㈠ 離子交換膜的原理是什麼
離子交換膜又稱離子選擇透過性膜。
按其功能和結構的不同,可分為陽離版子交換膜、權陰離子交換膜、兩性交換膜、鑲嵌離子交換膜、聚電解質復合膜5種。離子交換膜的構造和離子交換樹脂相同,但為膜的形式。
離子交換膜可製成均相膜和非均相膜兩類。採用高分子的加工成型方法製造。①均相膜。先用高分子材料如丁苯橡膠、纖維素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等製成膜,然後引入單體如苯乙烯、甲基丙烯酸甲酯等,在膜內聚合成高分子,再通過化學反應引入所需功能基。也可通過甲醛、苯酚等單體聚合製得。②非均相膜。用粒度為200~400目的離子交換樹脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合後加工成膜製得。為免失水乾燥而變脆破裂,須保存在水中。
離子交換膜主要應用於海水淡化,甘油、聚乙二醇的除鹽,放射性元素、同位素及氨基酸的分離,有機物及無機物純化,放射性廢液處理,燃料電池隔膜及選擇性電極等。
㈡ 隔膜法和離子交換膜法生產氫氧化鈉有何區別
氫氧化鈉 開放分類: 氫氧化鈉、燒鹼、苛性鈉、火鹼、液鹼 NaOH固體溶於水放熱;又稱燒鹼、火鹼、苛性鈉,是常見的、重要的強鹼,英文名稱sodiun hydroxide(別名Caustic soda). 化學式NaOH 分子量40.01.CASRN: 1310-73-2 .EINECS 登錄號215-185-5. 密度2.130克/厘米3,熔點318.4℃,水溶性SOLUBLE,沸點1390℃,Kb=3.0,pKb= -0.48.鈉(Na)元素在元素周期表中為第11號元素,位於元素周期表第ⅠA族(第Ⅰ主族)第3周期,屬於鹼金屬族(該族元素均呈強鹼性,氫(H)元素除外).其核外電子排布為2、8、1(1s2,2s2,2p6,3s1),最外層3s1電子為其價電子,Na元素很容易失去3s1電子而形成正一價的鈉離子(Na+),故呈強金屬性.Na元素與水反應(與水反應時,應用燒杯並在燒杯上加蓋玻璃片,反應時鈉塊浮在水面上,熔呈球狀,游於水面,有「絲絲」的響聲,並有生成物飛濺),生成強鹼性NaOH溶液,並放出氫氣.固體NaOH中OH以O-H共價鍵結合,Na與OH以強離子鍵結合,溶於水其解離度近乎100%,故其水溶液呈強鹼性,可使無色的酚酞試液變成紅色,或使PH試紙變藍等. 純的無水氫氧化鈉為白色半透明,結晶狀固體.氫氧化鈉極易溶於水,溶解度隨溫度的升高而增大,溶解時能放出大量的熱,288K時其飽和溶液濃度可達26.4mol/L.它的水溶液有澀味和滑膩感,溶液呈強鹼性,具備鹼的一切通性.市售燒鹼有固態和液態兩種:純固體燒鹼呈白色,有塊狀、片狀、棒狀、粒狀,質脆;純液體燒鹼為無色透明液體.氫氧化鈉還易溶於乙醇、甘油;但不溶於乙醚、丙酮、液氨.對纖維、皮膚、玻璃、陶瓷等有腐蝕作用,溶解或濃溶液稀釋時會放出熱量;與無機酸發生中和反應也能產生大量熱,生成相應的鹽類;與金屬鋁和鋅、非金屬硼和硅等反應放出氫;與氯、溴、碘等鹵素發生歧化反應.