導航:首頁 > 凈水問答 > 離子交換樹脂固定化酶

離子交換樹脂固定化酶

發布時間:2022-05-16 00:41:12

Ⅰ 為什麼需要酶的固定化

是指經過一定改造後被限制在一定的空間內,能模擬體內酶的作用方式,並可反復連續地進行有效催化反應的酶。固定化酶又稱固相酶。在理論研究上,固定化酶可以作為探討酶在體內作用的模型;在實際使用中,可使生產工藝自動化和連續化,提高酶的使用效率。
制備方法 固定化技術是通過化學或物理等手段將酶分子束縛起來供重復使用的技術。大致可分為載體結合法、交聯法和包埋法等。
載體結合法 將酶結合到非水溶性的載體上。一般來講,載體的親水性基團越多,表面積越大,單位載體結合的酶量也越大。最常用的是共價結合法,此外還有離子結合法、物理吸附法。
①共價結合法是將酶蛋白分子上官能團和載體上的反應基團通過化學價鍵形成不可逆的連接的方法。在溫和的條件下能偶聯的酶蛋白基團包括有氨基、羧基、半胱氨酸的巰基、組氨酸的咪唑基、酪氨酸的酚基、絲氨酸和蘇氨酸的羥基等。常用的載體包括天然高分子(纖維素、瓊脂糖、葡萄糖凝膠、膠原及其衍生物),合成高分子(聚醯胺、聚丙烯醯胺、乙烯-順丁烯二酸酐共聚物等)和無機支持物(多孔玻璃、金屬氧化物等)。共價結合法制備的固定化酶,酶和載體的連接鍵結合牢固,使用壽命長,但制備過程中酶直接參與化學反應,常常引起酶蛋白質的結構發生變化,導致酶活力的下降,往往需要嚴格控制操作條件才能獲得活力較高的固定化酶。
②離子結合法通過離子效應將酶固定到具有離子交換基團的非水溶性載體上的一種方法。能引起離子結合的載體,除具有離子交換基團的多糖類外,象離子交換樹脂(見離子交換劑)那樣的合成高分子衍生物也可用作載體。離子結合法與共價結合法比較,操作簡便,處理條件溫和,可以得到較多高活性的固定化酶。但載體和酶的結合力不夠牢固,易受緩沖液種類和pH的影響。
③物理吸附法將酶吸附到不溶於水的載體上而使酶固定化的方法。常使用的載體有活性炭、氧化鋁、高嶺土、硅膠、多孔玻璃、羥基磷灰石等。物理吸附法操作簡便、費用較省,可供選擇的載體類型多,有的可以再生。但酶與載體的相互作用較弱,被吸附的酶容易從載體上脫落,酶的非專一性吸附會引起酶的部分或全部失去。
交聯法 利用雙官能團或多官能團試劑與酶之間發生分子交聯來把酶固定化的方法。常用的試劑有戊二醛、亞乙基二異氰酸酯、雙重氮聯苯胺和乙烯- 馬來酸酐共聚物等。參與此反應的酶蛋白中的官能團有N末端的 α- 氨基、賴氨酸的 ε-氨基、酪氨酸的酚基和半胱氨酸的巰基等。交聯法反應比較激烈,固定化酶的活力,在多數情況下都較脆弱。
包埋法 將酶包裹於凝膠網格或聚合物的半透膜微中,使酶固定化。所用的凝膠有瓊脂、海藻酸鹽以及聚丙烯醯胺凝膠等;用於制備微囊的材料有聚醯胺、聚脲、聚酯等。將酶包埋在聚合物內是一種反應條件溫和,很少改變酶蛋白結構的固定化方法,此法對大多數酶、粗酶制劑、甚至完整的微生物細胞都適用。但此法較適合於小分子底物和產物的反應,因為在凝膠網格和微囊中存在有分子擴散效應。加大凝膠網格,有利於分子擴散,但使凝膠的機械強度降低。
應用 酶經過固定化後,比較能耐受溫度及pH值的變化,可製成機械性能好的顆粒裝成酶柱用於連續生產(或在反應器中進行批式攪拌反應),也可以製成酶膜、酶管等多種形式的酶反應器。隨著固定化酶技術的發展,許多工業生物反應過程已相繼問世。固定化酶作為現代生物技術的一個新的領域,發展很快。目前在工業上應用的數量並不多,這是因為在多數情況下酶的價格昂貴,一般酶活力的回收率不高,輔酶的再生較困難。所以,固定化酶作為生物催化劑主要用於生產精細的特殊化學品、葯品,在食品工業中由於生物催化劑較化學催化劑安全,也將得到廣泛使用。同時,固定化酶用於各種疾病的診斷、治療及人工臟器;用作化學分析的酶電極;固定化酶用作燃料電池;固定化酶用作親和層析手段,分離和提純酶的底物、輔酶、抑制劑及抗體等,顯示出廣闊的前景。
此外,固定化細胞是在固定化酶基礎上發展起來的,它不但省去了酶的提取工藝,而且使許多生化物質的生產,特別是需要多酶的發酵法生產改變成菌體中復合酶系的連續化反應。如果被固定的微生物細胞是仍處於生存狀態的活細胞,則供給一定營養後,細胞將繼續生長繁殖。這種固定化微生物活細胞技術的發展,是工業發酵的新方向。

