離子交換樹脂的結構:
離子交換樹脂主要由高分子骨架和活性基團兩部分組成,高分子骨架是惰性的網狀結構骨架,是不溶於酸或鹼的高分子物質,常用的離子交換樹脂是由苯乙烯和二乙烯苯聚合得到樹脂的骨架。
而活性基團不能自由移動的官能團離子和可以自由移動的可交換離子兩部分組成,可交換離子能夠決定樹脂所吸附的離子,比如可交換離子為H型陽離子交換樹脂,那麼這個樹脂能夠吸附的離子,就是H型陽離子,而官能團離子能夠決定樹脂的「酸"、「鹼"性和交換能力的強弱,比如官能團離子是強酸性離子,那麼樹脂就是強酸性離子交換樹脂。
離子交換樹脂的內部結構:
1.凝膠型樹脂是由純單體混合物經縮合或聚合而成的,結構為微孔狀,合成的工藝比較簡單,孔徑大概在1-2nm左右,凝膠型樹脂的操作容量高,產水量高,物理強度好,且再生效率高,被廣泛應用在食品飲料加工,超純水制備,飲用水過濾,硬水軟化,製糖業,制葯等領域。
2.大孔型樹脂的孔徑一般在10nm左右,在樹脂中孔徑是比較大的,所以被稱為大孔型樹脂,且孔徑不會隨著周圍的環境而變化,能夠彌補凝膠型樹脂不能在非水系統中使用的缺點,吸附能力非常強大,不易碎裂,耐氧化好,操作容量高,能夠應用在醫葯領域、除重金屬污染、葯品純化、水處理中除去碳酸硬度、冷凝水精處理等領域。
詳情點擊:網頁鏈接
Ⅱ 離子交換樹脂按作用和用途可分為哪幾種
1、強酸性陽離子交換樹脂
強酸性陽離子交換樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性,樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子,這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。
強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用,如強酸性陽離子交換樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
2、弱酸性陽離子交換樹脂
弱酸性陽離子交換樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。
弱酸性陽離子交換樹脂離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5-14)起作用,這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
3、強鹼性陰離子交換樹脂
強鹼性陰離子交換樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性,這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
強鹼性陰離子交換樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
4、弱鹼性陰離子交換樹脂
弱鹼性陰離子交換樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性,這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
弱鹼性陰離子交換樹脂在多數情況下是將溶液中的整個其他酸分子吸附,只能在中性或酸性條件(如pH1-9)下工作。它可用Na2CO3、NH4OH進行再生。
Ⅲ 陰離子交換樹脂的合成反應
離子交換樹脂是分子中含有活性基團而能與其他物質進行離子交換的樹脂 通常可分為陽離子交換樹脂和陰離子交換樹脂兩類 前者具有酸性功能團(如磺酸基)而能與溶液中陽離子進行交換 後者具有鹼性功能團(如氨基)而能與溶液中陰離子進行交換
製造過程一般可分兩階段(以苯乙烯型離子交換樹脂的合成為例)(1)合成交聯高聚物母體 將苯乙烯和二乙烯苯經懸浮共聚而製得交聯結構的顆粒狀的苯乙烯 二乙烯苯共聚物 樹脂顆粒直徑為0.2~2.0毫米 單體中二乙烯苯的重量百分數習慣上稱做 交聯度 一般在4~12%
(2)引入具有離子交換能力的功能團 顆粒狀樹脂用濃硫酸磺化 在高分子鏈的苯環上引入磺酸基 便成強酸性陽離子交換樹脂 當苯環上引入季節銨鹽基時 縮便成為強鹼性陰離子交換樹脂 引入螯合基團如一
N(CH2COOH)2 製得螯合離子交換樹脂
表徵離子交換樹脂交換能力的指標有 (1)重量交換容量 即每克干樹脂所能交換離子的毫克當量數
【meq/g(干】 (2)體積交換容量 即每毫升濕樹脂所能交換的離子的毫克當樹量(meq/ml) 廣泛用於水 糖溶液甘油等的凈化 金屬的回收 離子的分離和測定以及用作有機合成的催化劑等
常見的陰離子交換樹脂是季銨型強鹼性樹脂 是以苯乙烯和二乙烯苯共聚 經錄甲基化反應及胺化反應製得
Ⅳ 離子交換樹脂利用率可達到多少
離子交換樹脂是帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。
目錄
1基本介紹
2基本分類
3命名方式
4製造廠家
5基本類型
▪ 強酸性陽離子樹脂
▪ 弱酸性陽離子樹脂
▪ 強鹼性陰離子樹脂
▪ 弱鹼性陰離子樹脂
▪ 離子樹脂的轉型
6基體組成
7物理結構
8交換容量
9吸附選擇
▪ 對陽離子的吸附
▪ 對陰離子的吸附
▪ 對有色物的吸附
10物理性質
▪ 樹脂顆粒尺寸
▪ 樹脂的密度
▪ 樹脂的溶解性
▪ 膨脹度
▪ 耐用性
11應用領域
12其他補充
13保存方法
14物化信息
1基本介紹編輯
離子交換樹脂形態
離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。孔隙結構分凝膠型和大孔型兩種,凡具有物理孔結構的稱大孔型樹脂,在全名稱前加「大孔」。分類屬酸性的應在名稱前加「陽」,分類屬鹼性的,在名稱前加「陰」。如:大孔強酸性苯乙烯系陽離子交換樹脂。
2基本分類編輯
離子交換樹脂還可以根據其基體的種類分為苯乙烯系樹脂和丙烯酸系樹脂。樹脂中化學活性基團的種類決定了樹脂的主要性質和類別。首先區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強鹼性和弱鹼性兩類 (或再分出中強酸和中強鹼性類)。
離子交換樹脂 基本形態
3命名方式編輯
離子交換樹脂的命名方式:
離子交換產品的型號以三位阿拉伯數字組成,第一位數字代表產品的分類,第二位數字代表骨架的差異,第三位數字為順序號用以區別基因、交聯劑等的差異。第一、第二位
濕離子交換樹脂
數字的意義,見表8-1。
表8-1 樹脂型號中的一、二位數字的意義
代號 0 1 2 3 4 5 6
分類名稱 強酸性 弱酸性 強鹼性 弱鹼性 螫合性 兩性 氧化還原性
骨架名稱 苯乙烯系丙烯酸系 醋酸系 環氧系 乙烯吡啶系 脲醛系 氯乙烯系
大孔樹脂在型號前加「D」,凝膠型樹脂的交聯度值可在型號後用「×」號連接阿拉伯數字表示。如D011×7,表示大孔強酸性丙烯酸系陽離子交換樹脂,其交聯度為7。