能從水溶液中沉澱金屬離子成為氫氧化物;能使油脂發生皂化反應,生成相應的有機酸的鈉鹽和醇,這是去除織物上的油污的原理. 氫氧化鈉的用途十分廣泛,在化學實驗中,除了用做試劑以外,由於它有很強的吸濕性,還可用做鹼性乾燥劑.燒鹼在國民經濟中有廣泛應用,許多工業部門都需要燒鹼.使用燒鹼最多的部門是化學葯品的製造,其次是造紙、煉鋁、煉鎢、人造絲、人造棉和肥皂製造業.另外,在生產染料、塑料、葯劑及有機中間體,舊橡膠的再生,制金屬鈉、水的電解以及無機鹽生產中,製取硼砂、鉻鹽、錳酸鹽、磷酸鹽等,也要使用大量的燒鹼.工業用氫氧化鈉應符合國家標准 GB 209-93;工業用離子交換膜法氫氧化鈉應符合國家標准 GB/T 11199-89;化纖用氫氧化鈉應符合國家標准 GB 11212-89;食用氫氧化鈉應符合國家標准 GB 5175-85. 在工業上,氫氧化鈉通常稱為燒鹼,或叫火鹼、苛性鈉.這是因為較濃的氫氧化鈉溶液濺到皮膚上,會腐蝕表皮,造成燒傷.它對蛋白質有溶解作用,有強烈刺激性和腐蝕性(由於其對蛋白質有溶解作用,與酸燒傷相比,鹼燒傷更不容易癒合).用0.02%溶液滴入兔眼,可引起角膜上皮損傷.小鼠腹腔內LD50: 40 mg/kg,兔經口LDLo: 500 mg/kg.粉塵刺激眼和呼吸道,腐蝕鼻中隔;濺到皮膚上,尤其是濺到粘膜,可產生軟痂,並能滲入深層組織,灼傷後留有瘢痕;濺入眼內,不僅損傷角膜,而且可使眼睛深部組織損傷,嚴重者可致失明;誤服可造成消化道灼傷,絞痛、粘膜糜爛、嘔吐血性胃內容物、血性腹瀉,有時發生聲啞、吞咽困難、休克、消化道穿孔,後期可發生胃腸道狹窄.由於強鹼性,對水體可造成污染,對植物和水生生物應予以注意. 《化學危險物品安全管理條例 (1987年2月17日國務院發布)》,《化學危險物品安全管理條例實施細則 (化勞發[1992] 677號)》,《工作場所安全使用化學品規定 ([1996]勞部發423號)》等法規,針對化學危險品的安全使用、生產、儲存、運輸、裝卸等方面均作了相應規定;《常用危險化學品的分類及標志 (GB 13690-92)》將該物質劃為第8.2 類鹼性腐蝕品;《隔膜法燒鹼生產安全技術規定 (HGA001-83)》、《水銀法燒鹼生產安全技術規定 (HGA002-83)》作了專門規定.
㈢ 海水淡化的方法有多種,如蒸餾法、電滲析法等.電滲析法是一種利用離子交換膜進行離子交換的方法,其原理
A、陰離子交來換膜只允許陰離源子自由通過,陽離子交換膜只允許陽離子自由通過,隔膜B和陰極相連,陰極是陽離子放電,所以隔膜B是陽離子交換膜,故A錯誤;
B、電解過程中陽離子移向陰極,故B錯誤;
C、a電極和電源正極相連是電解池的陽極,溶液中氯離子先放電,電極反應為:2Cl--2e-=Cl2↑,故C錯誤;
D、b電極氫離子放電生成氫氣,電極附近氫氧根離子濃度增大,結合鎂離子生成白色沉澱,故D正確;
故選D.
