❶ 陽離子交換量的試驗步驟
取4隻100 mL離心管,分別稱出其重量(准確至0.0001 g,下同)。在其中2隻加入專1.0 g污灌區表層屬風干土壤樣品,其餘2隻加入1.0 g深層風干土壤樣品,並作標記。向各管中加入20 mL氯化鋇溶液,用玻棒攪拌4 min後,以3000r/min轉速離心至下層土樣緊實為止。棄去上清液,再加20 mL氯化鋇溶液,重復上述操作。
在各離心管內加20 mL蒸餾水,用玻棒攪拌1 min後,離心沉降,棄去上清液。稱出離心管連同土樣的重量。移取25.00 mL 0.1 mol/L硫酸溶液至各離心管中,攪拌10 min後,放置20 min,離心沉降,將上清液分別倒入4隻試管中。再從各試管中分別移取10.00 mL上清液至4隻100 mL錐形瓶中。同時,分別移取10.00 mL 0.1 mol/L硫酸溶液至另外2隻錐形瓶中。在這6隻錐形瓶中分別加入10 mL蒸餾水、1滴酚酞指示劑,用標准氫氧化鈉滴定,溶液轉為紅色並數分鍾不褪色為終點。
❷ 測定土壤陽離子交換量容量有哪些方法
聯合國抄糧農組織規定用於土壤分類襲的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。中性乙酸銨法也是我國土壤和農化實驗室所採用的常規分析方法,適於酸性和中性土壤。最近的土壤化學研究表明,對於熱帶和亞熱帶的酸性、微酸性土壤,常規方法由於浸提液pH值和離子強度太高,與實際情況相差較大,所得結果較實際情況偏高很多。新方法是將土壤用BaCl2
飽和,然後用相當於土壤溶液中離子強度那樣濃度的BaCl2溶液平衡土壤,繼而用MgSO4交換Ba測定酸性土壤陽離子交換量。
石灰性土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國內廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。
❸ 測定土壤陽離子交換量的方法有哪些
土壤陽離子交換量的測定受多種因素的影響,如交換劑的性質、鹽溶液濃度和pH、淋洗方法等,必須嚴格掌握操作技術才能獲得可靠的結果。聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。
新方法是將土壤用BaCl2 飽和,然後用相當於土壤溶液中離子強度那樣濃度的BaCl2溶液平衡土壤,繼而用MgSO4交換Ba測定酸性土壤陽離子交換量。
蒸餾法測定銨離子的量並換算為土壤陽離子交換量。此法的優點是交換液中可同時測定各種交換性鹽基離子。石灰性土壤用氯化銨-乙酸銨作交換劑,鹽鹼土用乙酸鈉作交換劑進行測定。不同的交換劑與測定操作對實驗結果影響較大,報告實驗結果時應標出。
(3)陽離子交換量蒸餾裝置y形管擴展閱讀:
石灰性土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。
土壤陽離子交換量測定:土壤陽離子交換量(CEc是指土壤膠體所能吸附的各種陽離子)的總量。酸性、中性土壤多用傳統的乙酸銨交換法測定,使用乙酸銨溶液反復處理土壤,使土壤成為銨離子飽和土;用乙醇洗去多餘的乙酸銨後。
❹ 陽離子交換量是物理因素還是化學因素
陽離子交來換量是物理因素還是源化學因素
不同土壤的陽離子交換量不同,主要影響因素:a,土壤膠體類型,不同類型的土壤膠體其陽離子交換量差異較大,例如,有機膠體>蒙脫石>水化雲母>高嶺石>含水氧化鐵、鋁.b,土壤質地越細,其陽離子交換量越高.c,對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大.d,土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大.土壤陽離子交換量是影響土壤緩沖能力高低,也是評價土壤保肥能力、改良土壤和合理施肥的重要依據.
❺ 可交換陽離子和陽離子交換量是一個概念嗎希望詳細一點,謝謝!