Ⅱ 高分子催化劑的特性及應用

高分子催化劑是一種對化學反應具有催化作用的高分子。生物體內的酶就
是高分子催化劑
高分子催化劑
是一種高活性、高選擇性的天然高分子催化劑,但由於是水溶性的,故在工業應用上受到限制,因而又發展了不溶於水的固定化酶——一種半合成的高分子催化劑。目前開發應用的合成高分子催化劑主要有離子交換樹脂型催化劑和高分子金屬催化劑兩類。多以有機或無機高分子為骨架,在骨架上連有各種具有催化作用的功能基團。這類催化劑不僅具有很高的活性和選擇性,而且比較穩定,分離、回收方便,可以重復使用,有的還具有光學活性等特殊的機能。目前已應用到各種有機反應、有機合成及某些高分子合成反應中。
酶在生產和生活中的應用
常見的酶在生產和生活中的應用:
洗滌劑工業:(加酶洗衣粉等)鹼性蛋白酶類
易於洗去衣物上的血漬、奶漬等污漬,加酶洗衣粉不能用於絲、毛等天然蛋白質纖維類織品的洗滌。
澱粉酶類餐廳洗碗機的洗滌劑,用於去除難溶的澱粉殘跡等
烘烤食品:真菌產生的a一澱粉酶催化澱粉降解成可被酵母利用的糖,麵包等食品製作等蛋白酶類(餅干松化劑)製作餅干過程中,水解麵粉中的蛋白質;乳製品生產中,水解乳清蛋白。有利於食品中蛋白類營養的消化吸收。
釀酒工業:
麥芽中的澱粉酶、蛋白酶、葡聚糖酶。將釀酒原料澱粉和蛋白質降解成能被酵母利用的單糖、氨基酸和肽,從而提高乙醇的產量。
β一葡聚糖酶
分解β-葡聚糖,降低麥汁粘度,加快麥汁過濾速度,避免因β-葡聚糖引起的啤酒混濁。
木瓜蛋白酶去除啤酒儲存過程中生成的混沌物
肉類烹飪:
木瓜蛋白酶(嫩肉粉)菠蘿蛋白酶分解肉的膠原蛋白,使肉類嫩滑。木瓜蛋白酶的最適宜溫度為600C,適宜pH7-7.5,不要在高溫和酸性環境下使用。
乳製品工業:
凝乳酶
乳酪生產的凝結劑,並可用於分解蛋白質。
乳糖酶降解乳糖為葡萄糖和半乳糖,獲得沒有乳糖的牛乳製品,有利於乳品的消化吸收。
製糖工業:
澱粉酶等將澱粉轉化為葡萄糖及各類糖漿
葡萄糖異構酶
用於將葡萄糖轉化為甜度高的果糖,生產高果糖漿。
紡織工業:
澱粉酶廣泛地應用於紡織品的褪漿,其中細菌澱粉酶能忍受100~110℃的高溫操作條件。纖維素酶代替沙石洗工藝處理製作牛仔服的棉布,提高牛仔服質量。
製革工業:
胰蛋白酶類
除去毛皮中特定蛋白質使皮革軟化,也可用於皮革脫毛。
金屬催化劑應用
在選擇和設計金屬催化劑時,常考慮金屬組分與反應物分子間應有合適的能
量適應性和空間適應性,以利於反應分子的活化。然後考慮選擇合適的助催化劑和催化劑載體以及所需的制備工藝,並嚴格控制制備條件,以滿足所需的化學組成和物理結構,包括金屬晶粒大小和分布等。除貴金屬外,還原態的金屬催化劑均極為活潑,易於被氧化。催化劑生產廠為了貯運的方便,多以氧化物狀態提供商品,用戶經活化處理或在使用過程中才還原成金屬狀態。活化的方法、條件十分重要。有些催化劑生產廠也提供某些預還原的氨合成用的鐵催化劑,以縮短用戶的開工期,並保證催化劑的使用特性。