國外一些產品用字母C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母),如Amberlite的IRC和IRA分別為陽樹脂和陰樹脂,亦分別代表陽樹脂和陰樹脂。
4製造廠家編輯
離子交換樹脂在國內外都有很多製造廠家和很多品種。國內製造廠有數十家,主要的有上海樹脂有限公司、南開化工廠、安徽皖東化工有限人司,浙江爭光實業股份有限公司、晨光化工研究院樹脂廠、江蘇色可賽思樹脂有限公司等;國外較著名的如美國Rohm & Hass公司生產的Amberlite系列、Success公司生產Ionresin系列、Dow化學公司的Dowex系列、法國Duolite系列和Asmit系列、日本的Diaion系列,還有Ionac系列、Allassion系列等。樹脂的牌號多數由各製造廠或所在國自行規定。
5基本類型編輯
強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個
離子交換樹脂
反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液
離子交換樹脂
中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
6基體組成編輯
離子交換樹脂(ionresin)的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨
離子交換樹脂
架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
除上述苯乙烯系和丙烯酸系這兩大系列以外,離子交換樹脂還可由其他有機單體聚合製成。如酚醛系(FP)、環氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
7物理結構編輯
離子樹脂常分為凝膠型和大孔型兩類。
凝膠型樹脂的高分子骨架,在乾燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔(micro-pore)。濕潤樹脂的平均孔徑為2~4nm(2×10-6 ~4×10-6mm)。
離子交換樹脂
這類樹脂較適合用於吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因後者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量永久性的微孔,再導入交換基團製成。它並存有微細孔和大網孔(macro-pore),潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在製造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力(van de Waals force)產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
8交換容量編輯
離子交換樹脂進行離子交換反應的性能,表現在它的「離子交換容量」,即每克干樹脂或每毫升濕樹脂所能交換的離子的毫克當量數,meq/g(干)或 meq/mL(濕);當離子為一價時,毫克當量數即是毫克分子數(對二價或多價離子,前者為後者乘離子價數)。它又有「總交換容量」、「工作交換容量」和「再生交換容量」等三種表示方式。
1、總交換容量,表示每單位數量(重量或體積)樹脂能進行離子交換反應的化學基團的總量。
離子交換樹脂塔
2、工作交換容量,表示樹脂在某一定條件下的離子交換能力,它與樹脂種類和總交換容量,以及具體工作條件如溶液的組成、流速、溫度等因素有關。
3、再生交換容量,表示在一定的再生劑量條件下所取得的再生樹脂的交換容量,表明樹脂中原有化學基團再生復原的程度。
通常,再生交換容量為總交換容量的50~90%(一般控制70~80%),而工作交換容量為再生交換容量的30~90%(對再生樹脂而言),後一比率亦稱為樹脂的利用率。
在實際使用中,離子交換樹脂的交換容量包括了吸附容量,但後者所佔的比例因樹脂結構不同而異。現仍未能分別進行計算,在具體設計中,需憑經驗數據進行修正,並在實際運行時復核之。
離子樹脂交換容量的測定一般以無機離子進行。這些離子尺寸較小,能自由擴散到樹脂體內,與它內部的全部交換基團起反應。而在實際應用時,溶液中常含有高分子有機物,它們的尺寸較大,難以進入樹脂的顯微孔中,因而實際的交換容量會低於用無機離子測出的數值。這種情況與樹脂的類型、孔的結構尺寸及所處理的物質有關。
9吸附選擇編輯
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下:
對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >;草酸根2- > PO43- >NO2- > Cl- >;醋酸根- > HCO3-
對有色物的吸附
糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。
通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
10物理性質編輯
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。
樹脂顆粒尺寸
離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。
樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。
樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(IR-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。
樹脂的密度
樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/mL,視密度為0.85g/mL;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/mL,視密度為0.75g/mL。
樹脂的溶解性
離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。
膨脹度
離子交換樹脂含有大量親水基團,與水接觸即吸水膨脹。當樹脂中的離子變換時,如陽離子樹脂由H+轉為Na+,陰樹脂由Cl-轉為OH-,都因離子直徑增大而發生膨脹,增大樹脂的體積。通常,交聯度低的樹脂的膨脹度較大。在設計離子交換裝置時,必須考慮樹脂的膨脹度,以適應生產運行時樹脂中的離子轉換發生的樹脂體積變化。
耐用性
樹脂顆粒使用時有轉移、摩擦、膨脹和收縮等變化,長期使用後會有少量損耗和破碎,故樹脂要有較高的機械強度和耐磨性。通常,交聯度低的樹脂較易碎裂,但樹脂的耐用性更主要地決定於交聯結構的均勻程度及其強度。如大孔樹脂,具有較高的交聯度者,結構穩定,能耐反復再生。
11應用領域編輯
