導航:首頁 > 凈水問答 > 離子交換和魔法的差別

離子交換和魔法的差別

發布時間:2022-07-07 21:28:31

A. 陽離子交換

1.陽離子交換

按質量作用定律,陽離子交換反應可以表示為

水文地球化學基礎

式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧指活度。

在海水入侵過程中,准確模擬陽離子交換作用是預測陽離子在含水層中運移的前提條件。按照質量作用定律可以用一個平衡常數把離子交換作為一種反應來描述。例如Na+、Ca2+的交換:

水文地球化學基礎

平衡常數為:

水文地球化學基礎

式(3—115)表明,交換反應是等當量的,是個可逆過程;兩個Na+交換一個Ca2+。如果水中的Na+與吸附在固體顆粒表面的Ca2+(即CaX)交換,則反應向右進行;反之,則向左進行。如果反應向右進行,Ca2+是解吸過程,而Na+是吸附過程。所以,陽離子交換實際上是一個吸附—解吸過程。Na+、Ca2+的交換是一種最廣泛的陽離子交換。當海水入侵淡水含水層時,由於海水中Na+遠高於淡水,而且淡水含水層顆粒表面可交換的陽離子主要是Ca2+,因此產生Na+、Ca2+之間的離子交換,Na+被吸附而Ca2+被解吸,方程(3—115)向右進行;當淡水滲入海相地層時,則Na+被解吸而Ca2+被吸附,反應向左進行。

2.質量作用方程

描述離子交換反應的方程式有多種,通常主要是通過對實驗數據的最佳擬合來決定選擇哪一種方程式,眾多的研究者很難達成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因為目前並沒有一個統一的理論來計算吸附劑上的離子活度,而前面提到的迪拜—休克爾方程、戴維斯方程都是適用於水溶液中的離子活度計算。

交換性陽離子活度有時用摩爾分數來計算,但更為常用的是當量分數作為交換位的數量分數或者作為交換性陽離子的數量分數。在一種理想的標准狀態下,交換劑只被一種離子完全占據,交換離子的活度等於1。對於等價交換使用哪一種方程式沒有區別,但是對於非等價交換影響十分顯著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函數形式:

水文地球化學基礎

即為交換位濃度(單位質量吸附劑的摩爾數)與無單位函數

)和

)的乘積。這些函數依賴於溶液中陽離子的活度。

海水入侵過程中的交換反應主要為Na+與Ca2+之間的交換,通常寫作:

水文地球化學基礎

X為—1價的表面交換位,交換位X的總濃度為

水文地球化學基礎

式中:S指每單位質量固體的總交換位濃度,mol/g。這種情況下S的量等於陽離子交換容量(只要單位換算統一即可)。

水文地球化學基礎

式(3—120)的書寫方式符合Gaines—Thomas方程式,Gaines(蓋恩斯)和Thomas(托馬斯)(1995)最先給出交換性陽離子熱動力學標准態的嚴格定義。它使用交換性陽離子的當量分數作為吸附離子的活度。若式(3—120)使用摩爾分數,則遵守Vanselow(1932)公式。

如果假定吸附陽離子的活度和被離子占據的交換位的數目成正比,反應式(3—115)則可寫成

水文地球化學基礎

式(3—122)符合Gapon(加彭)方程式。在Gapon方程式中,摩爾分數和當量分數是一樣的,都是電荷為—1的單一交換位。

還有一種交換形式為:

水文地球化學基礎

Y指交換位的電荷為—2,這種反應式同樣是交換反應的一種有效熱力學描述。它假定交換位Y的總濃度為

水文地球化學基礎

S則為陽離子交換容量的二分之一。Cernik(采爾尼克)等根據當量分數利用反應式(3—123),將交換系數表示為:

水文地球化學基礎

3.質量作用方程擬合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式對在砂樣中進行的試驗所獲得的數據進行擬合,根據擬合結果作出 Na+、Ca2+、Mg2+、K+吸附等溫線(劉茜,2007),如圖3—4~圖3—7所示。