Ⅲ 酶、細胞、原生質體固定化

酶的一些不足之處:
(1)酶的穩定性較差
(2)酶的一次性使用
(3)產物的分離純化較困難
◆改善方法之一就是固定化技術的應用:
(1)固定化酶是指固定在一定載體上並在一定的空間范圍內進行催化反應的酶。固定化酶既保持了酶的催化特性,又克服了游離酶的不足之處,具有增加穩定性,可反復或連續使用以及易於和反應產物分開等顯著優點。
(2)固定化細胞是指固定在載體上並在一定的空間范圍內進行生命活動的細胞。也稱為固定化活細胞或固定化增值細胞。通常只能用於胞外酶等胞外產物的生產。
(3) 固定化原生質體技術,有利於胞內物質的分泌。
1. 酶固定化
◆採用各種方法,將酶與水不溶性的載體結合,制備固定化酶的過程稱為酶的固定化。固定在載體上並在一定的空間范圍內進行催化反應的酶稱為固定化酶。
◆固定在載體上的菌體或菌體碎片稱為固定化菌體,它是固定化酶的一種形式。
1.1酶的固定化方法
固定化的方法:吸附法、包埋法、結合法、交聯法和熱處理法等。
(1)吸附法:
◆利用各種固體吸附劑將酶或含酶菌體吸附在其表面上,而使酶固定化的方法稱為物理吸附法,簡稱吸附法。
◆物理吸附法常用的固體吸附劑有活性炭、氧化鋁、硅藻土、多孔陶瓷、多孔玻璃、硅膠、羥基磷灰石等。
◆靠物理吸附作用,結合力較弱,酶與載體結合不牢固而容易脫落,所以使用受到一定的限制。
(2)包埋法
◆將酶或含酶菌體包埋在各種多孔載體中,使酶固定化的方法稱為包埋法。
◆包埋法使用的多孔載體主要有:瓊脂、瓊脂糖、海藻酸鈉、角叉菜膠、明膠、聚丙烯醯胺、光交聯樹脂、聚醯胺、火棉膠等。
◆包埋法制備固定化酶或固定化菌體時,根據載體材料和方法的不同,可分為凝膠包埋法和半透膜包埋法兩大類。
◇凝膠包埋法:凝膠包埋法是將酶或含酶菌體包埋在各種凝膠內部的微孔中,製成一定形狀的固定化酶或固定化含酶菌體。大多數為球狀或片狀,也可按需要製成其他形狀。
常用的凝膠有瓊脂凝膠、海藻酸鈣凝膠、角叉菜膠、明膠等天然凝膠以及聚丙烯醯胺凝膠、光交聯樹脂等合成凝膠。
◇半透膜包埋法:半透膜包埋法是將酶包埋在由各種高分子聚合物製成的小球內,製成固定化酶。
常用於制備固定化酶的半透膜有聚醯胺膜、火棉膠膜等。
(3)結合法
◆選擇適宜的載體,使之通過共價鍵或離子鍵與酶結合在一起的固定化方法稱為結合法。
◆根據酶與載體結合的化學鍵不同,結合法可分為離子鍵結合法和共價鍵結合法。
◇離子鍵結合法:通過離子鍵使酶與載體結合的固定化方法稱為離子鍵結合法。
離子鍵結合法所使用的載體是某些不溶於水的離子交換劑。常用的有DEAE-纖維素、TEAE-纖維素、DEAE-葡聚糖凝膠等。
◇共價鍵結合法:通過共價鍵將酶與載體結合的固定化方法稱為共價鍵結合法。
共價鍵結合法所採用的載體主要有:纖維素、瓊脂糖凝膠、葡聚糖凝膠、甲殼質、氨基酸共聚物、甲基丙稀醇共聚物等。
酶分子中可以形成共價鍵的基團主要有:氨基、羧基、巰基、羥基、酚基和咪唑基等。
◇要使載體與酶形成共價鍵,必須首先使載體活化,即藉助於某種方法,在載體上引進一活潑基團。然後此活潑基團再與酶分子上的某一基團反應,形成共價鍵。
◇使載體活化的方法很多。主要的有重氮法、迭氮法、溴化氰法和烷化法等。
(4)交聯法
◆藉助雙功能試劑使酶分子之間發生交聯作用,製成網狀結構的固定化酶的方法稱為交聯法。交聯法也可用於含酶菌體或菌體碎片的固定化。
◆常用的雙功能試劑有戊二醛、己二胺、順丁烯二酸酐、雙偶氮苯等。其中應用最廣泛的是戊二醛。
(5)熱處理法
◆將含酶細胞在一定溫度下加熱處理一段時間,使酶固定在菌體內,而制備得到固定化菌體。◆熱處理法只適用於那些熱穩定性較好的酶的固定化,在加熱處理時,要嚴格控制好加熱溫度和時間,以免引起酶的變性失活。
1.2固定化酶的特性
(1)穩定性:固定化酶的穩定性一般比游離酶的穩定性好。
(2)最適溫度: 固定化酶的最適作用溫度一般與游離酶差不多,活化能也變化不大。
(3)最適pH值: 酶經過固定化後,其作用的最適pH值往往會發生一些變化。
◆影響固定化酶最適pH值的因素主要有兩個,一個是載體的帶電性質,另一個是酶催化反應產物的性質。
(4)底物特異性: 固定化酶的底物特異性與游離酶比較可能有些不同,其變化與底物分子量的大小有一定關系。對於那些作用於低分子底物的酶,固定化前後的底物特異性沒有明顯變化。
◆固定化酶底物特異性的改變,是由於載體的空間位阻作用引起的。
1.3固定化酶的應用
固定化酶既保持了酶的催化特性,又克服了游離酶的不足之處,具有如下顯著的優點:
(1)酶的穩定性增加,減少溫度、pH值、有機溶劑和其他外界因素對酶的活力的影響,可以較長期地保持較高的酶活力。
(2)固定化酶可反復使用或連續使用較長時間,提高酶的利用價值,降低生產成本。
(3)固定化酶易於和反應產物分開,有利於產物的分離純化,從而提高產品質量。
固定化酶已廣泛地應用於食品、輕工、醫葯、化工、分析、環保、能源和科學研究等領域。