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
12其他補充編輯
離子交換技術有相當長的歷史,某些天然物質如泡沸石和用煤經過磺化製得的磺化煤都可用作離子交換劑。但是,隨著現代有機合成工業技術的迅速發展,研究製成了許多種性能優良的離子交換樹脂,並開發了多種新的應用方法,離子交換技術迅速發展,在許多行業特別是高新科技產業和科研領域中廣泛應用。近年國內外生產的樹脂品種達數百種,年產量數十萬噸。
在工業應用中,離子交換樹脂的優點主要是處理能力大,脫色范圍廣,脫色容量高,能除去各種不同的離子,可以反復再生使用,工作壽命長,運行費用較低(雖然一次投入費用較大)。以離子交換樹脂為基礎的多種新技術,如色譜分離法、離子排斥法、電滲析法等,各具獨特的功能,可以進行各種特殊的工作,是其他方法難以做到的。離子交換技術的開發和應用還在迅速發展之中。
離子交換樹脂的應用,是近年國內外製糖工業的一個重點研究課題,是糖業現代化的重要標志。膜分離技術在糖業的應用也受到廣泛的研究。
離子交換樹脂都是用有機合成方法製成。常用的原料為苯乙烯或丙烯酸(酯),通過聚合反應生成具有三維空間立體網路結構的骨架,再在骨架上導入不同類型的化學活性基團(通常為酸性或鹼性基團)而製成。
離子交換樹脂不溶於水和一般溶劑。大多數製成顆粒狀,也有一些製成纖維狀或粉狀。樹脂顆粒的尺寸一般在0.3~1.2mm 范圍內,大部分在0.4~0.6mm之間。它們有較高的機械強度(堅牢性),化學性質也很穩定,在正常情況下有較長的使用壽命。
離子交換樹脂中含有一種(或幾種)化學活性基團,它即是交換官能團,在水溶液中能離解出某些陽離子(如H+或Na+)或陰離子(如OH-或Cl-),同時吸附溶液中原來存有的其他陽離子或陰離子。即樹脂中的離子與溶液中的離子互相交換,從而將溶液中的離子分離出來。
離子交換樹脂的品種很多,因化學組成和結構不同而具有不同的功能和特性,適應於不同的用途。應用樹脂要根據工藝要求和物料的性質選用適當的類型和品種。
相關搜索詞條:
離子交換樹脂再生
離子交換樹脂預處理
注意事項:
1、 離子交換樹脂含有一定水份,不宜露天存放,儲運過程中應保持濕潤,以免風干脫水,使樹脂破碎,如貯存過程中樹脂脫水了,應先用濃食鹽水(10%)浸泡,再逐漸稀釋,不得直接放入水中,以免樹脂急劇膨脹而破碎。
2、 冬季儲運使用中,應保持在5-40℃的溫度環境中,避免過冷或過熱,影響質量,若冬季沒有保溫設備時,可將樹脂貯存在食鹽水中,食鹽水濃度可根據氣溫而定。
3、 離子交換樹脂的工業產品中,常含有少量低聚合物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質,當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量,因此,新樹脂在使用前必須進行預處理,一般先用水使樹脂充分膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去,洗到近中性即可。如在醫葯制備中使用,須用乙醇浸泡處理。
4、 樹脂在使用中,防止與金屬(如鐵、銅等)油污、有機分子微生物、強氧化劑等接觸,免使離子交換能力降低,甚至失去功能,因此,須根據情況對樹脂進行不定期的活化處理,活化方法可根據污染情況和條件而定,一般陽樹脂在軟化中易受Fe的污染可用鹽酸浸泡,然後逐步稀釋,陰樹脂易受有機物污染,可用10%NaC1+2-5%NaOH混合溶液浸泡或淋洗,必要時可用1%雙氧水溶液泡數分鍾,其它,也可採用酸鹼交替處理法,漂白處理法,酒精處理及各種滅菌法等等。
5、 新樹脂的預處理:離子交換樹脂的工業產品中,常含有少量低聚物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質。當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量。因此,新樹脂在使用前必須進行預處理。一般先用水使樹脂膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去洗到近中性即可。
13保存方法編輯
離子交換樹脂不能露天存放,存放處的溫度為0-40℃,當存放處溫度稍低於0℃時,應向包裝袋內加入澄清的飽和食鹽水、浸泡樹脂。此外,當存放處溫度過高時,不但使樹脂易於脫水,還會加速陰樹脂的降解。一旦樹脂失水,使用時不能直接加水,可用澄清的飽和食鹽水浸泡,然後再逐步加水稀釋,洗去鹽分,貯存期間應使其保持濕潤。
14物化信息編輯
中文名稱:離子交換樹脂
英文名稱:Amberlite XAD-16
英文別名:Amberlite(r) xad-16; amberlite(r) xad-16 nonionic polymeric adsorbent; supelclean envi-chrom p, 50 grams; amberchrom 161c, 50gm; amberchrom 161c 100ml; amberlite xad-16, -7, -4 resin; amberlite xad-15 nonionic polymeric adsorbent; amberlitet la-2, ion exchange resin, liquid grade; amberlite la-2; ion exchange resin[1]
CAS:104219-63-8;11128-96-4
Ⅳ 離子交換是什麼
離子交換法
一、前言
離子交換法(ion exchange process)是液相中的離子和固相中離子間所進行的的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中。
離子交換樹脂一般呈現多孔狀或顆粒狀,其大小約為0.1~1mm,其離子交換能力依其交換能力特徵可分:
1. 強酸型陽離子交換樹脂:主要含有強酸性的反應基如磺酸基(-SO3H),此離子交換樹脂可以交換所有的陽離子。
2. 弱酸型陽離子交換樹脂:具有較弱的反應基如羧基(-COOH基),此離子交換樹脂僅可交換弱鹼中的陽離子如Ca2+、Mg2+,對於強鹼中的離子如Ca2+、K+等無法進行交換。
3. 強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除。
4. 弱鹼型陰離子交換樹脂:具有較弱的反應基如氨基,僅能去除強酸中的陰離子如SO42-,Cl-或NO3-,對於HCO3-,CO32-或SiO42-則無法去除。
不論是離子交換樹脂或是沸石,都有其一定的可交換基濃度,稱為離子交換容量(ion exchange capacity)。對陽離子交換樹脂而言,大約在200~500meq/100g。因為陽離子交換為一化學反應,故必須遵守質量平衡定律。離子交換樹脂的一般方程式可以表示如下:
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050106235836920.doc
離子交換的基本知識