不一樣,前者指的是陽離子(理論交換量),後者是陽離子的實際交換容量
❻ 土壤陽離子交換量的檢出限是多大
根據我來國最新的土壤環境質量標源准(GB 15618-1995),並為對土壤陽離子交換量做出限檢。
但通常來說土壤中有機膠體(腐殖質)的CEC(cmol(+)/kg)最大,含量在200~500范圍內波動。蛭石為100~150;蒙脫石礦物為主的土壤CEC為70~95;伊利石礦物為主的土壤CEC為10~40;高嶺石礦物為主的土壤CEC為3~15;半倍氧化物為主的土壤CEC為2~4
我找了《土壤學》這本書第110頁找的答案,夠認真吧,求採納~
❼ 土壤陽離子交換量測定為什麼要通入蒸汽同時要電爐加熱
土壤全氮的測定 1 適用范圍 本方法適用於各類土壤全氮含量的測定. 2 測定原理樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮.鹼化後蒸餾出來的氨用硼酸吸收,以酸標准溶液滴定,求出土壤全氮含量(不包括全部硝態氮). 包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化成銨態氮. 3 主要儀器設備 3.1 土壤樣品粉碎機; 3.2 瑪瑙研缽; 3.3 土壤篩:孔徑1.0mm、0.25mm; 3.4 分析天平:感量為0.0001g; 3.5 硬質開氏燒瓶:容積50ml、100ml; 3.6 半微量定氮蒸餾裝置; 3.7 半微量測定管:容積10ml、25ml; 3.8 錐形瓶:容積150ml; 3.9 電爐:300W變溫電爐. 4 試劑 4.1 硫酸(GB625-77):化學純; 4.2 硫酸(GB 625-77)或鹽酸(GB622-77):分析純,0.005mol/L硫酸或0.01mol/L鹽酸標准溶液; 4.3 氫氧化鈉(GB629-81):工業用或化學純,10 mol/L氫氧化鈉溶液; 4.4 硼酸-指示劑混合液; 4.4.1 硼酸(GB628-78):分析純,2%溶液(W/V); 4.4.2 混合指示劑:0.5g溴甲酚綠(HG3-1220-79)和0.1g甲基紅(HG3-958-76)於瑪瑙研缽中,加入少量95%乙醇,研磨至指示劑全部溶解後,加95%乙醇至100ml.使用前,每升硼酸溶液中加20ml混合指示劑,並用稀鹼調節至紅紫色(pH值約4.5).此液放置時間不宜過長,如在使用過程中pH值有變化,需隨時用稀酸或稀鹼調節之. 4.5 加速劑:100g硫酸鉀(HG3-920-76,化學純),10g五水合硫酸銅(GB665-78,化學純),1g硒粉(HG3-926-76)於研缽中研細,必須充分混合均勻. 4.6 高錳酸鉀溶液:25g高錳酸鉀(GB643-77)溶於500ml.無離子水,貯於棕色瓶中; 4.7 1:1硫酸溶液; 4.8 還原鐵粉:磨細通過孔徑0.15mm篩; 4.9 辛醇:化學純. 5 土壤樣品的制備將通過孔徑2mm篩的土樣,在牛皮紙上鋪成薄層,劃分成多個小方格.用小勺於每個方格中,取等量的土樣(總量不得少於20g)於瑪瑙研缽中研磨,使之全部通過0.25mm篩,混合均勻後備用. 6 分析步驟 6.1 稱樣稱取通過0.25mm孔徑篩的風干土樣1.0g(精確到0.0001g,含氮約1mg),同時測定土樣水分含量. 6.2 土樣消煮 6.2.1 不包括硝態和亞硝態氮的消煮:將土樣送入乾燥的開氏瓶底部,加少量無離子水(約0.1ml)濕潤土樣後,加入2g加速劑和5mL濃硫酸,搖勻.