2.細胞固定化
◆通過各種方法將細胞與水不溶性的載體結合,制備固定化細胞的過程稱為細胞固定化。(固定化活細胞或固定化增殖細胞)
◆微生物細胞、植物細胞和動物細胞都可以製成固定化細胞。
2.1細胞固定化的方法
◆主要可分為吸附法和包埋法兩大類方法。
(1)吸附法
◆利用各種固體吸附劑,將細胞吸附在其表面而使細胞固定化的方法稱為吸附法。
◆用於細胞固定化的吸附劑主要有:硅藻土、多孔陶瓷、多孔玻璃、多孔塑料、金屬絲網、微載體和中空纖維等。
(2) 包埋法
◆將細胞包埋在多孔載體內部而製成固定化細胞的方法稱為包埋法。
◆包埋法可分為凝膠包埋法和半透膜包埋法。
◇以各種多孔凝膠為載體,將細胞包埋在凝膠的微孔內而使細胞固定化的方法稱為凝膠包埋法。
○凝膠包埋法是應用最廣泛的細胞固定化方法,適用於各種微生物、動物和植物細胞的固定化。
○凝膠包埋法所使用的載體主要有瓊脂、海藻酸鈣凝膠、角叉菜膠、明膠、聚丙烯醯胺凝膠和光交聯樹脂等。
2.2微生物細胞固定化
2.2.1固定化微生物細胞的特點:
①固定化微生物細胞保持了細胞的完整結構和天然狀態,穩定性好。
②固定化微生物細胞保持了細胞內原有的酶系、輔酶體系和代謝調控體系,可以按照原來的代謝途徑進行新陳代謝,並進行有效的代謝調節控制。
③發酵穩定性好,可以反復使用或者連續使用較長的一段時間。
④固定化微生物細胞密度提高,可以提高產率。
⑤提高工程菌的質粒穩定性,
2.2.2固定化微生物細胞的應用
◆主要用在兩個方面:
◇是利用固定化微生物細胞發酵生產各種胞外產物。
◇二是利用固定化微生物細胞與各種電極結合製成微生物電極。
(1)利用固定化微生物生產各種產物
(2)固定化微生物細胞製造微生物感測器
2.3植物細胞固定化
2.3.1固定化植物細胞的特點:
(1)植物細胞經固定化後,由於有載體的保護作用,可減輕剪切力和其他外界因素對植物細胞的影響,提高植物細胞的存活率和穩定性。
(2)細胞經固定化後,被束縛在一定的空間范圍內進行生命活動,不容易聚集成團。
(3)固定化植物細胞發酵可以簡便地在不同地培養階段更換不同的培養液,即首先在生長培養基中生長增殖,在達到一定的細胞密度後,改換成發酵培養基,以利於生產各種所需的次級代謝物。
(4)固定化植物細胞可反復使用或連續使用較長的一段時間,大大縮短生產周期,提高產率。
(5)固定化植物細胞易於與培養液分離,利於產品的分離純化,提高產品質量。
2.3.2 植物細胞固定化的方法:
◆植物細胞固定化的方法主要有吸附法和包埋法兩種。
◆吸附法是將植物細胞吸附在泡沫塑料的孔洞或裂縫內,或者將植物細胞吸附在中空纖維的外壁上。
◆包埋法是將植物細胞包埋在瓊脂、角叉菜膠、海藻酸鈣凝膠、聚丙烯醯胺凝膠、明膠等多孔凝膠之中。包埋方法與微生物細胞包埋時基本相同。
2.3.3固定化植物細胞的應用:
◆固定化植物細胞的主要用途是製造人工種子,就有可能獲得大量具有相同遺傳特性的植株。對種質的保存具有重要意義。並可以節約種子的用量。
◆固定化植物細胞還可以用於生產各種色素、香精、葯物、酶等次級代謝物。
2.4動物細胞固定化
2.4.2固定化動物細胞的特點:
(1)提高細胞存活率:動物細胞經固定化後,由於有載體的保護作用,可以減輕或免受剪切力的影響,同時動物細胞可附著在載體表面生長,從而可顯著提高動物細胞的存活率。
(2)提高產率:動物細胞固定化後,可先在生長培養基中生長繁殖,使細胞在載體上形成最佳分布並達到一定的細胞密度。然後可簡便地改換成發酵培養基,控制發酵條件,使細胞從生長期轉變到生產期,以利於提高產率。
(3)固定化動物細胞可反復使用或連續使用較長的時間。例如,中國倉鼠卵巢細胞(CHO)生產人干擾素可以穩定地生產30天。
(4)固定化細胞易於與產物分開,利於產物分離純化,提高產品質量。
2.4.2動物細胞固定化方法:
◆動物細胞固定化地方法有吸附法和包埋法兩種。
(1)吸附法:
◆大多數動物細胞屬於附著細胞,它們在培養過程中,必須趨向於附著在固體表面。故此吸附法特別適合於動物細胞的固定化。
◆轉瓶是由玻璃或塑料製成,表面經過一定方法處理而帶上電荷。
◆微載體是指顆粒細小的固定化載體,直徑一般為100~200μm,相對密度接近1.0。是由帶有表面電荷的葡聚糖、明膠、纖維素、聚丙烯醯胺、聚苯乙烯或玻璃等材料製成。微載體已用於多種動物細胞的固定化;
◆中空纖維由聚丙烯、硅化聚碳酸酯等高分子聚合物製成。
(2)包埋法
◆包埋固定化法一般適用於懸浮細胞。
◆根據載體和方法的不同,有凝膠包埋法、半透膜包埋法兩種。
①凝膠包埋法:利用各種多孔凝膠為載體將動物細胞固定化。細胞被固定在凝膠的微孔中生長繁殖和新陳代謝,由於有載體的保護,動物細胞有較好的穩定性,可顯著提高其存活率。
用於動物細胞固定化的凝膠載體主要有瓊脂糖凝膠、海藻酸鈣凝膠和血纖維蛋白等。
②半透膜包埋法:利用高分子聚合物形成的半透膜將動物細胞包埋,形成微囊型固定化動物細胞。
2.4.3固定化動物細胞的應用:
動物細胞中大部分為貼壁細胞,需要貼附在載體的表面才能正常生長。所以固定化動物細胞廣泛應用。特別是採用微載體對動物細胞進行吸附固定化。

3.原生質體固定化
◆固定化原生質體的制備主要包括原生質體的制備和原生質體固定化兩個階段。
3.1原生質體的制備
◆不同種類的細胞,由於各自細胞壁的組成、結構和性質不同,原生質體的制備方法也不一樣。
◆原生質體的制備過程是首先將對數生長期的細胞收集起來,懸浮在含有滲透壓穩定劑的高滲緩沖液中。然後加入適宜的細胞壁水解酶,在一定的條件下作用一段時間,使細胞壁破壞。分離除去細胞壁碎片、未作用的細胞以及細胞壁水解酶,而得到原生質體。
◆除去細胞壁所使用的酶應根據細胞壁的主要成分的不同而進行選擇。
◇細菌的細胞壁主要成分是肽多糖,所以細菌原生質體制備時主要採用從蛋清中得到的溶菌酶;
◇酵母細胞壁主要由β-葡聚糖構成,故採用β-1,3-葡聚糖酶;
◇黴菌的細胞壁組分比較復雜,除含有幾丁質外,還有其他多種組分,故要去除黴菌的細胞壁,則需有幾丁質酶與其他有關酶共同作用。
◇植物細胞壁由纖維素、半纖維素和果膠組成,故制備植物原生質體時主要應用纖維素酶和果膠酶。
◆為防止制備得到的原生質體破裂,應加入適當的滲透壓穩定劑。如:無機鹽、糖類、糖醇等化合物。
◆應選擇對數生長期的細胞制備原生質體,以獲得較高的原生質體形成率。
◆所加進的細胞壁溶解酶的種類和濃度、酶作用溫度,pH值以及作用時間等對原生質體的制備都有明顯影響,必須經過試驗確定其最佳條件。
3.2原生質體固定化
◆採用包埋法製成固定化原生質體。
◆原生質體固定化一般採用凝膠包埋法。常用的凝膠有:瓊脂凝膠、海藻酸鈣凝膠、角叉菜膠和光交聯樹脂等。
3.3固定化原生質體的特點:
(1)固定化原生質體由於解除了細胞壁這一擴散屏障,可增加細胞膜的通透性,有利於氧氣和營養物質的傳遞和吸收,也有利於胞內物質的分泌,可顯著提高產率。
(2)固定化原生質體由於有載體的保護作用,具有較好的操作穩定性和保存穩定性,可反復使用和連續使用較長的時間,利於連續化生產。在冰箱保存較長時間後仍能保持其生產能力。
(3)固定化原生質體易於和發酵產物分開,有利於產物的分離純化,提高產品質量。
(4)固定化原生質體發酵的培養基中需要添加滲透壓穩定劑,以保持原生質體的穩定性。這些滲透壓穩定劑在發酵結束後,可用層析或膜分離技術等方法與產物分離。
3.4固定化原生質體的應用
固定化原生質體一方面保持了細胞原有的新陳代謝特性,可以照常產生原來在細胞內產生的各種代謝產物,另一方面又去除了細胞壁這一擴散屏障,有利於胞內產物不斷地分泌到胞外,這樣就可以不經過細胞破碎和提取工藝而在發酵液中獲得所需的發酵產物,為胞內物質的工業化生產開辟了新途徑。
固定化原生質體可用於各種氨基酸、酶和生物鹼等物質的生產以及甾體轉化等。