為了除去水中離子態雜質,現在採用得最普遍的方法是離子交換。這種方法可以將水中離子態雜質清除得以較徹底,因而能製得很純的水。所以,在熱力發電廠鍋爐用水的制備工藝中,它是一個必要的步驟。
離子交換處理,必須用一種稱做離子交換劑的物質(簡稱交換劑)來進行。這種物質遇水時,可以將其本身所具有的某種離子和水中同符號的離子相互交換,離子交換劑的種類很多,有天然和人造、有機和無機、陽離子型和陰離子型等之分,大概情況如表所示。此外,按結構特徵來分,還有大孔型和凝膠型等。
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050107000541376.doc
Ⅵ 井壁不穩定的原因分析
井壁不穩定的實質是力學不穩定。當井壁岩石所受的應力超過其本身的強度就會發生井壁不穩定。其原因十分復雜,就其主要原因可歸納為力學因素、物理化學因素和工程技術措施3個方面,但後兩個因素最終均因影響井壁應力分布和井壁岩石的力學性能而造成井壁不穩定。
3.3.1 力學因素
3.3.1.1 原地應力狀態
原地應力狀態是指在發生工程擾動之前就已經存在於地層內部的應力狀態,也簡稱為地應力。一般認為它的三個主應力分量是鉛垂應力分量、最大水平主應力分量和最小水平主應力分量。
地應力的鉛垂應力分量通常稱為上覆岩層壓力,主要由上部地層的重力產生的。國內外研究表明,水平地應力的大小受上覆岩層壓力、地層岩性、埋藏深度、成岩歷史、構造運動情況等諸多因素的影響。其中上覆岩層壓力的泊松效應和構造應力是主要影響因素。
由於多次構造運動的結果,在岩石內部形成了十分復雜的構造應力場。根據地質力學的觀點,構造應力大多以水平方向為主,設兩個主構造應力分量分別為σh、σH。則總的水平主應力分量為上覆岩層壓力泊松效應產生的壓應力與構造應力之和。
若沒有構造運動,水平地應力僅由上覆岩層壓力的泊松效應引起,為均勻水平地應力狀態。一般情況下存在構造運動,且兩個水平主方向上構造應力的大小不等。因此,在一般情況下,地應力的三個主應力分量的大小是不相等的。由聲發射法、差應變法等室內實驗方法和應力釋放法、水力壓裂法等現場試驗方法可以確定出地應力的大小和方向。
3.3.1.2 地層被鑽開後所引起的井眼圍岩應力狀態的變化
地層被鑽開之前,地下的岩石受到上覆壓力、水平方向地應力和孔隙壓力的作用,井壁處的應力狀態即為原地應力狀態,且處於平衡狀態。孔隙壓力指地下岩石孔隙內流體壓力。在正常沉積環境中,地層處於正常的壓實狀態,孔隙壓力保持為靜液柱壓力,即為正常地層壓力,壓力系數為1.0。在異常的壓實環境中,當孔隙壓力大於正常地層壓力時稱為異常高壓地層,壓力系數大於1.0。
當井眼被鑽開後,地應力被釋放,井內鑽井液作用於井壁的壓力取代了所鑽岩層原先對井壁岩石的支撐,破壞了地層和原有應力的平衡,引起井壁周圍應力的重新分布。
進一步的研究表明,井眼圍岩的應力水平與井眼液柱壓力有關。若鑽井液密度降低,井眼圍岩差應力(徑向應力減小,切向應力增大)水平就升高。當應力超過岩石的抗剪強度時,就要發生剪切破壞(對於脆性地層就會發生坍塌,井徑擴大;而對於塑性地層,則發生塑性變形,造成縮徑)。相反地,當鑽井液密度升至一定值後,井壁處的切向應力就會變成拉應力,當拉伸應力大於岩石的抗拉強度時,就要發生拉伸破壞(表現為井漏)。
3.3.1.3 造成井壁力學不穩定的原因
鑽井過程中保持井壁處於力學穩定的必要條件是鑽井液液柱壓力必須大於地層坍塌壓力,且鑽井液的實際當量密度低於與地層破裂壓力對應的當量鑽井液密度。坍塌壓力是指井壁發生剪切破壞的臨界井眼壓力,此時的鑽井液密度稱為坍塌壓力的當量鑽井液密度。鑽井過程中井壁出現力學不穩定而造成井塌的主要原因可歸納為以下幾個方面。
(1)鑽進坍塌地層時鑽井液密度低於地層坍塌壓力的當量鑽井液密度
井壁不穩定包括縮徑與井壁坍塌,其實質是力學問題。孔隙壓力異常不僅發生在儲層中,而且在我國大量所鑽遇的泥頁岩地層中也較普遍地存在。在地應力作用地區,非均質的地應力對井壁穩定會產生很大的影響。長期以來,地質部門設計鑽井液密度均依據所鑽遇油氣水層時的壓力系數,而未考慮易坍塌地層可能存在異常孔隙壓力與地應力,以及所造成的高地層坍塌壓力對井壁穩定的影響。在實際鑽井過程中,同一裸眼井段部分地層的坍塌壓力往往大於油氣水層的孔隙壓力。因此,依據地質設計所確定的鑽井液密度在高坍塌壓力地層鑽進時,井筒中鑽井液液柱壓力就不足以平衡地層坍塌壓力(對鹽膏層和含鹽膏泥岩則為發生塑性變形的壓力),就會造成所鑽地層處於力學不穩定狀態,引起井壁坍塌。
(2)起鑽時的抽吸作用造成作用於井壁的鑽井液壓力低於地層坍塌壓力
在起鑽過程中,由於未及時灌注鑽井液、鑽井液塑性黏度和動切力過高以及起鑽速度過快等均會產生高的抽吸壓力。這種抽吸作用使鑽井液作用於井壁的壓力下降,當其低於地層坍塌壓力時就會發生井塌。此外,在裸眼井段,如果所鑽的上部地層中存在大段含蒙脫石或伊蒙無序間層的泥岩,而在鑽進下部地層時,如鑽頭在井下工作時間過長(超過兩天以上)又沒有起下鑽,則含蒙脫石或伊蒙無序間層的泥岩就會吸水膨脹而造成井徑縮小,起鑽至此井段則發生「拔活塞」,環空灌不進鑽井液,從而產生很大的抽吸壓力並形成負壓差,嚴重時便會抽塌下部地層。例如吉林油田乾安構造在鑽探初期,絕大部分井均由於上部嫩3、4、5層段泥岩縮徑(井徑平均縮小6%~8%),起鑽時發生嚴重抽吸,從而抽塌下部嫩2、1等層段的泥岩層,平均井徑擴大率高達32%~84%,處理井塌時間長達半個多月。
(3)井噴或井漏導致井筒中液柱壓力低於地層坍塌壓力
鑽井過程中如發生井噴或井漏,均會造成井筒中液柱壓力下降。當此壓力小於地層坍塌壓力時,就會出現井塌。
(4)鑽井液密度過低不能控制岩鹽層、含鹽膏軟泥岩和高含水軟泥岩的塑性變形
當岩鹽層、含鹽膏軟泥岩和高含水的軟泥岩等地層被鑽開後,如所使用的鑽井液密度過低,就會發生塑性變形。由於上述地層均是具有塑性特點的地層,當其埋藏較深而被鑽穿後,它們的高度延展性能幾乎可以傳遞上覆地層的全部覆蓋負荷的重量。若當時的鑽井液液柱壓力不足以控制住這種作用時,就會引起塑性變形,使井徑縮小,這就是上述岩層所具有的蠕變特性。所謂蠕變是指材料在恆應力狀態下應變隨時間延長而增加的現象。通常岩石的彈性變形也會引起縮徑,但彈性變形的時間較短,且變形量小。岩鹽在深部高溫高壓作用下,由於具有蠕變特性,即使井壁上的應力仍處於彈性范圍,也會導致井眼隨時間而逐漸縮小。根據國內外對岩鹽蠕變的研究,可將其分為以下3個階段(圖3.5):
圖3.5 岩石的廣義蠕變曲線
1)初始蠕變(又稱過渡蠕變)。此階段在應變時間曲線上,岩石初始蠕變速率很高,隨後速率變緩,其原因是應變硬化速度大於材料中晶粒的位錯運動速度。
2)次級蠕變(又稱穩態蠕變)。此階段硬化速度和位錯速度達到平衡。對於岩鹽層,井眼的收縮是最重要的蠕變階段。
3)第三階段蠕變(又稱不穩定蠕變)。當應力足夠大時,會在晶粒界面及礦物顆粒界面發生滑動,這一變形的結果使蠕變曲線向較大變形的一側反彎,進入不穩定狀態,最後使晶界鬆散、脫落,導致材料的破裂。
