❶ 水環境中膠體顆粒的吸附作用分為(3個)
表面吸附、 離子交換吸附和專屬吸附。
❷ 有機污染物的吸附包括哪兩個過程
包括物理吸附、靜電吸附和離子交換吸附等吸附過程。
物理吸附
物理吸附是被吸附的流體分子與固體表面分子間的作用力為分子間吸引力,即所謂的范德華力(Van der waals)。因此,物理吸附又稱范德華吸附,它是一種可逆過程。當固體表面分子與氣體或液體分子間的引力大於氣體或液體內部分子間的引力時,氣體或液體的分子就被吸附在固體表面上。從分子運動觀點來看,這些吸附在固體表面的分子由於分子運動,也會從固體表面脫離而進入氣體(或液體)中去,其本身不發生任何化學變化。隨著溫度的升高,氣體(或液體)分子的動能增加,分子就不易滯留在因體表面上,而越來越多地逸入氣體(或液體 中去,即所謂「脫附」。這種吸附—脫附的可逆現象在物理吸附中均存在。工業上就利用這種現象,借改變操作條件,使吸附的物質脫附,達到使吸附劑再生,回收被吸附物質而達到分離的目的。物理吸附的特徵是吸附物質不發生任何化學反應,吸附過程進行得極快,參與吸附的各相間的平衡瞬時即可達到。
靜電吸附
靜電吸附則是物體帶有不同的電性,異性相吸原理。
離子交換吸附
離子交換吸附根據不同的要求選擇不同的假虎吸附劑。
❸ 試比較陽離子靜電吸附與專性吸附的區別
摘要 根據你的問題,我的回答是:由於環境中大部分膠體帶負電荷,容易吸附各種陽離子,在吸附過程中,膠體每吸附一部分陽離子,同時也放出等量的其他陽離子,因此把這種吸附稱為離子交換吸附,屬於物理化學吸附。
❹ 水合氧化物對金屬離子的專屬吸附和非專屬吸附的區別
一、含義不同:
金屬氧化物與水化合後的產物叫水合金屬氧化物(有些金屬氧化物不能直接與水化合,要採用其他方法)
低價金屬氧化物的水化合物就是該價態所形成的鹼,如氫氧化鈉、氫氧化銅等;也有的是兩性的如氫氧化鋁、氫氧化鋅等;高價金屬氧化物的水化合物一般顯酸性,如高錳酸等。
二、作用不同:
由於環境中大部分膠體帶負電荷,容易吸附各種陽離子,在吸附過程中,膠體每吸附一部分陽離子,同時也放出等量的其他陽離子,因此把這種吸附稱為離子交換吸附,屬於物理化學吸附。
專屬吸附是指吸附過程中,除了化學鍵的作用外,尚有加強的憎水鍵和范德華力或氫鍵在起作用。專屬吸附作用不但可使表面電荷改變符號,而且可使離子化合物吸附在同號電荷的表面上。
三、分子不同:
離子交換,就是將溶液中的離子與某一物質發生反應,溶液中的離子結合到物質上也有無機類的離子交換吸附劑,同樣是帶有酸鹼基團。物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。
(4)表面吸附離子交換吸附專屬吸附擴展閱讀:
金屬離子在專屬吸附中所起的作用是配位離子,而不是非專屬吸附中的反離子,吸附時發生的反應是配體交換,發生吸附時體系的pH可以是任意值(也就是說專屬吸附對表面凈電荷的正負沒有要求,專屬吸附在中性表面甚至在與吸附離子帶相同電荷符號的表面也能進行吸附作用。因為在pH<ZPC時膠體表面帶正電荷而在pH.>ZPC時膠體表面帶負電荷)。
❺ 什麼是表面吸附作用,離子交換吸附作用和專屬吸附作用
表面吸附作用來指的是在固體源表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附。物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。
❻ 吸附法和離子交換法異同
吸附法有物理吸附和化學吸附之分,物理吸附如活性炭,把待吸附物吸附在本身的表面,但是可逆過程,化學吸附是通過化學反應將待吸附物吸附,是不可逆的。而離子交換是在溶液或某種介質下兩種物質中得離子發生交換,達到去除某種離子的目的
❼ 什麼是交換吸附
什麼是交換吸附呢?
它是指根細胞表面與土壤溶液之間發生的■H+與陽離子、■HCO-3與陰離子的交換,溶解態離子經過交換後轉化為細胞膜外表面的吸附態離子.交換吸附的速度快,但不消耗能量;細胞膜外表面吸附的離子不能被水沖洗掉,但能與其他離子交換吸附.