Ⅳ 酶的固定化方法有哪些

一、包埋法
定義:將酶、細胞或原生質體包埋在各種多孔載體中,使其固定化的方法。
分類:根據載體的材料和方法的不同分為凝膠包埋法(網格型包埋法)、半透膜包埋法(微囊型包埋法)。
1、凝膠包埋法:應用最廣泛的固定化方法。
定義:以各種多孔凝膠為載體,將酶、細胞或原生質體包埋在凝膠的微孔內的固定化方法。
載體:瓊脂凝膠、海藻酸鈣凝膠、角叉菜膠、明膠、聚丙烯醯胺凝膠等。
注意事項:凝膠的孔徑應控制在小於酶分子直徑的范圍內;不適於那些底物或產物分子很大的酶類的固定化。
2、半透膜包埋法
定義:將酶或細胞包埋在由各種高分子聚合物製成的小球內,製成固定化酶或固定化細胞。
載體:聚醯胺膜、火棉膠膜等。 適用:底物和產物都是小分子物質的酶的固定化。
方法:將酶液滴分散在與水互不相溶的有機溶劑中,在酶液滴表面形成半透膜,將酶包埋在微膠囊中。

二、結合法
定義:選擇適宜的載體,使之通過共價鍵或離子鍵與酶結合在一起的固定化方法。
分類:根據酶與載體結合的化學鍵不同分為離子鍵結合法、共價鍵結合法。
1、離子鍵結合法
定義:通過離子鍵使酶與載體結合的固定化方法。
載體:某些不溶於水的離子交換劑,如DEAE-纖維素、DEAE-葡聚糖凝膠。
方法:一定條件下,酶與載體混合攪拌幾小時,或是將酶液緩緩流過處理好的離子交換柱。
特點:結合力較弱,在pH、離子強度等條件改變時,酶容易脫落。
使用注意:pH、離子強度、溫度等的控制。
2、共價鍵結合法
定義:通過共價鍵將酶與載體結合的固定化方法。
常用載體:纖維素、葡聚糖凝膠、瓊脂糖凝膠等
可以形成共價鍵的基團:氨基、羧基、巰基、羥基、酚基和咪唑基等。
特點:結合牢固、酶不會脫落、可連續使用較長時間;載體活化的操作復雜;共價結合可能影響酶的空間結構,從而影響酶的催化活性。

Ⅳ 什麼是固定化酶有何優點如何制備固定化酶

什麼是固定化酶?有何優點?如何制備固定化酶
1固定化酶的傳統制備方法
1.1吸附法
吸附法是利用物理吸附法,將酶固定在纖維素、瓊脂糖等多糖類或多孔玻璃、離子交換樹脂等載體上的固定方式.
顯著特點是:
工藝簡便及條件溫和,包括無機、有機高分子材料,
吸附過程可同時達到純化和固定化;
酶失活後可重新活化,
載體也可再生.
但要求載體的比表面積要求較大,有活潑的表面
1.2包埋法
包埋固定化法是把酶固定聚合物材料的格子結構或微囊結構等多空載體中,而底物仍能滲入格子或微囊內與酶相接觸.這個方法比較簡便,酶分子僅僅是被包埋起來,生物活性被破壞的程度低,但此法對大分子底物不適用.
(1)網格型
將酶或包埋在凝膠細微網格中,製成一定形狀的固定化酶,稱為網格型包埋法.也稱為凝膠包埋法.
(2)微囊型
把酶包埋在由高分子聚合物製成的小球內,製成固定化酶.由於形成的酶小球直徑一般只有幾微米至幾百微米,所以也稱為微囊化法.
1.3結合法
酶蛋白分子上與不溶性固相支持物表面上通過離子鍵結合而使酶固定的方法,叫離子鍵結合法.其間形成化學共價鍵結合的固定化方法叫共價鍵結合法.共價鍵結合法結合力牢固,使用過程中不易發生酶的脫落,穩定性能好.
該法的缺點是載體的活化或固定化操作比較復雜,反應條件也比較強烈,所以往往需要嚴格控制條件才能獲得活力較高的固定化酶.
1.4交聯法
交聯法是用多功能試劑進行酶蛋白之間的交聯,使酶分子和多功能試劑之間形成共價鍵,得到三向的交聯網架結構,除了酶分子之間發生交聯外,還存在著一定的分子內交聯.多功能試劑制備固定化酶方法可分為:
(1) 單獨與酶作用;
( 2) 酶吸附在載體表面上再經受交聯;
( 3) 多功能團試劑與載體反應得到有功能團的載體,再連接酶.交聯劑的種類很多,最常用的是戊二醛,其他的還有異氰酸衍生物、雙偶氮二聯苯胺、N,N-乙烯馬來醯亞胺等.
交聯法的優點是酶與載體結合牢固,穩定性較高;缺點是有的方法固定化操作較復雜,進行化學修飾時易造成酶失活
====
競爭性抑制劑與被抑制的酶的底物通常有結構上的相似性,能與底物競相爭奪酶分子上的結合位點,從而產生酶活性的可逆的抑製作用.與酶的活性中心相結合.與酶的結合是可逆的.
===
增大底物濃度可以減弱競爭性抑制劑的影響.