一般認為,岩鹽層的塑性變形在低溫狀態是以晶層滑動為主,而在高溫下則在滑動面出現多邊形結構和再結晶。由於岩鹽層的塑性變形(蠕變)引起井眼縮徑,常導致起下鑽遇阻卡、卡鑽。例如中原油田文-218井使用密度為1.79g/cm3鑽井液,鑽進岩鹽層至3912m時,從電測得知在3856~3899m井段井徑縮小18%~23%(比鑽頭直徑小40~50mm)。繼續電測時又發生遇阻,下鑽劃眼至3912m,後上提遇卡。又如南疆庫喀-1井在電測時曾多次在2735~2732m遇阻,經反復劃眼後測得井徑僅為135mm(鑽頭直徑為215mm)。因此,岩鹽層的蠕變或塑性變形是鑽進該類地層時造成井下復雜情況的一個重要原因。
此外,鹽膏層中的泥岩即使在上覆蓋層壓力與井溫作用下,黏土表面所吸附的四層水會逐漸被擠出成為孔隙水。由於泥岩表面吸附水的密度可高達1.40~1.70g/cm3,故當這些層間水變為孔隙水時,體積增大40%~70%。若泥岩被鹽層所封閉,而鹽層不具備滲透性能,水無處可排,因而會導致在兩個鹽層之間的泥岩孔隙中形成異常壓力帶。鑽開此類地層時,如果鑽井液液柱壓力低於此類泥岩發生塑性變形的壓力,泥岩就會縮徑,導致井下復雜情況。由於此類泥岩含鹽,鹽在高溫高壓下所發生的塑性變形亦會對含鹽泥岩帶來影響。因此,鹽膏層塑性變形不僅發生在岩鹽中,而且還會發生在含鹽泥岩中。
(5)鑽井液密度過高
鑽井過程中,如所採用的鑽井液密度過高,大大超過地層孔隙壓力,就會對井壁形成較大的壓差,從而會有更多的鑽井液濾液進入地層,加劇地層中黏土礦物水化,引起地層孔隙壓力增加及圍岩強度降低,最終導致地層坍塌壓力增大。當坍塌壓力的當量密度超過鑽井液密度,井壁就會發生力學不穩定,造成井塌。特別是在鑽入高破碎性地層時,如所使用的鑽井液密度合適,則圍繞井壁的應力集中,閉合了所有的徑向接合面,因此封閉了井壁,鑽井液不能進入到裂隙網內;但如果鑽井液密度增高並超過了臨界值,徑向接合面逐漸由閉合狀態變為開啟狀態,與此同時切向接合面閉合。此時由於鑽井液進入,引起地層孔隙壓力增高,一部分裂隙網變得易被鑽井液侵入,相應的結合面被增壓,單元變得鬆散,這樣岩石就容易受到鑽井液和井底鑽具組合的沖擊而坍塌。由上述原因所引起的井壁不穩定大多發生在深部地層,與岩性關系不大。例如,柯深1井古近-新近系地層是砂泥岩互層,其5200~5750m井段的孔隙壓力系數為1.50~1.60g/cm3,坍塌壓力的壓力系數為1.60~1.70g/cm3;5750~5900m井段的孔隙壓力系數為1.15~1.35g/cm3,坍塌壓力的壓力系數為1.40~1.60g/cm3。該井田244mm技術套管下至5025.08m。四開鑽進時,由於誤判5009m出現的高壓鹽水層(壓力系數為1.89g/cm3)沒有封死,為了對付地質預告5600m的高壓氣層,採用密度為1.95~2.02g/cm3的鑽井液鑽進。鑽至5441m時,鑽進過程出現大的塌塊,下鑽遇阻劃眼,返出大的塌塊。從此之後每次下鑽均遇阻劃眼,劃眼井段均為新鑽井眼。當鑽至5829m時,發生壓差卡鑽。解卡後,為了防止再卡鑽,降低鑽井液密度至1.75~1.80g/cm3,並增加鑽井液中高軟化點低磺化度磺化瀝青、氯化鉀、SMP和硅酸鉀的加量,以提高鑽井液封堵與抑制能力,井塌緩解。
3.3.2 物理化學因素
3.3.2.1 地層的岩性
井壁不穩定可以發生在各種岩性的地層中。一般來講,岩石均由非黏土礦物(如石英、長石、方解石、白雲石、黃鐵礦等)、晶態黏土礦物(如蒙脫石、伊利石、伊蒙間層、綠泥石、綠蒙間層、高嶺石等)和非晶態黏土礦物(如蛋白石等)所組成,但不同岩性地層所含的礦物類型和含量不完全相同。對井壁穩定性產生影響的主要組分是地層中所含的黏土礦物。
3.3.2.2 鑽井液濾液對地層的侵入
當地層被鑽開後,在井筒中鑽井液與地層孔隙流體之間的壓差、化學勢差(取決於鑽井液與地層流體之間的活度差和地層的半透膜效率)和地層毛細管力(取決於岩石的表面性質)的驅動下,鑽井液濾液進入井壁地層,引起地層中黏土礦物水化膨脹,導致井壁不穩定。
通過大量室內試驗,目前已證實在使用水基鑽井液時,低滲透泥頁岩表面的確存在著非理想的半透膜,但其膜效率低於1。其值高低取決於鑽井液的組成、地層的滲透率和孔喉尺寸,並隨鑽井液與岩石接觸時間增長而降低。鹽水的膜效率僅為1%~10%,聚合醇類水基鑽井液具有較高的膜效率,地層中的黏土礦物與水接觸發生水化膨脹是由兩種水化所造成,即表面水化和滲透水化。
(1)影響水化的因素
影響地層水化作用的主要因素有以下方面:
1)地層中黏土礦物及其可交換陽離子的類型和含量。由於蒙脫石、伊利石、高嶺石、綠泥石各種黏土礦物的組構特徵不同,其可交換陽離子組成亦各不相同,因而其水化膨脹程度差別很大。如蒙脫石的陽離子交換容量高,易水化膨脹,分散度也較高;而高嶺石、綠泥石、伊利石都屬於低膨脹型黏土礦物,不易水化膨脹。同種黏土礦物,當其交換性陽離子不同時,水化膨脹特性也不相同,如鈉土的膨脹比鈣土、鉀土大得多。各種黏土礦物膨脹能力的順序如下:蒙脫石>伊蒙間層礦物>伊利石>高嶺石>綠泥石。
由此看來,地層的水化作用強弱主要取決於地層中所含黏土礦物及其可交換陽離子的類型及含量。此外,由於地層中非晶態黏土礦物的類型及含量會影響陽離子交換容量的大小,因此它們對地層水化作用亦有較大的影響。
2)地層中所含無機鹽的類型及含量。如地層中含有石膏、氯化鈉和芒硝等無機鹽,則會促使地層發生吸水膨脹。當地層中含有無水石膏時,由於密度為2.9g/cm3的CaSO4能通過吸水轉變為密度為2.3g/cm3的CaSO4·2H2O,其體積增加約26%,因而含膏泥岩的膨脹性與其中無水石膏含量有密切關系。
含氯化鈉的泥岩的初始膨脹率較高,在5~7h達到最大值。隨著鹽的溶解,膨脹率反而下降。中原油田文203-12井3250m的含鹽泥岩,2h的膨脹率為31%,但24h的膨脹率降為26%。用勝利油田紅層中的含鹽泥岩進行吸水試驗,然後用淡水洗去泥岩中的鹽再次吸水,其結果顯示含鹽泥岩的吸水量大大高於不含鹽泥岩。
3)地層中層理裂隙發育程度。地層中存在著層理裂隙,部分微細裂縫在井下高有效應力作用下會發生閉合。但當與水接觸時,水仍然會沿著這條裂縫進入地層深處,使井壁周圍地層中的黏土礦物發生水化,因而井壁也容易坍塌。
4)溫度和壓力。流體進、出泥頁岩是受泥頁岩和流體的偏摩爾自由能之差來控制的,而偏摩爾自由能的大小與溫度和壓力有關。因此,溫度和壓力對泥頁岩的水化膨脹會產生一定影響。隨著溫度升高,黏土的水化膨脹速率和膨脹量都明顯增高。壓力增高可抑制黏土水化膨脹。各種黏土礦物的膨脹率均隨預負荷或井眼壓力的增大而急劇下降。
5)時間。顯然,黏土水化膨脹隨地層中的黏土礦物與鑽井液濾液接觸時間的增長而加劇,這對於科學超深井取心鑽探來說,減少起下鑽的次數和時間對井壁穩定十分有利。
6)鑽井液的組成與性能。鑽井液中所含有機處理劑和可溶性鹽的類別及含量、濾液的pH值等均會影響黏土的水化膨脹,這些影響對於科學超深井來說是至關重要的研究課題之一。
(2)地層水化膨脹對井壁穩定的影響
鑽井過程中,鑽井液與井壁地層之間的接觸會產生非常復雜的物理化學作用。概括起來,鑽井液對地層的影響主要表現在以下方面:
1)孔隙壓力升高。鑽井液濾液進入地層後,由於壓力傳遞和濾液與地層黏土礦物之間通過水化作用產生水化應力,均會引起井壁地層孔隙壓力的升高。
