『壹』 濃差極化的現象
① 膜分離過程中的一種現象,會降低透水率,是一個可逆過程。是指在超濾過程中,由於水透過膜而使膜表面的溶質濃度增加,在濃度梯度作用下,溶質與水以相反方向向本體溶液擴散,在達到平衡狀態時,膜表面形成一溶質濃度分布邊界層,它對水的透過起著阻礙作用。
② 電流通過電池或電解池時,如整個電極過程為電解質的擴散和對流等過程所控制,則在兩極附近的電解質濃度與溶液本體就有差異,使陽極和陰極的電極電位與平衡電極電位發生偏離,這種現象稱為「濃差極化」。
『貳』 微濾與超濾的共同點和不同點,及其優缺點
微濾、超濾的區別
從膜的分離范圍來看,微濾最適合液體介質的降濁、除菌處理,而超濾主要可用於對低分子溶解物與有機大分子的分離(通常是指分子量在500以上,106以下的大分子從溶液中分離)。對於反滲透水處理中的預處理來說是分離水中全部的有機物、微生物和膠體顆粒。
微濾和超濾的過濾過程通常是以直流過濾方式(包括表面過濾、深度過濾)和錯流過濾方式進行的。微濾膜和超濾膜的差異最明顯的是孔徑不同,微濾膜一般指孔徑在 0.02-0.1um,高度均勻,具有篩網特徵的多孔固體連續相,而超濾的孔徑似為0.002-0.2um,在進行分離時的壓力也分別為0.01- 0.3Mpa和0.2-1.0Mpa。
超濾膜透過物質主要是水、溶劑、離子和小分子。
被截留物質主要是蛋白質、各類□、細菌、病毒、乳膠、微粒子、過濾精度為10-4cm~10-7cm利用超濾膜不同孔徑對液體進行分離,其分子切割量(CWCO)一般為6000~50萬,孔徑為100nm(納米)。
微濾膜透過物質主要是水、溶液和溶解物。被截留物質主要是懸浮物、細菌類、微粒子。過濾精密有0.2cm、0.5cm、1.0cm、2.0cm、3.0cm、5.0cm、和10.0cm。其在過濾領域里的重要特點是:
1. 使所有比網孔大的粒子被全部攔截在膜的表面,克服了常規過濾的深層過濾介質過濾達不到「絕對值」的要求,而微孔過濾膜是趨於「絕對值」過濾器的首選材料。
2. 孔徑均勻,過濾精度高
微孔濾膜的孔徑十分均勻,故為均孔膜,其與反滲透及超濾有明顯的不同。其最大孔徑與平均孔徑的比值一般為3~4,孔徑分布基本呈正態分布,因而常被作為起 保證作用的手段,過濾精度高,分離效率高。孔隙率高,流速快。微孔膜的微孔數絢達每平方釐米107~1011個孔,孔隙率在60%~90%之間,由於孔隙 率高,其對液體的過濾速度在同等過濾精度下,比常規過濾介質快40倍。
3. 厚度薄,吸附量小微孔膜的厚度一般為90~220um,與一般深層過濾介質比,只有它們的1/10,因而過濾速度高,過濾時對被濾物質的液體的吸附量極小。
4. 無介質脫落,不產生二次污染。微孔膜是均勻,連續的整體結構,沒有一般的深層過濾介質可能產生濾材脫落的不足。
5. 顆粒容納量小,易賭塞。微孔膜阻留顆粒大多數只限於膜表面,因而易被材料中與膜孔徑大小相近的微粒或凝膠物質所堵塞。微濾和超濾在處理系統上視水質需要適當地採取預過濾。
http://www.waterinfor.com/index.php?option=com_k2&view=item&id=101:%E5%BE%AE%E6%BF%BEmf%E8%B6%85%E6%BF%BEuf%E6%A6%82%E8%BF%B0&Itemid=78&tmpl=component&print=1
『叄』 超濾中的濃差極化現象分析
什麼是濃差極化?
在壓力驅動膜過程中,由於料液中水透過膜,而溶質被膜阻留,使膜表面上溶質的濃度升高。在濃度梯度作用下,溶質從膜表面向本體溶液反向擴散,形成邊界層,使流體阻力和滲透壓增加,從而導致溶劑透過通量減小。
當溶劑向膜表面流動引起的溶質流動速度與由濃度梯度引起的溶質向本體溶液的擴散速率達到平衡時,在膜表面附近形成一個穩定的濃度梯度區,膜表面濃度C2高於主體溶液濃度C1,這一區域稱為濃差極化邊界層,這一現象叫濃差極化;C2/C1叫濃差極化度。
濃差極化的危害
1. 濃差極化使膜表面溶質濃度增高,引起滲透壓的增大,從而減小傳質驅動力。
2. 當膜表面溶質濃度達到其飽和濃度時,會在膜表面形成沉積或凝膠層,增加透過阻力。
3. 膜表面沉積層或凝膠層的形成會改變膜的分離特性。
4. 當有機溶質在膜表面達到一定濃度時有可能對膜發生溶脹或溶解,惡化膜的性能。
5. 嚴重的濃差極化導致結晶析出,阻塞流道,運行惡化。
濃差極化防治
既然超濾膜的濃差極化現象危害如此之大,那麼怎麼防止濃差極化現象的惡化呢?
