陰陽離子交換樹脂工作原理:
離子交換是帶電粒子或離子的可逆交換與相同電荷的交換。當存在於不溶性陰陽離子交換樹脂樹脂基質上的離子有效地與周圍溶液中存在的類似電荷的離子交換位置時,會發生這種情況。
陰陽離子交換樹脂樹脂以這種方式起作用,因為它的官能團基本上是固定的離子,它們永久地結合在樹脂的聚合物基質中。這些帶電離子將容易與相反電荷的離子結合,這些離子通過施加抗衡離子溶液而被輸送。這些反離子將繼續與官能團結合,直至達到平衡。
在陰陽離子交換樹脂循環期間,將待處理的溶液加入陰陽離子交換樹脂樹脂床中並使其流過珠粒。當溶液移動通過陰陽離子交換樹脂樹脂時,樹脂的官能團吸引溶液中存在的任何抗衡離子。如果官能團對新抗衡離子的親和力大於已經存在的那些,那麼溶液中的離子將移除現有的離子並取代它們,通過共享的靜電吸引力與官能團結合。通常,離子的尺寸和/或價數越大,其與相反電荷的離子的親和力就越大。
讓我們將這些概念應用於典型的陰陽離子交換樹脂水軟化系統。在該實施例中,軟化機理由陽離子交換樹脂組成,其中磺酸根陰離子(SO 3 -)官能團固定在陰陽離子交換樹脂樹脂基質上。然後將含有鈉陽離子(Na +)的抗衡離子溶液施加到樹脂上。通過靜電吸引將Na +保持在固定的SO 3 -陰離子上,在樹脂中產生凈中性電荷。在活性陰陽離子交換樹脂循環期間,將含有硬離子(Ca 2+或Mg 2+)的流加入到陽離子交換樹脂中。自SO 3 -官能團對硬度陽離子的親和力大於對Na +離子的親和力,硬離子取代Na +離子,然後Na +離子作為處理流的一部分流出陰陽離子交換樹脂單元。另一方面,硬度離子(Ca 2+或Mg 2+)由陰陽離子交換樹脂樹脂保留。
陰陽離子交換樹脂成分有哪些?
陰陽離子交換樹脂樹脂基質通過在稱為聚合的過程中使烴鏈彼此交聯而形成。交聯使樹脂聚合物具有更強,更有彈性的結構和更大的容量(按體積計)。雖然大多數陰陽離子交換樹脂樹脂的化學組成是聚苯乙烯,但某些類型是由丙烯酸(丙烯腈或丙烯酸甲酯)製造的。然後樹脂聚合物經歷一種或多種化學處理以將官能團結合到位於整個基質中的離子交換位點。這些官能團賦予陰陽離子交換樹脂樹脂其分離能力,並且從一種樹脂到下一種樹脂會有很大差異。最常見的成分包括:
強酸陽離子(SAC)交換樹脂
SAC樹脂由聚苯乙烯基質和磺酸鹽(SO 3 -)官能團組成,其中帶有鈉離子(Na 2+)用於軟化應用,或氫離子(H +)用於脫礦質弱酸陽離子(WAC)交換樹脂。WAC樹脂由丙烯酸聚合物組成,該聚合物已用硫酸或苛性鈉水解以產生羧酸官能團。由於它們對氫離子(H +)的高親和力,WAC樹脂通常用於選擇性地除去與鹼度相關的陽離子。
強鹼陰離子(SBA)交換樹脂
SBA樹脂通常由經過氯甲基化和胺化的聚苯乙烯基質組成,以將陰離子固定到交換位點。1型SBA樹脂是通過應用三甲胺生產的,其產生氯離子(Cl -),而2型SBA樹脂通過應用二甲基乙醇胺生產,其產生氫氧根離子(OH -)。
弱鹼陰離子(WBA)交換樹脂