2)地層含水率升高。近井壁地帶地層力學性質發生變化鑽井液濾液進入地層後,會引起地層中含水量升高,從而導致地層的力學性質發生一系列的變化。如彈性模量隨地層含水量的增大而急劇降低;泊松比值隨地層含水量的增大而增加;地層的強度參數黏聚力和內摩擦角則隨地層含水量的增大而下降。
綜上所述,由於地層中所含的黏土礦物吸水發生水化膨脹,產生水化應力,改變了井筒周圍地層的孔隙壓力與應力分布,從而引起井壁岩石強度降低,地層坍塌壓力發生變化。當井壁岩石所受到的周向應力超過岩石的屈服強度時,就會發生井壁不穩定。因此可以說,井壁不穩定是物理化學因素與力學因素共同作用所導致的結果。
3.3.3 鑽井工程措施
鑽井工程措施也對井壁穩定性產生影響。
(1)井內激動壓力過大
鑽井過程中,如果起下鑽速度過快、鑽井液靜切力過大、開泵過猛、鑽頭泥包等原因,均可能發生強的抽吸作用,產生過高的抽吸壓力,從而降低鑽井液作用於井壁的壓力,造成井塌。
(2)井內液柱壓力大幅度降低
鑽井過程中如果發生井噴、井漏或起鑽沒灌滿鑽井液均可能造成井內液柱壓力大幅度下降,造成井壁岩石受力失去平衡而導致井塌。
(3)鑽井液對井壁的沖蝕作用
如果鑽井液環空返速過高,在環空形成紊流,則會對井壁產生強烈的沖蝕作用。此作用隨環空返速增大而加劇。對於含大量蒙脫石或伊蒙無序間層且成岩程度低、膠結差的軟泥岩,鑽進過程中會因吸水膨脹而造成井徑縮小,此時若提高環空返速,採用紊流鑽進,及時沖刷掉縮徑的岩石,使井徑不至於小於鑽頭直徑,可有效地防止縮徑卡鑽。但是,當鑽進破碎性地層或層理裂隙發育的地層時,如果鑽井液的環空返速過高導致形成紊流,則對井壁的沖刷力有可能超過被鑽井液浸泡後的岩石強度,這時就會造成井壁坍塌。例如華北二連的阿南構造和吉林的乾安構造,均採用鉀基聚合物和鉀鹽防塌鑽井液鑽進。在鑽至易坍塌層段時,鑽井液在環空處於層流時的平均井徑擴大率小於10%;而處於紊流狀態時,則由於井塌,井徑擴大率高達30%以上。
(4)井身質量差
如井眼方位變化大,狗腿度過大,易造成應力集中,加劇井塌的發生。
(5)對井壁過於嚴重的機械碰擊
鑽進易塌地層時,如轉速過高、起鑽用轉盤卸扣,由於鑽具劇烈碰擊井壁,從而加速井塌。
綜上所述,在鑽井過程中,如果影響井壁穩定性的一些工程措施不當,有可能降低鑽井液作用在井壁上的壓力和岩石強度,導致井壁不穩定。
Ⅶ 誰知道水處理用離子交換樹脂的合成
1.離子交換樹脂的基本類型
(1) 強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
(2) 弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
(3) 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
(4) 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
(5) 離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
2、離子交換樹脂基體的組成
離子交換樹脂的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
除上述苯乙烯系和丙烯酸系這兩大系列以外,離子交換樹脂還可由其他有機單體聚合製成。如酚醛系(FP)、環氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、離子交換樹脂的物理結構
離子樹脂常分為凝膠型和大孔型兩類。
凝膠型樹脂的高分子骨架,在乾燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔(micro-pore)。濕潤樹脂的平均孔徑為2~4nm(2×10-6 ~4×10-6mm)。
這類樹脂較適合用於吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因後者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量永久性的微孔,再導入交換基團製成。它並存有微細孔和大網孔(macro-pore),潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在製造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力(van de Waal's force)產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
4、離子交換樹脂的離子交換容量
離子交換樹脂進行離子交換反應的性能,表現在它的「離子交換容量」,即每克干樹脂或每毫升濕樹脂所能交換的離子的毫克當量數,meq/g(干)或 meq/mL(濕);當離子為一價時,毫克當量數即是毫克分子數(對二價或多價離子,前者為後者乘離子價數)。它又有「總交換容量」、「工作交換容量」和「再生交換容量」等三種表示方式。
1、總交換容量,表示每單位數量(重量或體積)樹脂能進行離子交換反應的化學基團的總量。
2、工作交換容量,表示樹脂在某一定條件下的離子交換能力,它與樹脂種類和總交換容量,以及具體工作條件如溶液的組成、流速、溫度等因素有關。
3、再生交換容量,表示在一定的再生劑量條件下所取得的再生樹脂的交換容量,表明樹脂中原有化學基團再生復原的程度。
通常,再生交換容量為總交換容量的50~90%(一般控制70~80%),而工作交換容量為再生交換容量的30~90%(對再生樹脂而言),後一比率亦稱為樹脂的利用率。
在實際使用中,離子交換樹脂的交換容量包括了吸附容量,但後者所佔的比例因樹脂結構不同而異。現仍未能分別進行計算,在具體設計中,需憑經驗數據進行修正,並在實際運行時復核之。
離子樹脂交換容量的測定一般以無機離子進行。這些離子尺寸較小,能自由擴散到樹脂體內,與它內部的全部交換基團起反應。而在實際應用時,溶液中常含有高分子有機物,它們的尺寸較大,難以進入樹脂的顯微孔中,因而實際的交換容量會低於用無機離子測出的數值。這種情況與樹脂的類型、孔的結構尺寸及所處理的物質有關。
5、離子交換樹脂的吸附選擇性
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下:
(1) 對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(2) 對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3) 對有色物的吸附
糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。
通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
6、離子交換樹脂的物理性質
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。
(1) 樹脂顆粒尺寸