Ⅵ 為什麼說高聚物的分子量是一個統計平均值

高分子化學是研究高分子化合物的合成、化學反應、物理化學、物理、加工成型、應用等方面的一門新興的綜合性學科。
合成高分子的歷史不過八十年,所以高分子化學真正成為一門科學還不足六十年,但它的發展非常迅速。目前它的內容已超出化學范圍,因此,現在常用高分子科學這一名詞來更合邏輯地稱呼這門學科。狹義的高分子化學,則是指高分子合成和高分子化學反應。
人類實際上從一開始即與高分子有密切關系,自然界的動植物包括人體本身,就是以高分子為主要成分而構成的,這些高分子早已被用作原料來製造生產工具和生活資料。人類的主要食物如澱粉、蛋白質等,也都是高分子。只是到了工業上大量合成高分子並得到重要應用以後,這些人工合成的化合物,才取得高分子化合物這個名稱。
後來,經過研究知道,人工合成的高分子和那些天然存在的高分子,在結構、性能等方面都具有共同性,因此,就都叫做高分子化合物。工業上或實驗室中合成出來的稱為合成高分子,一般所說的高分子,大都指合成高分子,天然存在的高分子簡稱天然高分子。
顧名思義,高分子的分子內含有非常多的原子,以化學鍵相連接,因而分子量都很大。但這還不是充足的條件,高分子的分子結構,還必須是以接合式樣相同的原子集團作為基本鏈節(或稱為重復單元)。許多基本鏈節重復地以化學鍵連接成為線型結構的巨大分子,稱為線型高分子。有時線型結構還可通過分枝、交聯、鑲嵌、環化,形成多種類型的高分子。其中以若干線型高分子,用若干鏈段連接在一起,成為巨大的交聯分子的稱為體型高分子。
從高分子的合成方法可以知道,合成高分子的化學反應,可以隨機地開始和停止。因此,合成高分子是長短、大小不同的高分子的混合物。與分子形狀、大小完全一樣的一般小分子化合物不同,高分子的分子量只是平均值,稱為平均分子量。
決定高分子性能的,不僅是平均分子量,還有分子量分布,即各種分子量的分子的分布情況。從其分布中可以看出,在這些長長短短的高分子的混合物中,是較長的多還是較短的多,或者中等長短的多。
高分子具有重復鏈節結構這一概念,是施陶丁格在20世紀20年代初提出的,但沒有得到當時化學界一些人的贊同。直到30年代初,通過了多次實踐,這一概念才被廣泛承認。正確概念一經成立,就使高分子有飛躍的發展。當時鏈式反應理論已經成熟,有機自由基化學也取得很大的成就。三者的結合,使高分子合成有了比較方便可行的方法。
實踐證明,許多烯類化合物,經過有機自由基的引發,就能進行鏈式反應,迅速地形成高分子。由20世紀30年代初期到40年代初期,許多現在的通用高分子品種,都已按此方法投入工業生產。在30年代末期卡羅瑟斯又發現用縮聚方法合成高分子。後來,為了合理的加工和有效的應用,高分子結構和性能的研究工作逐漸開展,使高分子成為廣泛應用的材料。同時,一門新興的綜合性學科——高分子科學——從40年代下半期開始,蓬勃地發展起來。
高分子科學可以分為高分子化學(狹義的)、高分子物理和高分子工藝學三部分。高分子化學又分為高分子合成、高分子化學反應和高分子物理化學。高分子物理研究高聚物的聚集態結構和本體性能。高分子工藝學又分為高聚物加工成型和高聚物應用。
高分子雖然分子量很高,但是它們所具有的官能團,仍然與一般小分子有機化合物有一樣的反應性能。但其反應性能受兩種特有因素的影響:高分子是長鏈結構,這個長鏈是曲曲折折的蜷曲形。有規則的蜷曲(折疊)形成晶態,無規則的蜷曲形成非晶態;高分子的分子與分子堆砌在一起。有規則的堆砌形成規整的晶態排列;無規則的堆砌形成非晶態。規整結構中分子排列緊密,試劑不易侵入,官能團不易起反應;不規整結構中分子排列疏鬆,試劑容易侵入,官能團容易起反應。
天然高分子的化學轉化,早在19世紀就為人們所研究和利用。1845年舍恩拜因就發現纖維素可以硝化,成為硝酸纖維素。1865年許岑貝格爾把纖維素乙醯化成為醋酸纖維素。粘膠人造絲的生產也是通過纖維素的化學變化來實現的。
高分子的化學反應,有些是破壞性的,例如高分子光降解、高分子熱降解、高分子氧化等。它們使高分子材料老化,性能變壞,以致最後不能使用。但不少反應是有用的,甚至是重要的高分子合成方法,例如橡膠硫化成為具有彈性的橡皮;纖維素黃化,製成粘膠纖維;聚乙酸乙烯酯先水解成聚乙烯醇,再與甲醛縮合,紡成的纖維即維輪;高分子先轉化成自由基,再與另一單體形成接枝共聚物;兩種高分子鏈段用化學方法連接起來,成為嵌段共聚物。此外,還可以把某些元素或基團先接到高分子上去,再進行化學反應,反應後還可解脫,以完成某些分離、分解和合成工作,例如高子交換樹脂、固定化酶、多肽、某些激素甚至蛋白質的合成等等。