圖3—4 Na+吸附等溫線和擬合數據

由吸附等溫線可以看出,砂樣對Na+、Mg2+、K+的吸附量均隨著溶液中離子濃度的增加而逐漸增加,而Ca2+發生解吸。圖3—4中,砂樣對Na+的吸附量隨溶液中離子濃度的增加而緩慢增加。圖3—5中,在Ca2+濃度較低時,解吸量迅速增大,當Ca2+濃度較高時,隨濃度增加解吸量增加緩慢,逐漸趨於平穩狀態。

圖3—6中Mg2+濃度較低時,吸附量增加較慢,在較高濃度時增加較快,但並沒有出現Ca2+的解吸等溫線中的平穩狀態,依然為直線型,且直線的斜率大於低濃度狀態時的斜率,說明Na+、Mg2+的吸附速率在低濃度(海水含量為20%左右)時較小,在高濃度時,吸附速率變大;Ca2+的解吸在高濃度時基本達到平衡,而Na+、Mg2+還有增長趨勢,也較好證明了試驗所用砂樣的交換位主要為Ca2+所佔據。圖3—7中K+實測值的吸附等溫線則沒有出現Ca2+、Na+、Mg2+的規律,雖然整體上隨著溶液離子濃度的增加,吸附量也是增長趨勢,但並沒有出現直線規律。究其原因,主要是陽離子交換吸附作用不大,主要是化學吸附,因為K+的水化膜較薄,所以有較強的結合力,K+被吸附後,大多被牢固吸附在黏土礦物晶格中。

圖3—5 Ca2+吸附等溫線和擬合數據

圖3—6 Mg2+吸附等溫線和擬合數據

圖3—7 K+吸附等溫式和擬合數據

由吸附等溫線模擬圖(圖3—4~圖3—7)及公式與試驗數據擬合的相關系數(表3—17)看出,GT方程式擬合效果較好,能夠很好地預測離子交換趨勢。因此,在多組分離子交換模擬計算中採用Gaines—Thomas方程,為陽離子交換的定量研究提供了依據。

表3—17 GT、GP、VS方程式擬合的相關系數

所以根據Gaines—Thomas方程式(3—126)~式(3—131)計算離子交換系數(表3—18)。由於 9 種配比濃度的離子強度不同,所以各自的交換系數也有所差別。對比

可知3種離子的吸附親和力順序為Mg2+>K+>Na+。但是由於海水中Na+、Mg2+含量遠遠高於地下水,尤其是Na+的含量比地下水高出3個數量級,因此,海水入侵過程中以Ca2+、Na+交換為主,其次為Ca2+、Mg2+交換,交換量最少的為Ca2+、K+

水文地球化學基礎

表3—18 試驗土樣不同濃度下的交換系數

B. 離子交換法和膜分離法處理水時,對進水水質的要求有哪些不同

膜分離:是利用水流體中各個組分對膜兒的滲透速率的差別而實現的組分分離的單元操作。
離子交換法:是加入些離子從而改變組分的揮發度從而進行分離。

C. 離子交換色譜法,離子色譜法,離子對色譜法三者的區別

離子色譜是高效液相色譜的一種,故又稱高效離子色譜(HPIC)或現代離子色譜,其回有別於傳統離子交換色譜柱答色譜的主要是樹脂具有很高的交聯度和較低的交換容量,進樣體積很小,用柱塞泵輸送淋洗液通常對淋出液進行在線自動連續電導檢測。
離子對色譜法:不懂

D. 請問ZSM-5改性浸漬法和離子交換法的優劣

離子交換
法和
浸漬法
是兩種改性方法。二者有不同,離子交換的原理使回依靠
靜電作用
,即某答一位置有一個電荷,需要一個相反的電荷與其相互作用形成
電子對
才能交換,且交換上去的量隨條件不同而有影響。浸漬法中少量的是依靠離子交換上去的,而大部分是負載上去的,形成的是濃度
競爭效應
,而且通過計算可以定量負載的
金屬離子
的百分比。