將開氏瓶傾斜置於300W變溫電爐上,用小火加熱,待瓶內反應緩和時(約10~15min),加強火力使消煮的土液保持微沸,加熱的部位不超過瓶中的液面,以防瓶壁溫度過高而使銨鹽受熱分解,導致氮素損失.消煮的溫度以硫酸蒸氣在瓶頸上部1/3處冷凝流回為宜.待消煮液和土粒全部變為灰白稍帶綠色後,再繼續消煮1h,冷卻,待蒸餾.在消煮土樣的同時,做兩份空白測定,除不加土樣,其他操作皆與測定土樣時相同. 6.2.2 包括硝態和亞硝態氮的消煮:將土樣送入乾燥的50ml開氏瓶底部,加1ml高錳酸鉀溶液,搖動開氏瓶,緩緩加入2ml 1:1硫酸,不斷轉動開氏瓶,然後放置5min,再加入1滴辛醇.通過長頸漏斗將0.5g(±0.01g)還原鐵粉送入開氏瓶底部,瓶口蓋上小漏斗,轉動開氏瓶,使鐵粉與酸接觸,待劇烈反應停止時(約5min),將開氏瓶置於電爐上緩緩加熱45min(瓶內土液應保持微沸,以不引起大量水分丟失為宜).停火,待開氏瓶冷卻後,通過長頸漏斗加2g加速劑和5ml濃硫酸,搖勻.按6.2.1的步驟,消煮至土液全部變為黃綠色,再繼續消煮1h,冷卻,待蒸餾.在消煮土樣的同時,做兩份空白測定. 6.3 氨的蒸餾 6.3.1 蒸餾前先檢查蒸餾裝置是否漏氣,並通過水的餾出液將管道洗凈. 6.3.2 待消煮液冷卻後,用少量無離子水將消煮液定量地全部轉入蒸餾器內,並用水洗滌開氏瓶4~5次(總用水量不超過30~35mL). 於150ml錐形瓶中,加入5ml 2%硼酸-指示劑混合液,放在冷凝管末端,管口置於硼酸液面以下,以免吸收不完全.然後向蒸餾室內緩緩加入20ml 10mol/L氫氧化鈉溶液,通入蒸汽蒸餾,待餾出液體積約50ml時,蒸餾完畢.用少量已調節至pH4.5的水洗滌冷凝管的末端. 6.3.3 用0.005mol/L硫酸(或0.01mol/L鹽酸)標准溶液滴定餾出液由藍綠色至剛變為紅紫色.記錄所用酸標准溶液的體積).空白測定所用酸標准溶液的體積,一般不得超過0.40ml. 7 結果計算土壤全氮(%)=(V-V0)×c×0.014×0.014/m 式中: V——滴定試液時所用酸標准溶液的體積,ml; V0——滴定空白時所用酸標准溶液的體積,ml; c——酸標准溶液的濃度,mol/L; 0.014——氮原子的毫摩爾質量; m——風干土樣質量,g. 平行測定結果,用算術平均值表示,保留小數點後三位. 8 精密度平行測定結果的相差:土壤全氮含量(%) 允許絕對相差(%) >0.1 ≤0.005 0.0.06 ≤0.004 <0.6 ≤0.003 9 注釋 9.1 試樣的粒徑,這里採用0.25mm孔徑篩,但如果含氮量高,稱量
❽ 陽離子交換量50mol/hg是什麼意思
陽離子交換量50摩爾每毫克
❾ 含蛭石晶層間層礦物的陽離子交換容量及酸浸研究
彭同江 劉福生 張寶述 孫紅娟
(西南科技大學礦物材料及應用研究所,四川綿陽 621010)
摘要 對采自新疆尉犁蛭石礦、河南靈寶-陝西潼關蛭石礦的工業蛭石礦物樣品進行了可交換性陽離子、交換容量和酸處理試驗研究。結果發現新疆尉犁蛭石礦金雲母-蛭石中的可交換性陽離子主要為Na+和Ca2+,其次有Mg2+和K+、Ba2+和Sr2+。而河南靈寶-陝西潼關蛭石礦工業蛭石樣品主要為Ca2+和Mg2+,其次為Na+、K+等。金雲母-蛭石和綠泥石-蛭石間層礦物的陽離子交換容量隨間層結構中蛭石晶層的含量增加而增大,一般在56.92~98.95 m mol/100 g之間,僅為蛭石最大陽離子交換容量的一半。