WBA樹脂通常由經過氯甲基化的聚苯乙烯基質組成,然後用二甲胺胺化。WBA樹脂的獨特之處在於它們不具有可交換的離子,因此用作酸吸收劑以除去與強無機酸相關的陰離子。
螯合樹脂
螯合樹脂是最常見的特種樹脂類型,用於選擇性去除某些金屬和其他物質。在大多數情況下,樹脂基質由聚苯乙烯組成,盡管多種物質用於官能團,包括硫醇,三乙基銨和氨基膦等。
Ⅱ 2,2-二羥甲基丁酸的用途
目前使用的二羥甲基羧酸親水擴鏈劑主要有DMPA和DMBA兩種,其中DMPA使用時間較早,是目前使用最為普遍的一種。雖然它有許多優點,但是還存在許多缺點,主要是自身熔點較高(180 ℃-185℃),很難加熱熔解,這就需要加入有機溶劑如N-甲基吡咯烷酮(NMP)、N.N-二甲基醯胺(DMF)、丙酮等,而NMP沸點高,制備APU後很難除去。而且DMPA在丙酮中溶解度較小,在合成過程需要加入大量的丙酮,脫酮過程既浪費能源又帶來安全隱患。所以說使用DMPA不僅生產能耗高,而且產品中易造成有機殘留等。而DMBA由於有其特殊的分子結構,可以在合成過程不需要消耗一點溶劑,這樣不僅縮短了反應時間,降低能耗,而且節省能源。DMBA和DMPA相比,DMBA存在如下明顯優點:
(1). DMBA在有機溶劑中有更好的溶解性,表2為DMBA與DMPA在不同溫度下,在不同溶劑中的溶解度數據;
表2:DMBA與DMPA在不同溫度下,在不同溶劑中的溶解度數據 序號 溫 度
℃ 丙酮 甲基乙基甲酮 甲基異丁基甲酮 DMBA DMPA DMBA DMPA DMBA DMPA 1 20 15 1 7 0.4 2 0.1 2 40 44 2 14 0.8 7 0.5 溶解度:單位g/100g溶劑
DMBA在水中溶解度為48%,DMPA為12%。
同時DMBA熔點低,為108℃~115℃ ;
由於DMBA具有優良的溶解性和低熔點,因而它在合成水性聚氨酯乳液過程不需要溶劑或少加溶劑。
謝偉等人在《DMBA基水性聚氨酯乳液的合成研究》表明:利用DMBA作為親水擴鏈劑,採用後擴鏈工藝,整個反應過程6h基本可以完成,不用溶劑,使得產品環保,而且不需脫溶,避免浪費。
劉都寶等人在《無溶劑水性聚氨酯的合成及性能研究》表明:在用DMBA合成水性聚氨酯過程,不要加一點溶劑既可以完成整個反應過程,而且反應結果附合配方設計。
(2).高反應率,反應速度快,反應溫度低。
合成聚氨酯預聚體反應時間短,一般只要50-60分鍾,而DMPA則要150-180分鍾。這是因為DMBA結構中比DMPA多了一個亞甲基,使羧基與亞甲基的距離加大,羧基與異氰酸酯的空間位阻減少,從而使反應速率增大。
(3).用於水性聚氨酯乳液其粒徑更細且分布窄,膠膜性能優異,光澤度高。
劉都寶等人在《無溶劑水性聚氨酯的合成及性能研究》中,分別以二羥基丁酸(DMBA)、異佛爾酮二異氰酸酯(IPDI)、聚氧化丙烯二醇(PPG-220)等主要原料,採用預聚體法合成無溶劑型水性聚氨酯樹脂,與DMPA基合成的WPU進行對比,其具體數據見表3.