E. 吸附法和離子交換法異同

吸附法有物理吸附和化學吸附之分,物理吸附如活性炭,把待吸附物吸附在本身版的表面權,但是可逆過程,化學吸附是通過化學反應將待吸附物吸附,是不可逆的.而離子交換是在溶液或某種介質下兩種物質中得離子發生交換,達到去除某種離子的目的

F. 離子交換法富集分離陽離子和陰離子的原理各是什麼

離子交換樹脂是利用被分離離子交換能力的差別而實現分離的,一般情況下價內態高的離子選擇系容數大,如鐵離子的交換順序大於鈣離子,具體情況如下:對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:fe3+
>
al3+
>
pb2+
>
ca2+
>
mg2+
>
k+
>
na+
>
h+
對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:so42->
no3-
>
cl-
>
hco3-
>
oh-

弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:oh->
檸檬酸根3-
>
so42-
>
酒石酸根2-
>草酸根2-
>
po43-
>no2-
>
cl-
>醋酸根-
>
hco3-

G. 離子交換層析法原理是什麼

是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別,而進行分離的一種層析方法

H. 吸附薄層層析與分配,離子交換薄層層分析的區別

離子交換層析(Ion Exchange Chromatography簡稱為IEC)是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。1848年,Thompson等人在研究土壤鹼性物質交換過程中發現離子交換現象。本世紀40年代,出現了具有穩定交換特性的聚苯乙烯離子交換樹脂。50年代,離子交換層析進入生物化學領域,應用於氨基酸的分析。目前離子交換層析仍是生物化學領域中常用的一種層析方法,廣泛的應用於各種生化物質如氨基酸、蛋白、糖類、核苷酸等的分離純化。常用的離子交換劑有:離子交換纖維素、離子交換葡聚糖和離子交換樹脂 。
離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。離子交換層析同樣可以用於蛋白質的分離純化。由於蛋白質也有等電點,當蛋白質處於不同的pH條件下,其帶電狀況也不同。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將
吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。
⒈離子交換劑預處理和裝柱對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。
⒉加樣與洗脫加樣:層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。
洗脫:已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不致於太擁擠。②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
⒊洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
⒋離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建立用0.02%疊氮鈉。
⒌離子交換層析的應用離子交換層析技術已廣泛用於各學科領域。在生物化學及臨床生化檢驗中主要用於分離氨基酸、多肽及蛋白質,也可用於分離核酸、核苷酸及其它帶電荷的生物分子。