高分子鏈結構包括鏈節的化學結構,鏈節與鏈節連接的化學異構和立體化學異構、共聚物的鏈節序列、分子量及分子量分布,以及分子鏈的分支和交聯結構。
在適當情況下,這些結構相同的鏈節,正如許多相同的小分子可以整齊地排列起來成為晶體一樣,也可以局部折疊起來成為片狀結晶態,稱為片晶。片晶又可以堆砌成球狀,稱為球晶。在高分子的分子與分子之間,相同的鏈節也可排列成為片晶,片晶再堆砌成為球晶或其他晶態;那些未折疊起來的一部分分子是非晶態的。非晶態部分也有一定的結構。小分子化合物,要麼是結晶的,要麼是非晶態的;而高分子化合物,則可以一部分是晶態結構,另一部分是非晶態結構。
高分子鏈結構是一級結構;孤立高分子鏈,即稀溶液中高分子的形態,如無規線團、螺旋、雙螺旋、剛性棒或橢球等是二級結構;三級結構指高聚物分子聚集態結構,即分子鏈與分子鏈之間的堆砌。聚集態結構隨著加工成型方法的不同而有所不同。具有聚集態結構的高分子,稱為高聚物。
多數線型高分子,可以在相應的溶劑中溶解,形成溶液。高分子溶液是真溶液,而不是以前所認為的膠體溶液。高分子是長鏈結構,在流動時能相互阻滯,因此高分子溶液是粘稠的。一般情況下,分子鏈愈長,粘度愈大。當光束通過高分子溶液時,由於高分子比較大,可以發生光的散射,分子愈大,散射愈強。
高分子遠比溶劑分子重,在超高速離心下,高分子的移動比溶劑分子快,擴散比溶劑分子慢。分子量愈大,這些區別愈明顯。利用這些高分子溶液性能,可以測定高分子的分子量。研究高分子溶液,除了能測定分子量及其分布以外,還可從溶液的各種性質推測高分子的形態結構等。
高分子與小分子不同,具有強度、模量,以及粘彈、疲勞、鬆弛等力學性能,還具有透光、保溫、隔音、電阻等光學、熱學、聲學、電學等物理性能,由於具有這些性能,高聚物可作為多種材料應用。高聚物的結構與加工成型的方法有關。因此,要取得高聚物的優良性能,必須採用適當的加工成型方式,使它形成適當的結構。例如,成纖的高聚物,在紡絲以後必須在特定溫度下進行牽伸取向,才能達到較高強度。
高聚物作為材料使用,主要可分塑料、纖維和橡膠等,都需要加工成一定的形狀方可使用。此外,用做分離、分析材料的離子交換樹脂,在聚合過程中就可製成可使用的球形顆粒;用做油漆塗料的高聚物,只須溶在適當溶劑中,就可使用,無須加工成型。
高分子生產的迅速發展,說明了社會對它的需要量的迅速增加。高分子材料首先用作絕緣材料,用量至今還很大,特別是新型高絕緣材料。例如滌綸薄膜遠比雲母片優越;硅漆等用作電線絕紡漆,與紗包絕緣線不可相提並論。由於種種新型、優異的高分子介電材料的出現,電子工業以及計算機、遙感等新技術才能建立和發展起來。
高分子作為結構材料,在代替木材、金屬、陶瓷、玻璃等方面的應用日新月異。在農業,工業和日常用途上,它的優點很多,如質輕、不腐、不蝕、色彩絢麗等,用於機械零件、車船材料、工業管道容器、農用薄膜、包裝用瓶、盒、紙,建築用板材、管材、棒材等等,不但價廉物美,而且拼裝方便。還可用於醫療器械,家用器具,文化、體育、娛樂用品,兒童玩具等,大大豐富和美化了人們的生活。
合成纖維的優越性,如輕柔、不縐、強韌、挺括、不霉等,也為天然纖維棉、毛、絲、麻等所不及。尤其重要的是它們不與糧食爭地,一個工廠生產的合成纖維,可以相當上百萬畝農田所能生產的天然纖維。天然橡膠的生產,受地區的限制,產量也不能適應日益增長的要求。但合成橡膠不受這種限制,而且其各個品種各有比天然橡膠優良之處。
一般認為高分子材料強度不高、耐熱不好,這是從常見的塑料得到的印象。現在最強韌的材料,不是鋼,不是釷,不是鈹,而是一種用碳纖維和環氧樹脂復合而成的增強塑料。耐熱高分子,已經可以長期在300攝氏度下使用。
特別應當提起的是,在航天技術中,火箭或人造衛星殼體從外部空間回到大氣層時,速度高,表面溫度可達5000~10000攝氏度,沒有一種天然材料或金屬材料能經受這種高溫,但增強塑料可以勝任,因為它遇熱燃燒分解,放出大量揮發氣體,吸收大量熱能,使溫度不致過高。同時,塑料不傳熱,仍可保持殼體內部的人員和儀器正常工作和生活所需要的溫度。好的燒蝕材料,外層只損壞了3~4厘米,即可保全內部,完成回地任務。
不過高分子材料也有不少弱點,必須開展研究加以克服。比如易燃燒,大量使用高分子材料時,防火是一個大問題,必須使高分子不易燃燒,才能安全使用;易老化,不經久。用作建築材料,要求至少有幾十年的壽命;用於其他方面,也須有耐久性。
大量使用高分子材料時,作為廢物扔掉的高分子垃圾,不被水溶解和風化,不受細菌腐蝕,如不處理就會越積越多,成為嚴重公害。必須設法使高分子材料在使用後能適時分解消失。

