默頓等的溶解擴散理論;里德、布雷頓等的氫鍵理論;舍伍德的擴散細孔流動理論;洛布和索里拉金提出的選擇吸附細孔流動理論和格盧考夫的細孔理論等。
納濾膜的過濾性能還與膜的荷電性、膜製造的工藝過程等有關。不同的納濾膜對溶質有不同的選擇透過性,如一般的納濾膜對二價離子的截留率要比一價離子高,在多組分混合體系中,對一價離子的截留率還可能有所降低。納濾膜的實際分離性能還與納濾過程的操作壓力、溶液濃度、溫度等條件有關。如透過通量隨操作壓力的升高而增大,截留率隨溶液濃度的增大而降低等。同時可以查看中國污水處理工程網更多技術文檔。
4納濾技術的工程應用
納濾膜的孔徑范圍介於反滲透膜和超濾膜之間,其對二價和多價離了及分子量在200~1000之間的有機物有較高的脫除性能,而對單價離子和小分子的脫除率則較低。而且,與反滲透過程相比,納濾過程的操作壓力更低(一般在1.0Mpa左右);同時由於納濾膜對單價離子和小分子的脫除率低,過程滲透壓較小,所以,在相同條件下,納濾與反滲透相比可節能15%左右[3]。因而在水處理中,納濾被廣泛應用於飲用水的濃度凈化、水軟化、有機物和生物活性物質的除鹽和濃縮、水中三鹵代物前軀物的去除、不同分子量有機物的分級和濃縮、廢水脫色等領域。
Sibille等研究了法國Auverw-sur-Oise市的地下水,對納濾和生物處理飲用水(臭氧—生物活性炭過濾)進行了對比。結果表明,納濾可以顯著提高飲用水的水質,減少細菌數量和有機物的濃度,從而使後續消毒更有效,也減少了三氯甲烷的形成。但是,研究又指出,少量極易被細菌等吸收的可生物降解的有機物質(BOM:BiologicalOrganicMatter)、可同化有機碳(AOC:AssimilableOrganicCarbon)也能透過納濾膜。
I.C.Escobar等的研究[4]中,將石灰軟化設備與納濾進行比較。結果表明,納濾系統可有效去除原水中除了AOC以外的幾乎全部溶解性有機碳(DOC:DissolvedOrganicCarbon)含量。
雖然,納濾技術的工程應用在美國、日本等國家的給水行業中已經得到大規模的推廣,但在我國,將納濾技術廣泛地應用於工程實踐的條件還不成熟,尚處於嘗試階段、本要問題是國產納濾膜的性能指標不夠過關。是納濾技術在高硬度海島苦鹹水凈化的實際應用。該工程由國家海洋局杭州水處理中心設計,於1997年4月正式投入生產淡水,系統連續正常運行27個月,淡化水符合國家生活飲用水衛生標准[5]。
有關學者曾採用納濾膜對某市自來水(以污染嚴重的淮河水為原水)進行深度處理試驗,研究了納濾循環制水試驗工藝的效果。結果表明,循環試驗工藝與單級納濾工藝相比,在同樣較低的壓力下,出水率較高,並且能耗降低,減少了濃水排放。即使在回收率較高(80%)的情況下,膜出水中的總有機碳(TOC)仍比自來水低50%;對致會變物的去除十分顯著,使Ames試驗陽性的水轉為陰性[6]。
5納濾膜應用中的問題
納濾膜有較高的膜通量,可以截留有機及無機污染物,而對人體必需的一些離子又有較大的透過率,因此,把納濾膜應用於飲用水的深度凈化較其它的膜分離技術有較大的優勢。把鋼濾膜應用於給水處理領域的主要問題是
a)膜表面容易形成附著層,使膜的通量顯著下降;
b)操作結束後,膜的清洗較困難;
c)膜的耐用性差。
世界各國的水處理工作者正在進行廣泛的研究,尋求解決這些問題的途徑。納濾技術在給水處理領域的推廣應用還依賴於這些問題的進一步解決。