概念
層析是「色層分析」的簡稱。利用各組分物理性質的不同,將多組分混合物進行分離及測定的方法。有吸附層析、分配層析兩種。一般用於有機化合物、金屬離子、氨基酸等的分析。
層析(chromatography)利用物質在固定相與流動相之間不同的分配比例,達到分離目的的技術。層析對生物大分子如蛋白質和核酸等復雜的有機物的混合物的分離分析有極高的分辨力。
[編輯本段]語源學
chrome意為「色彩」,graphy源自希臘文,意為「寫」。色譜為層析的同義語,都是從英語chromatography譯來的。
層析(色譜) chromatograpby
在把微細分散的固體或是附著於固體表面的液體作為固定相,把液體(與上述液體不相混合的)或氣體作為移動相的系統中,使試料混合物中的各成分邊保持向兩相分布的平衡狀態邊移動,利用各成分對固定相親和力不同所引起的移動速度差,將它們彼此分離開的定性與定量分析方法,稱為層析,亦稱色譜法。根據移動相種類的不同,分為液體層析、氣體層析二種。用作固定相的有矽膠、活性炭、氧化鋁、離子交換樹脂、離子交換纖維等,或是在硅藻土和纖維素那樣的無活性的載體上附著適當的液體,也可使用其他物質。將作為固定相的微細粉末狀物質裝入細長形圓筒中進行的層析稱為柱層析(column chromatogra-phy),在玻璃板上塗上一層薄而均的物質作為固定相的稱為薄層層析(thin-layer chromatography),後者可與用濾紙作為固定相的紙上層析進行同樣的分析,即在固定相的一端,點上微量試料,在密閉容器中,使移動相(液體)從此端滲入,移動接近另一端。通過這種展開操作,各成分呈斑點狀移動到各自的位置上,再根據Rf值的測定進行鑒定。當斑點不易為肉眼觀察時,可利用適當的顯色劑,或通過紫外燈下產生熒光的方法進行觀察。也可採用在第一種移動相展開後再用另一移動相進行展開(這時的展開方向應與原方向垂直),使各成分分離完全的雙相層析(two-dimensional chromatography)。分離後,將斑點位置的固定相切取下來,把其中含有來自試料的物質提取進行定量分析。但為制備與定量,柱層析則更為適宜。在柱層析中,移動相從加入試料的一端展開到達另一端後,繼續展開使各成分和移動相一起向柱外分別溶出,這就是廣泛使用的所謂洗提層析(elution chromatography)。層析根據固定相與溶質(試料)間親和力的差異分為吸附型、分配型、離子交換型(離子交換層析)等三種類型。但這並不是很嚴格的,有時常見到其中間類型。此外,近來也應用親和層析,即將與基質類似的化合物(通常為共價鍵)結合到固定相上,再利用其特異的親和性沉澱與其對應的特定的酶或蛋白質。
[編輯本段]類別
◆按層析的機理劃分:
吸附層析、分配層析、離子交換層析、凝膠過濾層析、親和層析等。
吸附層析:利用吸附劑表面對不同組分吸附性能的差異,達到分離鑒定的目的。
分配層析:利用不同組分在流動相和固定相之間的分配系數不同,使之分離。
離子交換層析:利用不同組分對離子交換劑親和力的不同。
凝膠層析:利用某些凝膠對於不同分子大小的組分阻滯作用的不同。
◆按流動相與固定相的不同劃分:
氣相層析、液相層析。這兩大類層析是以流動相不同來劃分的。如同時區分流動相和固定相,劃分為:氣固層析、氣液層析、液固層析和液液層析等。
◆按操作形式劃分:
柱層析、紙層析、薄層層析、高效液相層析等。
柱層析:將固定相裝於柱內,使樣品沿一個方向移動而達到分離。
紙層析:用濾紙做液體的載體,點樣後,用流動相展開,以達到分離鑒定的目的。
薄層層析:將適當粒度的吸附劑鋪成薄層,以紙層析類似的方法進行物質的分離和鑒定。
以上劃分無嚴格界限,有些名稱相互交叉,如親和層析應屬於一種特殊的吸附層析,紙層析是一種分配層析,柱層析可做各種層析。
[編輯本段]基本原理
層析須在兩相系統間進行。一相是固定相,需支持物,是固體或液體。另一相為流動相,是液體或氣體。當流動相流經固定相時,被分離物質在兩相間的分配,由平衡狀態到失去平衡到又恢復平衡,即不斷經歷吸附和解吸的過程。隨著流動相不斷向前流動,被分離物質間出現向前移動的速率差異,由開始的單一區帶逐漸分離出許多區帶,這個過程叫展層。