表3:DMBA、DMPA聚氨酯乳液性能比較: 編號 拉伸強度/(MPa) 斷裂伸長率/(%) 模量/(MPa) 手感 光澤 P-1 7.6 464 4.6 好 78 P-2 9.4 495 5.4 一般 85 B-3 33.5 1290 17.5 好 84 B-2 46.7 1186 19.7 較好 90 註:P-1、P-1 代表DMPA中羧基含量是1.0%和2.0%,B-1、B-1代表DMBA中羧基含量是1.0%和2.0%。
劉都寶等人經研究認為,DMBA聚氨酯乳液的位伸強度和斷裂伸長率高於DMPA聚氨酯,原因是:一是DMBA的分子結構,龐大的側鏈-CH2COO-妨礙了聚氨酯硬段的聚集,硬段堆砌程度差,使硬段本身在軟段基質中溶解度偏高,硬段微區中硬段減小,這些因素會導致模量下降,然而低模量會導致較大的斷裂伸長,反過來較大的斷裂伸長又會使軟段產生進一步的應力結晶,結果出現較高的拉伸強度。二是DMBA具有比DMPA更低的熔點,而且DMBA容易熔於多元醇,所以在相同的時間內DMBA可以完全按照配方反應,而由於DMPA只有一部分溶解反應掉,所以DMBA比DMPA合成的分子量大,力學性能更優越。DMBA光澤度比DMPA的光澤度高的原因,可能是由於DMBA的親水性更好,導致乳 液的粒徑比較小,粒子較均勻。
綜上所述,二羥甲基丁酸具有比二羥甲基丙酸無法比擬的優勢,可以認為是目前己知性能最優的親水基化合物。
隨著國家對環保政策的日益嚴厲,各項法規相繼出台,我國的水性樹脂的必將快速發展,水基材料替代傳統的油性材料已是大勢所趨,二羥甲基丁酸作為一種性能更優的羧酸型親水擴鏈劑,必將迎來廣闊的市場。
Ⅲ 2,2-二羥基丁酸,10097-02-6,這產品用途是
目前使用的二羥甲基丁酸親水擴鏈劑主要有DMPA和DMBA兩種,其中DMPA使用時間較早,是目前使用最為普遍的一種。雖然它有許多優點,但是還存在許多缺點,主要是自身熔點較高(180 ℃-185℃),很難加熱熔解,這就需要加入有機溶劑如N-甲基吡咯烷酮(NMP)、N.N-二甲基醯胺(DMF)、丙酮等,而NMP沸點高,制備APU後很難除去。而且DMPA在丙酮中溶解度較小,在合成過程需要加入大量的丙酮,脫酮過程既浪費能源又帶來安全隱患。所以說使用DMPA不僅生產能耗高,而且產品中易造成有機殘留等。而DMBA由於有其特殊的分子結構,可以在合成過程不需要消耗一點溶劑,這樣不僅縮短了反應時間,降低能耗,而且節省能源。
Ⅳ 2-羥基-2-甲基丁酸的合成路線有哪些
基本信息:
中文名稱
2-羥基-2-甲基丁酸
中文別名
Β-羥基-Β-甲基丁酸;β-羥基-β-甲基丁酸;2-羥基-2-甲基正丁酸;HMB酸;2-羥基-2-甲基-N-丁酸;
英文名稱
2-hydroxy-2-methylbutyric
acid
英文別名
2-hydroxy-2-methylbutanoic
acid;2-Hydroxy-2-methylbutyric
acid;2-Hydroxy-2-methylbutanoic
acid;2-Hydroxy-2-methylbutyric
Acid;
CAS號
3739-30-8
合成路線:
1.通過三溴甲烷和2-丁酮合成2-羥基-2-甲基丁酸,收率約80%;
2.通過3,6-二甲基-4-辛炔-3,6-二醇合成2-羥基-2-甲基丁酸
更多路線和參考文獻可參考http://ke.molbase.cn/cidian/33462
Ⅳ 乙醇合成2-甲基-2-羥基丁酸
2-甲基-2羥基丁酸中有兩個甲基有兩個羥基一個羧酸,而題目中要乙醇制備,現在缺什麼咱們就加什麼,羥基有了,甲基也有了,現在缺少羧基,一個乙醇有一個甲基和一個羥基,而題目中要兩個甲基,一個羧基,一個羧基,再根據碳鏈結構可得,產物最碳鏈是4,先由乙醇生成乙酸,乙醇和乙酸生成醛類,再氫化,過程就是這樣。
Ⅵ 誰知道水處理用離子交換樹脂的合成
1.離子交換樹脂的基本類型
(1) 強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
(2) 弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
(3) 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
(4) 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
(5) 離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
2、離子交換樹脂基體的組成
離子交換樹脂的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
除上述苯乙烯系和丙烯酸系這兩大系列以外,離子交換樹脂還可由其他有機單體聚合製成。如酚醛系(FP)、環氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、離子交換樹脂的物理結構