Ⅶ 把酶固定化有什麼好處和用處固定酶的方法有那些

酶工程的實現,體現在酶的半衰期的延長和酶活的穩定性。採用固定化可以顯著提高這兩個指標,固定化酶所用載體是比較多的,比如樹脂等。
是指利用酶催化劑所具有的特異催化功能,藉助工藝學手段和生物反應器裝置來生產所需的生物化工產品的過程,與發酵過程相比,它採用了反應專一性的酶為催化劑,無副產品,過程精製和產物分離純化較方便。在生物反應器及操作方式上有較大的選擇餘地,除分批釜式反應外,可考慮用膜式反應器進行連續操作。在應用固定化酶為催化劑時,更可採用各種固定床和流化床的連續操作反應器。
沿革 古代人類雖不知道酶的存在,但是自古以來就知道利用植物和微生物的酶來催化反應生產各種食品。如利用麥芽中的麥芽糖酶來制備飴糖,利用酒葯中的微生物產生的澱粉酶和酒化酶來生產酒釀、黃酒和白酒等。隨著科學技術的發展,人們認識到,雖然酶是活細胞產生的,但是許多酶可以單獨分離得到,在分離的狀態下,酶仍然能繼續它的生物催化作用。20世紀40年代,以生產抗生素為代表的深層液體通氣純種培養技術獲得成功,從生產技術方面為酶制劑工業的形成創造了條件。以後,酶的生產、分離、精製,酶在游離狀態下的利用,固定化酶的制備和利用,酶反應器的應用等技術的發展,導致70年代初人們將酶反應過程(有時也稱酶過程)從發酵過程中分出去,單獨成為酶工程中的核心部分。
分類 以酶為催化劑的酶反應過程,可根據作用於底物的酶性質決定。以單一酶為催化劑的反應稱單酶反應;以兩個酶或兩個以上酶參與反應的過程稱多酶反應;或稱多酶串聯反應。從化學反應工程角度出發,可分為單(液)相催化反應以及多相催化反應,後者以液固相催化反應為主。游離酶的反應常屬前者,而固定化酶的反應則屬後者。
組成步驟 以工業生產為目的的酶過程可由以下五個步驟所組成:
①產生酶的微生物發酵過程。
②胞內酶的微生物細胞破碎過程。可用機械研磨、高壓勻漿器進行破碎;也可用加入溶菌酶的方法處理,或用超聲波、反復凍融的物理方法。胞外酶則不需上述操作,直接將發酵液過濾除去菌體即可。
③酶的分離純化過程。根據酶分子與其他蛋白質之間性質的差異,例如分子的大小、溶解度的不同,用鹽析法、有機溶媒沉澱法、電滲析法、離子交換層析和電泳法等技術,將酶進行分離純化。
④為了提高酶的催化性能,將酶固定在載體上的固定化過程(見固定化酶)。
⑤酶反應器的設計和酶反應控制。對於游離酶反應,通常採用分批攪拌槽反應器;對於固定化酶反應,則常用連續柱式反應器(見生物反應器)。
典型過程 有單酶反應和多酶反應。
①單酶反應 用氨基醯化酶對醯化DL-氨基酸進行水解,析出為L-氨基酸和醯基-D-氨基酸是典型的單酶反應。

若採用液相催化反應,當間歇反應結束後,給產物的提取帶來困難。由於缺乏適當分離手段,酶使用一次就被棄掉,很不經濟。目前,工業上採用液固催化反應,即用固定化氨基醯化酶進行連續生產(見圖)。底物乙醯-DL-氨基酸溶液以一定流速進入酶反應柱,反應過程中對溫度、pH進行控制,經過濃縮後,利用溶解度不同進行分離得到產品L-氨基酸。醯化-D-氨基酸用化學方法進行消旋化反應後,作為基質循環使用。該法與用液態酶間歇式反應相比較,有操作穩定、分離簡便、收率高、成本低等優點。

②多酶反應 以DL-α-氨基-ε-乙內醯胺為原料通過由L-α-氨基-ε-已內醯胺水解和α-氨基-ε-已內醯胺消旋酶共同固定的酶柱後,即可獲得最終產品L-氨基

Ⅷ 國內外比較好的離子交換樹脂生產廠家有哪些

離子交換樹脂廠家
國產的:上海綠寶、蘇青、金山、西安樹脂廠
進口的:陶氏、羅門哈斯、拜耳、漂萊特
陽離子交換樹脂、陰離子交換樹脂、軟化樹脂、混床樹脂、拋光樹脂、大孔樹脂等都有的

Ⅸ 水性催化劑是什麼

你好、水性催化劑也叫高分子催化劑是一種對化學反應具有催化作用的高分子。生物體內的酶就是一種高活性、高選擇性的天然高分子催化劑,但由於是水溶性的,故在工業應用上受到限制,因而又發展了不溶於水的固定化酶——一種半合成的高分子催化劑。目前開發應用的合成高分子催化劑主要有離子交換樹脂型催化劑和高分子金屬催化劑兩類。多以有機或無機高分子為骨架,在骨架上連有各種具有催化作用的功能基團。這類催化劑不僅具有很高的活性和選擇性,而且比較穩定,分離、回收方便,可以重復使用,有的還具有光學活性等特殊的機能。目前已應用到各種有機反應、有機合成及某些高分子合成反應中。

Ⅹ 固定化酶具有的性質

固定化酶(immobilized enzyme)
不溶於水的酶。是用物理的或化學的方法使酶與水不溶性大分子載體結合或把酶包埋在水不溶性凝膠或半透膜的微囊體中製成的。酶固定化後一般穩定性增加,易從反應系統中分離,且易於控制,能反復多次使用。便於運輸和貯存,有利於自動化生產。固定化酶是近十餘年發展起來的酶應用技術,在工業生產、化學分析和醫葯等方面有誘人的應用前景。
固定化酶的研究始於1910年,正式研究於20世紀60年代,70年代已在全世界普遍開展。酶的固定化(Immobilization of enzymes)是用固體材料將酶束縛或限制於一定區域內,仍能進行其特有的催化反應、並可回收及重復利用的一類技術。與游離酶相比,固定化酶在保持其高效專一及溫和的酶催化反應特性的同時,又克服了游離酶的不足之處,呈現貯存穩定性高、分離回收容易、可多次重復使用、操作連續可控、工藝簡便等一系列優點。固定化酶不僅在化學、生物學及生物工程、醫學及生命科學等學科領域的研究異常活躍,得到迅速發展和廣泛的應用,而且因為具有節省資源與能源、減少或防治污染的生態環境效應而符合可持續發展的戰略要求。
固定化酶的制備方法有物理法和化學法兩大類。物理方法包括物理吸附法、包埋法等。物理法固定酶的優點在於酶不參加化學反應,整體結構保持不變,酶的催化活性得到很好保留。但是,由於包埋物或半透膜具有一定的空間或立體阻礙作用,因此對一些反應不適用。化學法是將酶通過化學鍵連接到天然的或合成的高分子載體上,使用偶聯劑通過酶表面的基團將酶交聯起來,而形成相對分子量更大、不溶性的固定化酶的方法.

閱讀全文

與離子交換樹脂固定化酶相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582