離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。
樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。
樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(IR-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。
(2) 樹脂的密度
樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/mL,視密度為0.85g/mL;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/mL,視密度為0.75g/mL。
(3) 樹脂的溶解性
離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。
(4) 膨脹度
離子交換樹脂含有大量親水基團,與水接觸即吸水膨脹。當樹脂中的離子變換時,如陽離子樹脂由H+轉為Na+,陰樹脂由Cl-轉為OH-,都因離子直徑增大而發生膨脹,增大樹脂的體積。通常,交聯度低的樹脂的膨脹度較大。在設計離子交換裝置時,必須考慮樹脂的膨脹度,以適應生產運行時樹脂中的離子轉換發生的樹脂體積變化。
(5) 耐用性
樹脂顆粒使用時有轉移、磨擦、膨脹和收縮等變化,長期使用後會有少量損耗和破碎,故樹脂要有較高的機械強度和耐磨性。通常,交聯度低的樹脂較易碎裂,但樹脂的耐用性更主要地決定於交聯結構的均勻程度及其強度。如大孔樹脂,具有較高的交聯度者,結構穩定,能耐反復再生。
7、離子交換樹脂的品種
離子交換樹脂在國內外都有很多製造廠家和很多品種。國內製造廠有數十家,主要的有上海樹脂廠、南開大學化工廠、晨光化工研究院樹脂廠、南京樹脂廠等;國外較著名的如美國Rohm & Hass公司生產的Amberlite系列、Dow化學公司的Dowex系列、法國Duolite系列和Asmit系列、日本的Diaion系列,還有Ionac系列、Allassion系列等。樹脂的牌號多數由各製造廠或所在國自行規定。國外一些產品用字母C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母),如Amberlite的IRC和IRA分別為陽樹脂和陰樹脂,亦分別代表陽樹脂和陰樹脂。我國化工部規定(HG2-884-76),離子交換樹脂的型號由三位阿拉伯數字組成。第一位數字代表產品的分類:0 代表強酸性,1代表弱酸性,2代表強鹼性,3代表弱鹼性,4代表螯合性,5代表兩性,6代表氧化還原。第二位數字代表不同的骨架結構:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表環氧系等。第三位數字為順序號,用以區別基體、交聯基等的差異。此外大孔型樹脂在數字前加字母D。因此,D001是大孔強酸性苯乙烯系樹脂。
Ⅷ 離子交換樹脂作為葯物載體應具備哪些優點
1、高效離子交換色譜 應用離子交換的原理,採用低交換容量的離子交換樹脂來分離離子,這在離子色譜中應用最廣泛,其主要填料類型為有機離子交換樹脂,以苯乙烯二乙烯苯共聚體為骨架,在苯環上引入磺酸基,形成強酸型陽離子交換樹脂,引入叔胺基而成季胺型強鹼性陰離子交換樹脂,此交換樹脂具有大孔或薄殼型或多孔表面層型的物理結構,以便於快速達到交換平衡,離子交換樹脂耐酸鹼可在任何pH范圍內使用,易再生處理、使用壽命長,缺點是機械強度差、易溶脹易、受有機物污染。 硅質鍵合離子交換劑以硅膠為載體,將有離子交換基的有機硅烷與基表面的硅醇基反應,形成化學鍵合型離子交換劑,其特點是柱效高、交換平衡快、機械強度高,缺點是不耐酸鹼、只宜在pH28范圍內使用。離子交換色譜是最常用的離子色譜。 2、離子排斥色譜 它主要根據Donnon膜排斥效應,電離組分受排斥不被保留,而弱酸則有一定保留的原理,製成離子排斥色譜主要用於分離有機酸以及無機含氧酸根,如硼酸根碳酸根和硫酸根有機酸等。它主要採用高交換容量的磺化H型陽離子交換樹脂為填料以稀鹽酸為淋洗液。3、離子對色譜 離子對色譜的固定相為疏水型的中性填料,可用苯乙烯二乙烯苯樹脂或十八烷基硅膠(ODS),也有用C8硅膠或CN,固定相流動相由含有所謂對離子試劑和含適量有機溶劑的水溶液組成,對離子是指其電荷與待測離子相反,並能與之生成疏水性離子,對化合物的表面活性劑離子,用於陰離子分離的對離子是烷基胺類如氫氧化四丁基銨氫氧化十六烷基三甲烷等,用於陽離子分離的對離子是烷基磺酸類,如己烷磺酸鈉,庚烷磺酸鈉等對離子的非極性端親脂極性端親水,其CH2鍵越長則離子對化合物在固定相的保留越強,在極性流動相中,往往加入一些有機溶劑,以加快淋洗速度,此法主要用於疏水性陰離子以及金屬絡合物的分離,至於其分離機理則有3種不同的假說,反相離子對分配離子交換以及離子相互作用。 二、離子色譜系統IC系統的構成與HPLC相同,儀器由流動相傳送部分、分離柱、檢測器和數據處理4個部分組成,在需要抑制背景電導的情況下通常還配有MSM或類似抑制器。其主要不同之處是IC的流動相要求耐酸鹼腐蝕以及在可與水互溶的有機溶劑(如乙腈、甲醇和丙酮等)中不溶脹的系統。因此,凡是流動相通過的管道、閥門、泵、柱子及接頭等均不宜用不銹鋼材料,而是用耐酸鹼腐蝕的PEEK材料的全塑IC系統。離子色譜的最重要的部件是分離柱。柱管材料應是惰性的,一般均在室溫下使用。高效柱和特殊性能分離柱的研製成功,是離子色譜迅速發展的關鍵。
Ⅸ 羅門哈斯離子樹脂
羅門哈斯離子交換樹脂的價格比一般國產的離子交換樹脂要高一些,因為羅門哈斯樹脂是進口樹脂,但是羅門哈斯樹脂的性能比國內的離子交換樹脂要好一些,具體的還是要根據水質和預算來決定,有需要可以詢問藍膜。
Ⅹ 離子交換的基本原理和裝置運行方式
離子交換的基本原理和裝置運行方式
藉助於固體離子交換劑中的離子與稀溶液中的離子進行交換,以達到提取或去除溶液中某些離子的目的,是一種屬於傳質分離過程的單元操作。離子交換是可逆的等當量交換反應。下面一起來了解一下離子交換的基本原理和裝置運行方式:
水處理中主要採用離子交換樹脂和磺化煤用於離子交換。其中離子交換樹脂應用廣泛,種類多,而磺化煤為兼有強酸型和弱酸型交換基團的陽離子交換劑。
離子交換樹脂按結構特徵,分為:凝膠型、大孔型和等孔型;
按樹脂母體種類,分為:苯乙烯系、酚醛系和丙烯酸系等;
按其交換基團性質,分為:強酸型、弱酸型、強鹼型和弱鹼型。
⑴離子交換樹脂的構造
是由空間網狀結構骨架(即母體)與附屬在骨架上的許多活性基團所構成的不溶性高分子化合物。活性基團遇水電離,分成兩部分:固定部分,仍與骨架牢固結合,不能自由移動,構成所謂固定離子,活動部分,能在一定范圍內自由移動,並與其周圍溶液中的其他同性離子進行交換反應,稱為可交換離子。
⑵基本性能
①外觀
呈透明或半透明球形,顏色有乳白色、淡黃色、黃色、褐色、棕褐色等,
②交聯度
指交聯劑占樹脂原料總重量的百分數。對樹脂的許多性能例如交換容量、含水率、溶脹性、機械強度等有決定性影響,一般水處理中樹脂的交聯度為7%~10%.