離子樹脂常分為凝膠型和大孔型兩類。
凝膠型樹脂的高分子骨架,在乾燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔(micro-pore)。濕潤樹脂的平均孔徑為2~4nm(2×10-6 ~4×10-6mm)。
這類樹脂較適合用於吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因後者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量永久性的微孔,再導入交換基團製成。它並存有微細孔和大網孔(macro-pore),潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在製造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力(van de Waal's force)產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
4、離子交換樹脂的離子交換容量
離子交換樹脂進行離子交換反應的性能,表現在它的「離子交換容量」,即每克干樹脂或每毫升濕樹脂所能交換的離子的毫克當量數,meq/g(干)或 meq/mL(濕);當離子為一價時,毫克當量數即是毫克分子數(對二價或多價離子,前者為後者乘離子價數)。它又有「總交換容量」、「工作交換容量」和「再生交換容量」等三種表示方式。
1、總交換容量,表示每單位數量(重量或體積)樹脂能進行離子交換反應的化學基團的總量。
2、工作交換容量,表示樹脂在某一定條件下的離子交換能力,它與樹脂種類和總交換容量,以及具體工作條件如溶液的組成、流速、溫度等因素有關。
3、再生交換容量,表示在一定的再生劑量條件下所取得的再生樹脂的交換容量,表明樹脂中原有化學基團再生復原的程度。
通常,再生交換容量為總交換容量的50~90%(一般控制70~80%),而工作交換容量為再生交換容量的30~90%(對再生樹脂而言),後一比率亦稱為樹脂的利用率。
在實際使用中,離子交換樹脂的交換容量包括了吸附容量,但後者所佔的比例因樹脂結構不同而異。現仍未能分別進行計算,在具體設計中,需憑經驗數據進行修正,並在實際運行時復核之。
離子樹脂交換容量的測定一般以無機離子進行。這些離子尺寸較小,能自由擴散到樹脂體內,與它內部的全部交換基團起反應。而在實際應用時,溶液中常含有高分子有機物,它們的尺寸較大,難以進入樹脂的顯微孔中,因而實際的交換容量會低於用無機離子測出的數值。這種情況與樹脂的類型、孔的結構尺寸及所處理的物質有關。
5、離子交換樹脂的吸附選擇性
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下:
(1) 對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(2) 對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3) 對有色物的吸附
糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。
通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
6、離子交換樹脂的物理性質
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。
(1) 樹脂顆粒尺寸
離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。
樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。
樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(IR-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。
(2) 樹脂的密度
樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/mL,視密度為0.85g/mL;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/mL,視密度為0.75g/mL。
(3) 樹脂的溶解性
離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。
(4) 膨脹度
離子交換樹脂含有大量親水基團,與水接觸即吸水膨脹。當樹脂中的離子變換時,如陽離子樹脂由H+轉為Na+,陰樹脂由Cl-轉為OH-,都因離子直徑增大而發生膨脹,增大樹脂的體積。通常,交聯度低的樹脂的膨脹度較大。在設計離子交換裝置時,必須考慮樹脂的膨脹度,以適應生產運行時樹脂中的離子轉換發生的樹脂體積變化。