❽ 銅離子吸附屬於什麼吸附離子交換吸附還是專屬吸附
離子交換,就是將溶液中的離子與某一物質發生反應,溶液中的離子結合到物質上也有無機類的離子交換吸附劑,同樣是帶有酸鹼基團
❾ 吸附主要有哪些類型及其各自的特點是什麼
溶質從水中移向固體顆粒表面,發生吸附,是水、溶質和固體顆粒三者相互作用的結果。引起吸附的主要原因在於溶質對水的疏水特性和溶質對固體顆粒的高度親和力。溶質的溶解程度是確定第一種原因的重要因素。溶質的溶解度越大,則向表面運動的可能性越小。相反,溶質的憎水性越大,向吸附界面移動的可能性越大。吸附作用的第二種原因主要由溶質與吸附劑之間的靜電引力、范德華引力或化學鍵力所引起。與此相對應,可將吸附分為三種基本類型。
(1)交換吸附指溶質的離子由於靜電引力作用聚集在吸附劑表面的帶電點上,並置換出原先固定在這些帶電點上的其他離子。通常離子交換屬此范圍。影響交換吸附勢的重要因素是離子電荷數和水合半徑的大小。
(2)物理吸附指溶質與吸附劑之間由於分子間力(范德華力)而產生的吸附。其特點是沒有選擇性,吸附質並不固定在吸附劑表面的特定位置上,而多少能在界面范圍內自由移動,因而其吸附的牢固程度不如化學吸附。物理吸附主要發生在低溫狀態下,過程放熱較小,約42kj/mol或更少,可以是單分子層或多分子層吸附。影響物理吸附的主要因素是吸附劑的比表面積和細孔分布。
(3)化學吸附指溶質與吸附劑發生化學反應,形成牢固的
吸附化學鍵和表面絡合物,吸附質分子不能在表面自由移動。吸附時放熱量較大,與化學反應的反應熱相近,約84~420kj/mol。化學吸附有選擇性,即一種吸附劑只對某種或特定幾種物質有吸附作用,一般為單分子層吸附。通常需要一定的活化能,在低溫時,吸附速率較小。這種吸附與吸附劑的表面化學性質和吸附質的化學性質有密切的關系。
物理吸附後再生容易,且能回收吸附質。化學吸附因結合牢固,再生較困難,必須在高溫下才能脫附,脫附下來的可能還是原吸附質,也可能是新的物質。利用化學吸附處理毒性很強的污染物更安全。
在實際的吸附過程中,上述幾類吸附往往同時存在,難於明確區分。例如某些物質分子在物理吸附後,其化學鍵被拉長,甚至拉長到改變這個分子的化學性質。物理吸附和化學吸附在一定條件下也是可以互相轉化的。同一物質可能在較低溫度下進行物理吸附,而在較高溫度下所經歷的往往又是化學吸附。
❿ 吸附種類和吸附機理
按吸附現象產生的原因而言,可分為物理吸附及化學吸附。
(一)物理吸附
固體顆粒表面電荷的不均衡,往往使其帶電荷。按其電荷的性質可分為永久電荷和可變電荷。
永久電荷是礦物晶格內的同晶替代所產生的電荷。例如,粘土礦物的結構為硅四面體和鋁八面體,四面體內的硅和八面體內的鋁均可被與其直徑大小相近的離子所替代;四價的Si4+可被三價的Al3+所替代,而三價的Al3+可被二價的Mg2+所替代,這樣的結果,使顆粒表面電荷產生了不均衡,使其呈現出負電性。由於同晶替代是在粘土礦物形成時產生的,並且是在粘土晶格的內部,因此一旦產生這種電荷就不會改變,具有永久性質,故稱永久電荷。蒙脫石和伊利石的同晶替代較多,所以它們的表面電荷以永久電荷為主;而高嶺石則不同,它的同晶替代少,其主要的表面電荷另有來源。
可變電荷是顆粒表面產生化學解離形成的,其表面電荷的性質(正電荷或負電荷)及數量往往隨介質的pH值的改變而變化,所以稱為可變電荷。例如某些膠體顆粒表面分子或原子團的解離:
(1)二氧化硅膠體和含水二氧化硅膠體的解離
水文地球化學基礎
(2)粘土礦物顆粒晶面上的OH基中H+的解離
水文地球化學基礎
高嶺石晶體表面的OH基較多,所以它的表面電荷以可變電荷為主。
(3)氫氧化鐵及氫氧化鋁表面分子OH基的解離
Fe(OH)3→Fe(OH)2--+OH-
A1(OH)3→Al(OH)2++H+
(4)腐殖質上某些原子團的解離
水文地球化學基礎
上述談到顆粒表面電荷形成的機理。由於固體顆粒表面帶電荷,所以在固液相接觸時。便會發生靠固體表面靜電引力吸附液相異性離子的現象,這種現象稱為物理吸附。
物理吸附的特點是,其吸附的鍵聯力為靜電引力,鍵聯力較弱,因此已吸附在顆粒表面的離子,在一定條件下,可被液體中另一種離子所替換,所以物理吸附也稱為「離子交換」。被吸附離子的電性,取決於表面電荷的電性,顆粒表面帶負電荷,吸附陽離子,稱為陽離子吸附,或陽離子交換;顆粒表面帶正電荷,吸附陰離子,稱為陰離子吸附,或陰離子交換。物理吸附這個表面反應是一種可逆反應,可用質量作用定律來描述。
(二)化學吸附
化學吸附不是依賴於靜電引力發生的,液相中的離子是靠鍵力強的化學鍵(如共價鍵)結合到固體顆粒表面的;被吸附的離子進入顆粒的結晶格架,成為晶格的一部分,它不可能再返回溶液,是一種不可逆反應。這種現象也稱為「特殊吸附」。產生化學吸附的一個基本條件是,被吸附離子直徑與晶格中網穴的直徑大致相等,例如,K+的直徑為266pm(2.66Å),硅鋁酸鹽膠體晶格網穴直徑為280pm(2.80Å),它們的直徑大致相等,所以K+可被吸附到膠體的晶格里。
在實際研究中,要區分物理吸附及化學吸附是十分困難的;而物理吸附要比化學吸附普遍。因此,目前研究最多的是物理吸附,而且物理吸附的研究,實際上也包括化學吸附在內,因為兩者很難區分。特別是地下水污染中污染物的研究更是如此。