③含水率
指每克濕樹脂所含水分的百分率,一般為50%,交聯度越大,孔隙越小,含水率越少。
④溶脹性
指干樹脂用水浸泡而體積變大的現象。一般來說,交聯度越小,活性基團越容易電離,可交換離子的水合離子半徑越大,則溶脹度越大;樹脂周圍溶液電解質濃度越高,樹脂溶脹率就越小。
在生產中應盡量保證離子交換器有長的工作周期,減少再生次數,以延長樹脂的使用壽命。
⑤密度
分為干真密度、濕真密度和濕視密度
⑥交換容量
是樹脂最重要的性能,是設計離子交換過程裝置時所必須的數據,定量地表示樹脂交換能力的大小。分為全交換容量和工作交換容量。
⑦有效PH范圍
由於樹脂的交換基團分為強酸強鹼和弱酸弱鹼,所以水的PH值對其電離會產生影響,影響其工作交換容量。弱鹼只能在酸性溶液中以及弱酸在鹼性溶液中有較高的交換能力。
⑧選擇性
即離子交換樹脂對水中某種離子能優先交換的性能。除與樹脂類型有關外,還與水中濕度和離子濃度有關。
⑨離子交換平衡
離子交換反應是可逆反應,服從質量作用定律和當量定律。經過一定時間,離子交換體系中固態的樹脂相和溶液相之間的離子交換反應達到平衡,其平衡常數也稱為離子交換選擇系數。降低反應生成物的濃度有利於交換反應的進行。
⑩離子交換速率
主要受離子交換過程中離子擴散過程的影響。
其他性能:如溶解性、機械強度和耐冷熱性等。離子交換樹脂理論上不溶於水,機械強度用年損耗百分數表示,一般要求小於3%~7%/年。另外,溫度對樹脂機械強度和交換能力有影響。溫度低則樹脂的機械強度下降,陽離子比陰離子耐熱性能好,鹽型比酸鹼型耐熱好。
⑶樹脂層離子交換過程
以離子交換柱中裝填鈉型樹脂,從上而下通以含有一定濃度鈣離子的硬水為例,以交換柱的深度為橫坐標,以樹脂的飽和度為縱坐標,可繪得某一時刻的飽和度曲線。就整個交換過程而言,樹脂層的變化可分為三個階段。
離子交換裝置按運行方式不同,分為固定床和連續床
⑴固定床的構造與壓力濾罐相似,是離子交換裝置中最基本的也是最常用的一種型式,其特點是交換與再生兩個過程均在交換器中進行,根據交換器內裝填樹脂種類及交換時樹脂在交換器中的.位置的不同,可分為單層床、雙層床和混合床。
單層床是在離子交換器中只裝填一種樹脂,如果裝填的是陽樹脂,稱為陽床;如果裝填的是陰樹脂,稱為陰床。
雙層床是離子交換器內按比例裝填強、弱兩種同性樹脂,由於強、弱兩種樹脂密度的不同,密度小的弱型樹脂在上,密度大的強型樹脂在下,在交換器內形成上下兩層。
混合床則是在交換器內均勻混雜的裝填陰、陽兩種樹脂,由於陰、陽樹脂混雜,因此原水流經樹脂層時,陰、陽兩種離子同時被樹脂所吸附,其產物氫離子和氫氧根離子又因反應生成水而得以降低,有利於交換反應進行的徹底,使得出水水質大大提高。但其缺點是再生的陰、陽樹脂很難徹底分層。於是又發明了三層混床新技術,保證在反洗時將陰、陽樹脂分隔開來。
根據固定床原水與再生液的流動方向,又分為兩種形式,原水與再生液分別從上而下以同一方向流經離子交換器的,稱為順流再生固定床,原水與再生液流向相反的,稱為逆流再生固定床。
順流再生固定床的構造簡單,運行方便,但存在幾個缺點:在通常生產條件下,即使再生劑單位耗量二至三倍於理論值,再生效果也不太理想;樹脂層上部再生程度高,而下部再生程度差;工作期間,原水中被去除的離子首先被上層樹脂所吸附,置換出來的反離子隨水流流經底層時,與未再生好的樹脂起逆交換反應,上一周期再生時未被洗脫出來的被去除的離子,作為泄漏離子出現在本周期的出水中,所以出水剩餘被去除的離子較大;而到了了工作後期,由於樹脂層下半部原先再生不好,交換能力低,難以吸附原水中所有被去除的離子,出水提前超出規定,導致交換器過早地失效,降低了工作效率。因此,順流再生固定床只選用於設備出水較小,原水被去除的離子和含鹽量較低的場合。
逆流再固定床的再生有兩種操作方式:一是水流向下流的方式,一是水流向上流的方式,逆流再生可以彌補順流再生的缺點,而且出水質量顯著提高,原水水質適用范圍擴大,對於硬度較高的水,仍能保證出水水質,所以目前採用該法較多。
總起來說,固定床有出水水質好等優點,但固定床離子交換器存在三個缺點:一是樹脂交換容量利用率低,二是在同設備中進行產水和再生工序,生產不連續,三是樹脂中的樹脂交換能力使用不均勻,上層的飽和程度高,下層的低。
為克服固定床的缺點,開發出了連續式離子交換設備,即連續床。
⑵連續床又分為移動床和流動床
移動床的特點是樹脂顆粒不是固定在交換器內,而是處於一種連續的循環運動過程中,樹脂用量可減少三分之一至二分之一,設備單位容積的處理水量還可得到提高,如雙塔移動床系統和三塔移動床系統。
流動床是運行完全連續的離子交換系統,但其操作管理復雜,廢水處理中較少應用。
;