(5) 耐用性
樹脂顆粒使用時有轉移、磨擦、膨脹和收縮等變化,長期使用後會有少量損耗和破碎,故樹脂要有較高的機械強度和耐磨性。通常,交聯度低的樹脂較易碎裂,但樹脂的耐用性更主要地決定於交聯結構的均勻程度及其強度。如大孔樹脂,具有較高的交聯度者,結構穩定,能耐反復再生。
7、離子交換樹脂的品種
離子交換樹脂在國內外都有很多製造廠家和很多品種。國內製造廠有數十家,主要的有上海樹脂廠、南開大學化工廠、晨光化工研究院樹脂廠、南京樹脂廠等;國外較著名的如美國Rohm & Hass公司生產的Amberlite系列、Dow化學公司的Dowex系列、法國Duolite系列和Asmit系列、日本的Diaion系列,還有Ionac系列、Allassion系列等。樹脂的牌號多數由各製造廠或所在國自行規定。國外一些產品用字母C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母),如Amberlite的IRC和IRA分別為陽樹脂和陰樹脂,亦分別代表陽樹脂和陰樹脂。我國化工部規定(HG2-884-76),離子交換樹脂的型號由三位阿拉伯數字組成。第一位數字代表產品的分類:0 代表強酸性,1代表弱酸性,2代表強鹼性,3代表弱鹼性,4代表螯合性,5代表兩性,6代表氧化還原。第二位數字代表不同的骨架結構:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表環氧系等。第三位數字為順序號,用以區別基體、交聯基等的差異。此外大孔型樹脂在數字前加字母D。因此,D001是大孔強酸性苯乙烯系樹脂。
Ⅶ 陰離子交換樹脂的合成反應
陰離子交換樹脂是季銨型強鹼性樹脂,是以苯乙烯和二乙烯苯共聚,經錄甲基化反應及胺化反應製得。陰離子交換樹脂具有與陽離子交換樹脂同樣的有機骨架,只是在骨架上引入了可離解的鹼性基團,如—NH、—NH、—NHR等。這類樹脂若用NaOH溶液處理,則發生交換反應而轉變為—OH型陰離子交換樹脂。
離子交換樹脂是分子中含有活性基團而能與其他物質進行離子交換的樹脂,通常可分為陽離子交換樹脂和陰離子交換樹脂兩類,前者具有酸性功能團而能與溶液中陽離子進行交換,後者具有鹼性功能團而能與溶液中陰離子進行交換。
Ⅷ 離子交換樹脂如何合成
離子交換樹脂
ionexchangeresins
一類帶有功能基的網狀結構的高分子化合物。不熔不溶,能同溶液中的離子進行非均相交換反應。最主要的離子交換反應有:
①陽離子交換樹脂的交換反應:R--H++Na+Cl-R--Na++H+Cl-R為高分子強酸基,如結構式a、b。
②陰離子交換樹脂的交換反應:R+OH-+Na+Cl-R+Cl-+Na+OH-R為高分子強鹼基,如結構式c。
按外觀形狀及物理性質(孔度及分布、比表面、孔徑等)分為凝膠、大孔和離子交換膜;按用途有選擇交換用、脫色用、吸著用、電子交換(氧化還原)用等;根據母體的化學結構可分為苯乙烯系列、丙烯酸系列、酚醛類系列等;根據離子交換樹脂中活性基團的性質可分為強酸性、中等酸性、弱酸性、強鹼性、中等鹼性、弱鹼性和氧化還原性等。含酸性基團的離子交換樹脂,能同溶液里的陽離子起交換反應,稱陽離子交換樹脂;含鹼性基團的則稱為陰離子交換樹脂。若同時含酸性和鹼性基團的,稱為兩性樹脂;若樹脂與溶液里的高價陽離子作用後,能形成鉗環形的絡合物,則稱為螯合樹脂。
離子交換樹脂的主要應用為:①水處理,除去水中的鈣、鎂和鐵離子以使工業用水軟化及獲得電子、半導體、原子能工業用的無離子水。②分離、濃縮、提純和回收鈾、稀土元素、貴金屬及鉻、銅等。③醫學和醫葯上的回收、分離和提純。④作為有機合成中的固體酸鹼催化劑。⑤食品及生物製品的脫色。⑥作化學試劑用於外消旋物拆分、固相合成。
化學式見:
http://cache..com/c?word=%C0%EB%D7%D3%3B%BD%BB%BB%BB%3B%CA%F7%D6%AC&url=http%3A//www%2Ecoco163%2Ecom/zldq/L/L0446%2Ehtm&b=0&a=91&user=
Ⅸ 離子交換樹脂的原理
離子交換樹脂是由空間網狀結構骨架(即母體)與附屬在骨架上的許多活性內基團所構成的容不溶性高分子化合物。活性基團遇水電離,分成二部分:(1)固定部分,仍與骨架牢固結合,不能自由移動,構成固定離子;(2)活動部分,能在一定空間內自由移動,並與其周圍溶液中的其他同性離子進行交換反應,稱為可交換離子或反離子。以強酸性陽離子交換樹脂為例,可寫成R-SO3-H+,其中R代表樹脂母體即網狀結構部分,-SO3- 代表活性基團的固定離子,H+為活性基團的可交換離子。有時更簡單地寫成R-H+。離子交換通過不溶性的電解質(樹脂)與溶液中的另一種電解質進行化學反應。這一反應可以是中和反應、中性鹽分解或復分解反應。譬如中和反應:
R-H+ + NaOH= RNa+H2O 利用這個反應可以去除水的鹼度。