系數K是物質在兩相中的濃度比。K值大,則在固定相中吸附牢,K值小吸附差。各物質間的K值差別大,則易被分離。不同類型層析的K值含義不同,可視為吸附平衡常數,分配常數或離子交換常數等。
研究層析現象而發展的塔板理論,與有機化學實驗中的分餾法原理有些相似。被分餾的有機溶劑在分餾柱內的填充物上形成許多熱交換層,從而把低沸點溶劑先分餾出來,達到純化的目的。在層析時用理論塔板數n來衡量層析效能。
tR為物質在層析柱上的保留時間,W為洗脫下來的物質峰形的寬度。n值愈大表示層析柱的效能愈高。如用理論塔板高度H表示,則包含了層析柱長度的因子。
式中L為層析柱的柱長。H值越大,則柱效越低。
此外影響層析分離效果的還有渦流擴散、縱向擴散和傳質阻抗等因素。因此選擇層析固定相支持物的粒度、均勻度等物理性能,流動相的層析系統和溫度等都是做好層析的關鍵。
[編輯本段]幾種常用的層析
◆吸附層析
吸附劑的吸附力強弱,是由能否有效地接受或供給電子,或提供和接受活潑氫來決定。被吸附物的化學結構如與吸附劑有相似的電子特性,吸附就更牢固。常用吸附劑的吸附力的強弱順序為:活性炭、氧化鋁、硅膠、氧化鎂、碳酸鈣、磷酸鈣、石膏、纖維素、澱粉和糖等。以活性炭的吸附力最強。吸附劑在使用前須先用加熱脫水等方法活化。大多數吸附劑遇水即鈍化,因此吸附層析大多用於能溶於有機溶劑的有機化合物的分離,較少用於無機化合物。洗脫溶劑的解析能力的強弱順序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。為了能得到較好的分離效果,常用兩種或數種不同強度的溶劑按一定比例混合,得到合適洗脫能力的溶劑系統,以獲得最佳分離效果。
◆分配層析
在支持物上形成部分互溶的兩相系統。一般是水相和有機溶劑相。常用支持物是硅膠、纖維素和澱粉等,這些親水物質能儲留相當量的水。被分離物質在兩相中都能溶解,但分配比率不同,展層時就會形成以不同速度向前移動的區帶。
◆離子交換層析
支持物是人工交聯的帶有能解離基團的有機高分子,如離子交換樹脂、離子交換纖維素、離子交換凝膠等。帶陽離子基團的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等為陽離子交換劑。帶陰離子基團的,如DEAE—(二乙基胺乙基)和QAE—(四級胺乙基)等為陰離子交換劑。離子交換層析只適用於能在水中解離的化合物,包括有機物和無機物。對於蛋白質、核酸、氨基酸及核苷酸的分離分析有極好的分辨力。離子交換基團在水溶液中解離後,能吸引水中被分離物的離子,各種物質在離子交換劑上的離子濃度與周圍溶液的離子濃度保持平衡狀態,各種離子有不同的交換常數,K值愈高,被吸附愈牢。洗脫時,增加溶液的離子強度,如改變pH,增加鹽濃度,離子被取代而解吸下來。洗脫過程中,按K值不同,分成不同的區帶。
◆凝膠過濾層析
支持物是人工合成的交聯高聚物,在水中膨脹後成為凝膠。凝膠內為內水層,凝膠周圍的水為外水層。控制交聯度以形成不同孔徑的網狀結構。交聯度小的孔徑大,交聯度大的孔徑小。凝膠只允許被分離物質中小於孔徑的分子進入,大於孔徑的分子被排斥在外水層,最先被洗脫下來。而進入孔徑的分子也按分子量大小大致分離成不同的區帶。選擇不同規格的凝膠,可把一個混合物按分子量的差異分成不同的組分。這種方法曾被稱為分子篩。目前常用的凝膠商品有:葡聚糖凝膠(sephadex)、聚丙烯醯胺凝膠(bio-gel)、瓊脂糖凝膠(sepharose)和聚苯乙烯凝膠(styragel)等。
◆親和層析
在一對有專一的相互作用的物質中,把其中之一聯結在支持物上,用於純化相對的另一物質。常見的親和對如:酶和抑制劑,抗原和抗體,激素和受體等。支持物為瓊脂糖或纖維素等。
◆氣相層析
屬於分配層析或吸附層析,僅適用於分析分離揮發性和低揮發性物質。固定相是在惰性支持物(如磨細的耐火磚)上覆蓋一層高沸點液體,如硅油、高沸點石蠟和油脂、環氧類聚合物。外塗層約為支持物重量的20%。分析時操作溫度范圍,一般從室溫到200℃。特殊的層析柱能達到500℃。流動相常用氦、氬或氮為展層氣體。氣相層析分離的區帶十分清晰,是由於揮發性物質在兩相間能很快達到平衡,所需分析時間大為縮短,一般為數分鍾至10餘分鍾。檢測記錄系統繪出的各峰是測定流出氣體電阻變化的結果,因而測定樣品量可到微克和毫微克水平。具有快速、靈敏和微量的優點。氣相層析也能用於分離制備樣品,但需增加將流出氣體通過冷凍將分離物回收的裝置。