Ⅲ 透析,微濾,超濾,納濾,反滲透,電滲析,滲透氣化等膜分離技術各自的特點

1.透析(dialysis)是通過小分來子經過半源透膜擴散到水(或緩沖液)的原理;
2.微濾適用於細胞、細菌和微粒子的分離,在生物分離中,廣泛用於菌體的分離和濃縮,目標物質的大小范圍為0.01-10 μm,一般用於預處理;
3.超濾技術的優點是沒有相的轉變,無需添加任何強烈的化學物質,可以在低溫下操作,過濾速度較快,便於無菌處理等,一般用於預處理;
4.納濾 特點是能截留小分子的有機物並可同時透析出鹽,集濃縮與透析於一體;
操作壓力低,因為無機鹽能通過納米濾膜而透析,使得納米過濾的滲透壓遠比反滲透為低,所以納米過濾所需的外加壓力比反滲透低得多;
5.反滲透法具有設備構型緊湊,佔地面積小、單位體積產水量及能量消耗少等優點;
6.電滲析的特點時可以同時對電解質水溶液起淡化、濃縮、分離、提純作用、可以用於蔗糖等非電解質的提純,以除去其中的電解質、在原理上,電滲析器是一個帶有隔膜的電解池,可以利用電極上的氧化還原效率高;
7.滲透氣化對共沸物系和近沸物系等難分物系的分離, 顯示特有的優越性。

Ⅳ 在納濾(膜分離)過程中,Rejection是什麼意思說的詳細一些謝!

分類: 教育/科學 >> 科學技術 >> 工程技術科學
解析:

Rejection是指截留率

面向飲用水制備過程的納濾膜分離技術

Application of nanofiltration membranes to drinking water proction

<<膜科學與技術 >>2003年04期

王大新 , 王曉琳

納濾膜分離技術在飲用水制備方面具有獨特的作用,是制備優質飲用水的有效方法.依據電荷效應,納濾膜可以降低水質硬度,去除飲用水中對人體有害的硝酸鹽、砷、氟化物和重金屬等無機污染物;依據篩分效應,納濾膜可以有效地去除農葯殘留物、三氯甲烷及其中間體、激素以及天然有機物等有機污染物.文章詳細綜述了國內外納濾膜技術在飲用水制備中應用研究的最新進展,納濾膜對地表水或地下水中存在的各種無機、有機污染物的分離特性及飲用水制備過程中的納濾膜污染與防治對策.

膜分離技術處理電鍍廢水的實驗研究

慧聰網 2005年9月20日10時17分 信息來源:夏俊方 網友評論 0 條 進入論壇

由圖9可知,當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)的增加而上升;當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)增加而呈下降趨勢。這一現象的原因和納濾過程相似。當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)的正向變化趨勢可和納濾過程作同樣的解釋。當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)的反向變化趨勢。這可能是由於壓力已經達到反滲透膜最佳運行壓力范圍的上限。此時,膜攔截溶質的能力已大為減弱,溶質開始大量透過膜片,導致其截留率呈下降趨勢。

由圖10可知,COD截留率(R2)隨著壓力(ΔP)的增加而上升。和Cu離子的上升變化趨勢的原因一樣,非平衡熱力學模型的Spiegler-Kedem方程能很好的解釋這一現象。

有一個問宴鄭爛題:Cu離子的截留率(R1)和COD的截留率(R2)變化曲線不同,COD曲線沒有下降趨勢。這可能是由於反滲透膜對COD分子和Cu離子的截留能力有所差異。當運行壓力(ΔP)大於3.0 MPa時,膜對Cu離子的截留能力已經下降了很多,而對COD分子的截留能力下降不大。但晌漏可以發現,COD曲線隨著壓力的增加,已逐漸趨於平緩,這說明膜對COD的截留能力也在下降。

壓力實驗表明:SE抗污染反滲透膜的最佳運行壓力為3.0 MPa。

3.2.2濃縮倍數(n)對反滲透膜分離性能的影響

反滲透實驗採用3.0 MPa的壓力運行。反滲透濃縮實驗料液為納濾過程濃縮10倍的濃縮液,體積50L。

反滲透濃縮試驗採用濃水迴流方式,即濃水迴流入料液桶。濃縮倍數是按照料液桶內剩餘料液的體積與原始料液的體積比來確定。例如,料液桶內還剩下1/10料液時,即為濃縮10倍,取樣測試。