㈣ 離子交換膜法電解飽和食鹽水原理中,那些微粒能穿過隔膜
看是什麼離子交換膜,如果是陽離子交換膜,就是鈉離子,氫離子可以通過;如果是陰離子交換膜,那麼氯離子,氫氧根可以通過;如果是質子交換膜,那麼只有氫離子可以通過。
㈤ 異質陰離子交換膜可以固溶鑄造嘛,有沒有大致過程
傳統的離子選擇性隔膜主要是基於商用的離子交換膜材料,他們普遍回較厚,離子阻抗較大答,導致跨膜離子通量低,鹽差發電能量密度不高。
針對此問題,近日中國科學院理化所聞利平研究團隊與北京航空航天大學高龍成課題組合作在《美國化學會會志》(J. Am. Chem. Soc.)上發表了題為「超薄的具有離子選擇性的異質膜用於高性能的鹽差能轉換」的論文。通過先進的高分子合成技術,研究人員首先設計並且合成了一種新型的嵌段聚合物分子PEO-hv-PMA(Chal)(圖1),該功能分子同時含有光交聯基團,經過一系列處理後,可以形成超薄自支撐的多孔納米通道薄膜。
㈥ 兩性離子交換膜和陰陽離子交換膜有什麼區別
一般以-NH3+、-NR2H+或者-PR3+等陽離子作為活性交換基團,陽離子交換膜可以看作是一種高分子電解質,而陰離子因為同性排斥而不能通過、水處理工業。陰離子交換膜具有非常廣泛的應用,在氯鹼工業、新型超級電容器等方面的應用也得到關注和研究,它是分離裝置、濕法冶金以及電化學工業等領域都起到舉足輕重的作用[1] ,他的高分子母體是不溶解的,並且在陰極產生OH-作為載流子,而連接在母體上的磺酸集團帶有負電荷和可解離離子相互吸引著、重金屬回收,陰離子交換膜作為電池隔膜在液流儲能電池,他們具有親水性由於陽膜帶負電荷離子交換膜是對離子具有選擇透過性的高分子材料製成的薄膜,帶有固定基團和可解離的離子 如鈉型磺酸型、提純裝置以及電化學組件中的重要組成部分,因此還被稱為離子選擇透過性膜,帶有正電荷的陽離子就可以通過陽膜,陽離子膜通常是磺酸型的,隨著新型化學電源的發展,但在膜外我們通電通過電場作用,對陰離子具有選擇透過性作用。近年來,所以具有選擇透過性,經過陰離子交換膜的選擇透過性作用移動到陽極:固定基團是磺酸根 解離離子是鈉離子,雖然原來的解離正離子受水分子作用解離到水中。 陰離子交換膜的本質是一種鹼性電解質、鹼性陰離子交換膜燃料電池
㈦ 陰離子交換膜是任何陰離子都能通過嗎
陰離子交換膜的本質是一種鹼性電解質,對陰離子具有選擇透過性作用,因此還被稱為離子選擇透過性膜。一般以-NH3+、-NR2H+或者-PR3+等陽離子作為活性交換基團,並且在陰極產生OH-作為載流子,經過陰離子交換膜的選擇透過性作用移動到陽極。陰離子交換膜具有非常廣泛的應用,它是分離裝置、提純裝置以及電化學組件中的重要組成部分,在氯鹼工業、水處理工業、重金屬回收、濕法冶金以及電化學工業等領域都起到舉足輕重的作用
。近年來,隨著新型化學電源的發展,陰離子交換膜作為電池隔膜在液流儲能電池、鹼性陰離子交換膜燃料電池、新型超級電容器等方面的應用也得到關注和研究。
㈧ 離子交換膜法生產燒鹼的原理是什麼其與隔膜法的主要區別有哪些
離子交換膜法電解食鹽水而製成燒鹼(即氫氧化鈉),其主要原理是因為使用的陽離子交換膜,該膜有特殊的選擇透過性,只允許陽離子通過而阻止陰離子和氣體通過,即只允許H+、Na+通過,而Cl-、OH-和兩極產物H2和Cl2無法通過,因而起到了防止陽極產物Cl2和陰極產物H2相混合而可能導致爆炸的危險,還起到了避免Cl2和陰極另一產物NaOH反應而生成NaClO影響燒鹼純度的作用。
隔膜法生產燒鹼需要石棉,這個容易引發石棉病,另外廢石棉的處理也是問題。
㈨ 陰離子交換膜的發展前景
陰離子交換膜是新型能量轉換裝置的重要構成部分,其使用性能是否符合要求專是新能源屬電池能否得到商業化應用的基本前提,所以各國對陰離子交換膜的研究爭先恐後,相繼開發出具有不同結構、應用於不同類型電池的電解質隔膜。我國中科院化物所及各高校也紛紛加大了電池及其膜材料的研究力度,近年來也取得了一定成果,這也是我國新能源技術研究與利用的重要組成部分 。