◆紙層析
以濾紙為支持物的分配層析。組成濾紙的纖維素是親水物質,能形成水相和展層溶劑的兩相系統,被分離物質在兩相中的分配保持平衡關系。紙層析用於分析簡單的混合物時可做單向層析。對於復雜的混合物,可做雙向層析。1944年A.J.P.馬丁第一次用紙層析分析氨基酸,得到很好的分離效果,開創了近代層析的發展和應用的新局面。70年代以後,紙層析已逐漸為其他分辨力更高、速度更快和更微量化的新方法,如離子交換層析、薄層層析、高效液相層析等所代替。
◆薄層層析
在玻璃片、金屬箔或塑料片上鋪上一層約1~2毫米的支持物,如纖維素、硅膠、離子交換劑、氧化鋁或聚醯胺等,根據需要做不同類型的層析。聚醯胺薄膜是一種特異的薄層,將尼龍溶解於濃甲酸中,塗在滌綸片基上,當甲酸揮發後,在滌綸片基上形成一層多孔的薄膜,其分辨力超過了用尼龍粉鋪成的薄層。薄層層析較紙層析優越在於分辨高,展層時間短。例如用紙層析做氨基酸分析,往往需要兩天時間,而且對層析條件要求嚴格,不易得到滿意的分離效果。如用薄層層析做,一般約需半小時,分離效果更好。薄層層析一般用於定性分析。也能用於定量分析和制備樣品。
◆高效液相層析(又名高壓液相色譜)
70年代新發展的層析法。其特點是:用高壓輸液泵,壓強最高可達5000psi(相當於34個標准大氣壓)。用直徑約3~10微米的超細支持物裝填均勻的不銹鋼柱。常用的支持物是在玻璃小珠上塗一層1~2微米的二氧化硅,經硫醯氯反應生成Si—Cl,進一步連接疏水的烷基,如Si—C18H37,或陽離子交換基團—Si(CH2)n—C6H4SO3H,或陰離子交換基團—Si(CH2)nNH2。這種支持物能承受很高的壓力,化學性能穩定。用不同類型支持物的HPLC,可做吸附層析、離子交換層析和凝膠過濾層析。其分析微量化可達10-10克水平。但用於制備,可以純化上克的樣品。展層時間短,一般需幾分鍾到10餘分鍾。其分析速度、精確度可與氣相層析媲美。HPLC適於分析分離不揮發和極性物質。而氣相層析只適用於揮發性物質,兩者互為補充,都是目前最為理想的層析法。HPLC配有程序控制洗脫溶劑的梯度混合儀,數據處理的積分儀和記錄儀等電子系統,成為一種先進的分析儀器,在生物化學、化學、醫葯學和環境科學的研究中發揮了重要作用。
◆反相層析
在吸附層析中,高極性物質在層析柱上吸附較牢,洗脫時發生拖尾現象和保留時間長的問題。如果在支持物上塗上一層高碳原子的疏水性強的烷烴類,洗脫液用極性強的溶劑,如甲醇和水的混合物。則被分離樣品中的極性強的物質不被吸附,最先洗下來,得到較好的分離效果。這種層析法與普通的吸附層析法相反,故稱為反相層析。目前用HPLC做反相層析常用的ODS柱,即在支持物的表面上連接了C18H37Si—基團。
◆同系層析
在核酸分析中,將樣品經核酸酶部分裂解成不同長度的核苷酸片段,用同位素標記後,在DEAE纖維素薄層上分離,用含有未標記的相同的核苷酸片段作展層溶劑,這樣,未標記的核苷酸把標記過的核苷酸推進,使按分子量大小不同把標記核苷酸片段,按由小到大的次序排列,達到分離的目的。於是把這種層析法稱為同系層析。同系層析和電泳相結合曾用於寡核苷酸的順序分析。
紙層析是層析法的一種,要了解紙層法還得從層析法開始.層析法又稱色層分析法或色譜法(Chromatography),是一種基於被分離物質的物理、化學及生物學特性的不同,使它們在某種基質中移動速度不同而進行分離和分析的方法。例如:我們利用物質在溶解度、吸附能力、立體化學特性及分子的大小、帶電情況及離子交換、親和力的大小及特異的生物學反應等方面的差異,使其在流動相與固定相之間的分配系數(或稱分配常數)不同,達到彼此分離的目的。
層析法的最大特點是分離效率高,它能分離各種性質極相類似的物質。而且它既可以用於少量物質的分析鑒定,又可用於大量物質的分離純化制備。因此,作為一種重要的分析分離手段與方法,它廣泛地應用於科學研究與工業生產上。現在,它在石油、化工、醫葯衛生、生物科學、環境科學、農業科學等領域都發揮著十分重要的作用。
層析根據固定相基質的形式分類,層析可以分為紙層析、薄層層析和柱層析。其中紙層析是指以濾紙作為基質的層析。