濃縮倍數對反滲透膜分離性能的影響曲線如圖11、12、13所示。

由圖11可知,膜通量(Jw)隨著料液濃度(C)增加而降低。這一現象和納濾過程一樣,也可以根據優先吸附——毛細孔流模型來解釋。

由圖12可知,在濃縮兩倍之前,Cu離子截留率(R1)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象可根據細孔理論來解釋。細孔理論的依據有兩點:其一是膜截留溶質分子主要考慮篩分作用的機理;其二是視溶質分子叢敗為剛性球。反滲透過程截留溶質(中性分子和電解質)主要是依靠篩分機理,因此可以用細孔理論來解釋。細孔理論表明:膜對溶質溶液的截留率在一定濃度范圍內隨溶液濃度的變化不大,可視為不變。在本實驗中,濃縮兩倍的濃度可能還未超出細孔理論所限定的范圍,溶質濃度雖然增加,但還不能大量通過膜片,因此溶質的透過量變化不是很大。而同時,膜通量(Jw)在下降,但下降趨勢不是很大。綜合溶質透過量和膜通量兩方面的因素,Cu離子的截留率呈略微上升的趨勢。濃縮2倍以後,該濃度值可能已經超過細孔理論所限定的范圍,溶質濃度的進一步增加導致其透過膜片的量開始逐步增加,因而Cu的截留率(R1)會呈下降趨勢。

由圖13可知,在濃縮6倍之前,COD離子截留率(R2)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象的原因和Cu離子截留率變化的原因一樣。反滲透膜截留COD分子和Cu離子所依據的都是篩分原理,導致COD截留率在濃縮6倍時出現下降趨勢,可能是6倍濃度是超過細孔理論所限定范圍的臨界點。

表2 反滲透濃縮分離實驗數據表

項目濃度濃縮倍數 滲透液(mg/L) 濃縮液(mg/L) 截留率 膜通量(L/min)

Cu離子 COD Cu離子 COD Cu離子 COD

初 始 4.07 343 1478 2430 99.72% 85.88% 0.393

2 倍 6.06 552 2950 4375 99.79% 87.38% 0.346

4 倍 17.17 923 5889 8010 99.71% 88.48% 0.224

6 倍 47.78 1200 9183 11920 99.48% 90.16% 0.133

8 倍 121.49 4160 12216 15000 99.01% 72.27% 0.036

10 倍 220.45 5510 14325 17020 98.46% 67.63% 0.021

6.反滲透濃縮的實驗結果

反滲透濃縮實驗的目的是希望能夠盡可能的濃縮料液,本次實驗是在納濾濃縮的基礎上將料液再濃縮10倍,實驗數據如表2所示。

由表2可以知道,在初始狀態時,料液Cu離子濃度為1478mg/L,滲透液濃度為4.07mg/L;料液濃縮10倍後,其濃度達到14625mg/L,透過液濃度為220.45mg/L。

在初始狀態時,料液COD值為2430mg/L,滲透液濃度為343mg/L;濃縮10倍後,濃縮液COD為17020mg/L,滲透液濃度為5510mg/L。

4. 結論

通過實驗室規模的實驗,研究了不同壓力(ΔP)和濃縮倍數(n)條件下,納濾膜和反滲透膜的分離性能,得到如下結論:

1.在ΔP=1.5 MPa條件下進行濃縮,納濾膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。納濾膜對Cu離子的截留率在96%以上,對COD的截留率在57%以上。隨著濃度的增加,納濾膜的截留率會降低。

2.在ΔP=3.0 MPa條件下進行濃縮,反滲透膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。反滲透膜對Cu離子的截留率在98%以上,對COD的截留率在67%以上。隨著濃度的增加,反滲透膜的截留率會降低。

3.本實驗在濃縮過程中,沒有調整料液pH值。原因是pH值對膜分離性能確有影響,但在實際工程中調整pH值需要增加設備投資和運行費用。綜合權衡效果和投資這兩方面的影響,實際工程中一般不會調節對廢水pH值後再進行膜分離處理。

4.和反滲透階段相比,納濾階段的透過液濃度不是太高。因此,納濾階段的濃縮倍數應該還可以提高。

Research on The Treatment of Electroplating Rinsing Wastewater

with Separating Membrane

Xia junfang1,Gao qilin2

(1. Xia junfang, Shanghai Wantyeah Environment engineering CO.,Ltd )

(2.Cao haiyun )

Abstract In this article, the NF+RO system is used to condense the copper electroplating rinsing wastewater. The study show: In the NF phase, at the condition of that pressure(ΔP)=1.5 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 96% and COD is above 57%. In the RO phase, at the condition of that pressure(ΔP)=3.0 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 98% and COD is above 67%. When the the concentration of the wastewater increased, the rejection of NF and RO decreased.