主要防治途徑:
1. 加強進料的預處理。
2. 選擇合適膜組件:組件結構;加入紊流器;料液橫切流向設計;螺旋流。
3.合理的過程設計:料液脈沖流動;提高流速。
4.合適的操作參數的選擇:適當提高進料液溫度以降低粘度,增大傳質系數等。
超濾膜的濃差極化不僅會使膜通量減小,不及時處理還會引起膜的性能惡化,壽命大大減少,因此做好日常的維護工作及其重要的~
『肆』 什麼是超濾
超濾膜屬於毛細管式中空纖維膜,是以高分子材料經特殊的膜製造工藝生產的不對稱半透回膜,它是答一種不產生相變的分離方法,其所用的制膜材料為改性PVC、PAN或者PVDF,具有良好的機械性能和耐熱、耐化學性能以及較強的抗污染能力。它的切割分子量為10萬道爾頓,超濾膜絲內徑0。 9mm,外徑1。6mm,屬內壓式過濾,即原液先進入中空膜絲內部,經壓力差驅動,沿徑向由內向外滲透過中空膜絲,從而濾除原液中的各種細菌、膠體、雜質等大分子物質。
『伍』 超濾和微濾的原理
超濾與微濾原理來
超濾及源微濾是依託於材料科學發展起來的先進的膜分離技術。
超濾和微濾均是利用多孔材料的攔截能力,以物理截留的方式去除水中一定大小的雜質顆粒。在壓力驅動下,溶液中水、有機低分子、無機離子等尺寸小的物質可通過纖維壁上的微孔到達膜的另一側,溶液中菌體、膠體、顆粒物、有機大分子等大尺寸物質則不能透過纖維壁而被截留,從而達到篩分溶液中不同組分的目的。該過程為常溫操作,無相態變化,不產生二次污染。
超濾是利用超濾膜的微孔篩分機理,在壓力驅動下,將直徑為0.002-0.1μm之間的顆粒和雜質截留,去除膠體、蛋白質、微生物和大分子有機物。應用於鍋爐給水處理、工業廢污水處理、飲用水的生產及高純水制備等。在給水處理中常作為反滲透、離子交換的預處理。
微濾也是利用微濾膜的篩分機理,在壓力驅動下,截留直徑在0.1~1μm之間的顆粒,如懸浮物、細菌、部分病毒及大尺寸膠體,多用於給水預處理系統。
『陸』 如何克服膜分離過程中的濃差極化
在膜分離過程中,給水中的溶劑(水)在壓力驅動下透過膜,溶質(離子或回不同分子量的答溶質與顆粒物)被截留,使溶質在濾膜表面處的濃度逐漸高於溶質在水溶液主體中的濃度,在濃度梯度的作用下,溶質由膜面向本體溶液擴散,從而形成邊界層,使流體...