I. 氫離子交換器 鈉離子交換器 在軟水處理中的差別

去除的物質不一樣,目的也不一樣。鈉離子(001*7苯乙烯二乙烯苯聚合)主要是去除鹽分,也叫硬度,即鈣鎂離子,也叫鈣鹽和鎂鹽,一般應用於工業鍋爐;氫離子交換器一般不單獨使用,它經常與鈉離子交換器復合應用,主要應用在對水質要求較高的電站鍋爐,它主要去除的是水中的游離酸,也就是氫離子等。

J. 從分析原理簡述hplc中,離子交換色譜,離子對色譜及離子色譜有何異同

離子色譜原理與離子交換色譜原理類似,離子色譜後一般使用電化學內檢測器進行檢測,適容用於分析無機與有機陰陽離子和氨基酸,以及糖類和DNA、RNA的水解產物等;離子對色譜主要是補充離子抑制色譜的不足,離子抑制色譜是指在流動相中加入弱酸或弱鹼來抑制待測組分的離解,提高k值以利於組分的分離,一般針對酸性待測組分,可在流動相中加入弱酸,使待測組分減少在流動相中的離解,加強與固定相的分配,適用於有機弱酸鹼或兩性化合物的檢測,但由於色譜柱一般是硅膠基質化學鍵合相色譜,其酸度耐受范圍是2-8,因此在加入酸鹼調節劑時還要兼顧流動相pH,導致無法通過此方法分析強酸強鹼,因此引入離子對色譜,在流動相中加入可與強酸強鹼抑制的離子對,通常分析鹼加入烷基磺酸鈉,分析酸加入季胺鹽,適用於較強有機酸鹼的分析。

閱讀全文

與離子交換和魔法的差別相關的資料

熱點內容
美標y型過濾器重量 瀏覽:582
污水溝泥巴不清理怎麼打混凝土 瀏覽:239
酸性除垢劑會腐蝕防水層嗎 瀏覽:683
市政排污管道如何保證污水不倒流 瀏覽:251
室外雨污水管網施工工序 瀏覽:192
衛生間瓷磚縫水垢清除 瀏覽:9
28蒸餾水的密度 瀏覽:236
青島凈水器反滲透膜 瀏覽:891
用微笑懟回 瀏覽:73
DM130樹脂中極性 瀏覽:183
cad平面飲水機怎麼畫 瀏覽:438
飲水機的水怎麼才可以泡藕粉 瀏覽:59
本田xrv變速箱換油小濾芯在哪裡 瀏覽:309
重慶江北唐家橋污水廠 瀏覽:670
ro膜怎麼選需要知道哪些參數 瀏覽:372
科氏超濾膜 瀏覽:266
石家莊污水處理廠的水流到哪裡了 瀏覽:683
水處理技術職責 瀏覽:613
污水廠監理規劃和細則找什麼網 瀏覽:67
廢水特徵因子對人體的危害 瀏覽:391