Key words: Membrane separating, Nanofiltration, Reverse O *** osis, Condense,

Electroplating Wastewater

參考文獻

[1] 許振良. 膜法水處理技術. 北京:化學工業出版社,2001 :1~2

[2] Wang X L et al. Electrolyte transport through nanofiltration membranes by the space-charge model and the parison with Teorell-Meyer-Siever model. Journal of Membrane Science. 1995,103:117~133

[3] Nakao. S.,Kimura S. Models Transport Phenomena and Their Applications for Ultrafiltration Data. Journal of Chemical Engineering of Japan. 1982(15):200~204。

Ⅳ 納濾 可以分離磷酸鹽嗎

晚上好,可以。只要不是假冒偽劣的山寨小作坊拿破爛RO膜做的,正規廠家的專納濾都可以過濾磷酸鹽水溶液中屬的無機鹽分子,截留量100%的是磷酸鈣、磷酸鎂這樣的硬水,六偏磷酸鈉、三聚磷酸鈉這樣的偶爾有漏網的不過也都在95%以上(納濾直接過氯化鈉水溶液都能達到90%磷酸鹽分子直徑肯定比它要大),請酌情參考。要求絕對精度的可以重復2-3次過濾。

Ⅵ 污水處理的化學方法及原理

不溶態污染物的分離技術:
1、重力沉降:沉砂池(平流、豎流、旋流、曝氣)、沉澱池(平流、豎流、輻流、斜流);
2、混凝澄清;
3、浮力浮上法:隔油、氣浮;
4、其他:阻力截留、離心力分離法、磁力分離法
污染物的生物化學轉化技術:
1、活性污泥法:SBR、AO、AAO、氧化溝等
2、生物膜法:生物濾池、生物轉盤、生物接觸氧化池等
3、厭氧生物處理法:厭氧消化、水解酸化池、UASB等
4、自然條件下的生物處理法:穩定塘、生態系統塘、土地處理法
污染物的化學轉化技術:
1、中和法:酸鹼中和
2、化學沉澱法:氫氧化物沉澱、鐵氧體沉澱、其他化學沉澱
3、氧化還原法:葯劑氧化法、葯劑還原法、電化學法
4、化學物理消毒法:臭氧、紫外線、二氧化氯、氯氣、次氯酸鈉
溶解態污染物的物理化學分離技術:
1、吸附法
2、離子交換
3、膜分離法:擴散滲析、電滲析、反滲透、超濾、納濾、微濾
4、其他分離方法:吹脫和氣提、萃取、蒸發、結晶、冷凍
根據常見污水處理方法分類
物理法:物理或機械的分離過程.過濾,沉澱,離心分離,上浮等
化學法:加入化學物質與污水中有害物質發生化學反應的轉化過程.中和,氧化,還原,分解,混凝,化學沉澱等
物理化學法:物理化學的分離過程.氣提,吹脫,吸附,萃取,離子交換,電解電滲析,反滲透等
生物法:微生物在污水中對有機物進行氧化,分解的新陳代謝過程.活性污泥,生物濾池,生物轉盤,氧化塘,厭氣消化等
根據常用處理廢水的化學方法分類
混凝
向膠狀渾濁液中投加電解質,凝聚水中膠狀物質,使之和水分開
混凝劑有硫酸鋁,明礬,聚合氯化鋁,硫酸亞鐵,三氯化鐵等
含油廢水,染色廢水,煤氣站廢水,洗毛廢水等
中和
酸鹼中和,pH達中性
石灰,石灰石,白雲石等中和酸性廢水,CO2中和鹼性廢水
硫酸廠廢水用石灰中和,印染廢水等
氧化還原
投加氧化(或還原)劑,將廢水中物質氧化(或還原)為無害物質
氧化劑有空氣(O2),漂白粉,氯氣,臭氧等
含酚,氰化物,硫鉻,汞廢水,印染,醫院廢水等
電解
在廢水中插入電極板,通電後,廢水中帶電離子變為中性原子
電源,電極板等
含鉻含氰(電鍍)廢水,毛紡廢水
萃取
將不溶於水的溶劑投入廢水中,使廢水中的溶質溶於此溶劑中,然後利用溶劑與水的相對密度差,將溶劑分離出來
萃取劑:醋酸丁酯,苯,N—503等設備有脈沖篩板塔,離心萃取機等
含酚廢水等
吸附(包含離子交換)
將廢水通過固體吸附劑,使廢水中溶解的有機或無機物吸附在吸附劑上,通過的廢水得到處理
吸附劑有活性炭,煤渣,土壤等
吸附塔,再生裝置
染色,顏料廢水,還可吸附酚,汞,鉻,氰以及除色,臭,味等用於深度處理.
編輯本段污水處理工藝流程
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理.
一級處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求.經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准.一級處理屬於二級處理的預處理.
二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准.
三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等.主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲分析法等.
整 個過程為通過粗格柵的原污水經過污水提升泵提升後,經過格柵或者砂濾器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生