『柒』 濃差極化現象該怎麼解決
你的問題太模糊了。
這是摘自其他文獻的解決辦法,希望對你有所幫助。
一、增高流速
首先可以採用化工上常用的增加騷動的措施。也就是說設法加大流體流過膜面的線速度,其中也包括採用層流薄層流道法。
二、填料法
如將29~100us的水球放入被處理的液體中,令其共同流經反滲透(藉助於半透過膜的膜分離技術)器以減不膜邊界層的厚度而增大透過速度。不球的材質可用玻璃或甲基丙烯酸甲酯製作。此外,對管形反滲透(藉助於半透過膜的膜分離技術)器來說,也可向進料液中填加微形海綿球操作溫度造成超濾濃差極化.不過,對板式和卷式組件而言,加填料的方法是不適宜的,主要是因有將流道堵塞的危險。
三、裝設湍流促進器
所謂湍流促進器一般是指可強化流態的多種障礙物。例如對管式組件而言,內部可安裝螺旋擋板。對板式或卷式的膜組件可內襯網柵等物以促進湍流。實驗表明,這些湍流促進器的效果很好。
四、脈沖法
主要作法是在流程中增設一脈沖發生裝置,使液流在脈沖條件下通過膜(具有選擇性分離功能的材料)裝置。脈沖的振幅和頻率不同,其效果也不一樣。對流速而言,振幅越大或頻率越高,透過速度也越大。
雖然動力增加了25%~50%,但是,換來了透過速度提高了70%的得益,有相當的經濟價值。
五、攪拌法
是目前應用廣泛,特別是在測試裝置中必定使用的一種方法。其主要作法是在膜面附近增設攪拌器,也可以把裝置放在磁力攪拌器上回轉使用。試驗表明,傳質系數與攪拌器的轉數成直線關系水處理公司。
六、加分散阻垢劑(hindersthedirtyagent)
為防止反滲透(藉助於半透過膜的膜分離技術)膜結垢(是水中溶解的鈣鎂離子形成不溶性碳酸鹽而沉積的產物),某廠過去曾以加硫酸或鹽酸來調節PH值,但因酸系統的腐蝕和泄露使操作者很感麻煩,並使水處理(通過物化方法去除水中一些物質的過程)系統運行正常。
『捌』 濃差極化對超濾和反滲透有何影響
由於濃抄差極化現象增大了膜兩襲側的滲透壓,在同等工作壓力作用下,系統的純驅動壓減小,與純驅動壓成正比的水通量將下降。與此同時,由於濃差極化現象增大了膜兩側的鹽濃度差, 與鹽濃度差成正比的鹽通量將上升。因此,濃差極化現象將使反滲透系統的水通量下降及透鹽率上升。
對超濾的影響沒有反滲透嚴重。
『玖』 濃差極化的膜分離過程中的濃差極化
萊特.萊德濃差極化是指分離過程中,料液中的溶液在壓力驅動下透過膜,溶質(離子或不同分子量溶質)被截留,在膜與本體溶液界面或臨近膜界面區域濃度越來越高;在濃度梯度作用下,溶質又會由膜面向本體溶液擴散,形成邊界層,使流體阻力與局部滲透壓增加,從而導致溶劑透過通量下降。
折疊濃差極化濃差極化會使實際的產水通量和脫鹽率低於理論估算值。濃差極化效應如下:膜表面上的滲透壓比本體溶液中高,從而降低NDP;降低水通量(Qw);增加透鹽量(Qs);增加難溶鹽的濃度,超過其溶度積並結垢。濃差極化因子(β)被定義為膜表面鹽濃度(Cs)與本體溶液鹽濃度(Cb)的比值:因電解槽中電極界面層溶液離子濃度與本體溶液濃度不同而引起電極電位偏離平衡電位的現象。是電極極化的一種基本形式。電解過程中溶液在電解槽內出現的這種濃度差異,是由於液相傳質即,通過界面層溶液的擴散速度跟不上電解速度引起的。結果,當電極反應在一定電流密度下達到穩定後,陰極界面層溶液的濃度必低於本體溶液;而在陽極,例如可溶陽極,界面層溶液的濃度必高於本體溶液。根據能斯特(w.Nernst)電位方程,這兩種情況都要導致電極電位偏離按本體溶液濃度計的平衡電位:陰極電勢變小(向負方向移動),陽極電勢變大(向正方向移動),即發生了電極的濃差極化。濃差極化隨電流密度增加而增大。濃差極化是大電流密度下產生的主要極化形式。濃差極的大小用濃差超電位釹£表示,陰極濃差超電位與電流密度i的關系為:式中i極限為正離子一到達陰極表面便被立即還原,致使界面層溶液中該離子濃度趨於零的電流密度,稱極限電流密度。極限電流密度由實驗確定,它相當於陰極極化曲線出現水平段時的電流密度。極限電流密度越大,容許的電流密度上限越大,對電解和電鍍越有利。提高電解質溶液的濃度、攪拌和加熱溶液,都能提高極限電流密度。濃差極化對金屬電解、電鍍沒有任何好處,它使槽電壓升高,電耗增大,並使陰極沉積或鍍層質量惡化,甚至造成氫的析出和雜質金屬離子的放電。濃差極化可以通過攪拌、加熱溶液或移動電極而消除至一定限度,但由於電極表面擴散層的存在而不能完全避免。
『拾』 比較電滲析和超濾工藝中濃差極化的異同點是什麼
比較電滲析和超濾工藝中濃差極化的異同點是什麼
1.超濾過程中內的濃差極化
在膜分離過程中,大分子溶質容被膜所截留並不斷累積在膜表面上,使溶質在膜面處的濃度Cm高於主體溶液中的濃度Cb,從而形成濃度差Cm-Cb,並促使溶質的反向擴散。這種現象稱為濃差極化。
2.電滲析
電滲析法是利用電場的作用,強行將離子向電極處吸引,致使電極中間部位的離子濃度大為下降,從而製得淡水的。