Ⅶ 液液分離,液固分離採用的設備原理和方法

液液分離,應該是兩種互不相溶的(如氯仿和水溶液)就用分液漏斗,靜置分層後分專離即可。原理是兩種溶屬液不相溶和密度不同,就會出現分層現象。
液固分離,簡單的就是用適當的濾器過濾,分別收集處理。另外就是使用離心機,原理分子或顆粒的重量不同。

Ⅷ 常見的污水處理工藝

污水處理是採用不同的方式,將污水中所含有的污染物分離出來或者將其轉化為無害物,從而使污水得到凈化,一般會採用物理法、化學法或者生物法對污水進行處理。

1、物理法:利用物理作用處理、分離和回收廢水中的污染物。

例如沉澱法(重力分離法)除去水中相對密度大於1的懸浮物。

過濾法(濾網沙層活性碳)可除去水中的懸浮物。

蒸發法用於濃縮廢水中不揮發性和可溶性物質。

另外還有離心分離法、汽浮(浮選)法、高梯度磁分離法等。

2、化學法:利用化學反應或物理化學作用處理回收可溶性廢物或膠狀物質。

例如中和法用於中和酸性或鹼性廢水。萃取法利用可溶性廢物在兩相作用中溶解度不同的「分配」,回收酚類和重金屬等。

氧化還原法用來除去廢水中還原性或氧化性污染物,殺滅天然水體中的病原菌。此外還有混凝法和化學沉澱法等。

3、物理化學法:吸附法、離子交換法、萃取法、膜析法、蒸發法。

4、生物法:利用微生物的生化作用處理廢水中的有機污染物。

例如,生物過濾法和活性污泥法來處理生活污水或有機生產廢水,使有機物轉化降解成無機鹽而得到凈化。此外,還有生物膜法、生物塘法。

5、污泥土地處理法:用於有機質處理。污水灌溉,慢速下滲,快速下滲。

不同的污水處理工藝所選用的原則不同,一般會根據污水處理單位水量,污染物、處理單位電耗,成本、佔地面積、管理維護難易程度。

Ⅸ 含鹽量比較高的廢水怎麼處理高鹽廢水如何處理氯化鈉和硫酸鈉能分離嗎如何取得純度比較高的鹽

高鹽廢水處理,想得到結晶鹽,要經過三個階段:1、用納濾膜將一價鹽和二價鹽進行分離;2、採用DTRO膜進行高鹽水濃縮;3、高濃渡濃鹽水進蒸發結晶器進行濃縮結晶,得到純度比較高的氯化鈉和硫酸鈉。
第一階段,如果廢水總含鹽量小於1.5萬,COD<15,可考慮使用卷試鈉濾膜。如果高於1.5萬,可以考慮使用金正DTNF來將氯化鈉和硫酸鈉分離。
第二階段,是鹽水濃縮的關鍵階段,本階段對廢水的濃縮效率,直接關繫到進蒸發結晶的水量,從而影響運行成本。金正DTRO膜對氯化鈉溶液最高可濃縮到145g/L的含鹽量,對硫酸鈉最高可濃縮到201g/L。性能已經過很多案例驗證,運行效果十分穩定。
第三階段,需要根據兩種鹽的物理化學性質,進行蒸發結晶或是冷凍結晶處理。

閱讀全文

與納濾氯分離相關的資料

熱點內容
深圳水處理葯水價格 瀏覽:859
廢水鹽過濾 瀏覽:800
吉利繽瑞空調外機濾芯如何更換 瀏覽:969
純水電勢一般多少 瀏覽:699
blueair空氣凈化器怎麼安裝 瀏覽:636
污水井剛性防水怎麼做 瀏覽:508
化工廢水發酵處理 瀏覽:973
水葫蘆的危害及在污水處理中的應用 瀏覽:19
airflow空氣濾芯什麼意思 瀏覽:678
用紅字將分錄原賬沖回 瀏覽:971
純水岸天嶼怎麼樣 瀏覽:778
ldfn自動離子交換器不吸鹽 瀏覽:900
陝西哪有樹脂吸金 瀏覽:711
污水專項整治工作匯報 瀏覽:124
污水雨水提升泵 瀏覽:265
為什麼要定價污水處理 瀏覽:998
污水處理意味什麼 瀏覽:45
嘉淼凈水器是哪裡生產的 瀏覽:467
飲水機怎麼放大 瀏覽:977
怎麼關閉mac地址過濾功能 瀏覽:220