金雲母-蛭石樣品陽離子交換容量大小與K2O含量呈負相關關系,與(Na2O+CaO)含量呈正相關關系。層間可交換性陽離子的氧化物CaO和Na2O的酸浸取率最高,層間不可交換性陽離子的氧化物 K2O次之,八面體中陽離子的氧化物MgO、Fe2O3和Al2O3具有較高的酸浸取率,而四面體陽離子的氧化物SiO2的酸浸取率最低;金雲母-蛭石間層礦物中蛭石晶層含量高的樣品酸浸取率高,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。
關鍵詞 金雲母-蛭石;間層礦物;陽離子交換容量;酸浸取物;酸浸取率。
第一作者簡介:彭同江,男,1958年4月出生,博士,教授,礦物晶體化學專業。E-mail:[email protected]。
一、含蛭石晶層間層礦物的陽離子交換容量
(一)原理
根據工業蛭石樣品的化學成分研究,蛭石晶層中可交換性陽離子的種類主要有:K+、Na+、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸銨(NH4Ac)作為淋洗劑,
中國非金屬礦業
相關系數為0.90。
圖1 金雲母-蛭石樣品陽離子交換容量(CEC) 隨K2O 和Na2O+CaO 含量(質量分數) 的變化
可以看出,隨著K2O含量的增加,樣品的陽離子交換容量減小;隨(Na2O+CaO)含量的增加,陽離子交換容量增加。從而表明,隨K2O含量的增加,蛭石晶層的含量降低;隨(Na2O+CaO)含量的增加,蛭石晶層的含量增加。由此可以得出,在金雲母變化為金雲母-蛭石的過程中,溶液中富含Na+和Ca2+離子組分。
對於金雲母-蛭石樣品來說,我們發現其陽離子交換容量的大小與樣品的粉末X射線衍射譜特徵有一定關系。一般說來,陽離子交換容量小於75 m mol/100 g的樣品,其粉末X射線衍射圖上發現有較強的金雲母的衍射峰;高於95 m mol/100 g樣品,發現有蛭石的衍射峰。這進一步表明對樣品陽離子交換容量的貢獻主要來自於間層結構中蛭石晶層的含量。蛭石晶層的含量越高,間層礦物的陽離子交換容量越大。
二、酸浸實驗研究
(一)酸處理實驗與酸浸取物分析
酸處理試驗步驟與實驗方法如下:
1)將燒杯在100℃下烘乾1 h後稱重。
2)分別在燒杯中加0.5 g樣品。
3)將盛樣品的燒杯放在烘箱中在100℃下烘乾2 h。
4)從烘箱中取出燒杯在乾燥器中涼至室溫後稱重,計算出樣品除去吸附水後的質量。
5)將燒杯中分別加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀鹽酸30 mL,攪拌均勻後靜止作用12 h。
6)過濾、洗滌、定溶後用原子吸收光譜法測定濾液中K、Na、Mg、Si、Fe、Al的含量。
利用上述方法對所選的3個樣品進行了酸處理和酸浸取物的分析。測定結果轉換成氧化物百分含量後列入表2中。
表2 不同濃度的稀鹽酸對樣品不同氧化物的腐蝕量(wB/%)
註:X為鹽酸溶液的濃度,單位mol/L。
(二)酸蝕量與酸浸取物的變化規律
由表2可以看出,在不同鹽酸濃度溶液的情況下金雲母樣品主要氧化物的酸蝕量都大大低於金雲母-蛭石樣品主要氧化物的酸蝕量,這表明金雲母的耐酸性能高於金雲母-蛭石間層礦物。
金雲母-蛭石間層礦物兩個樣品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分為三種情形。
(1)處於蛭石晶層層間域中的水化陽離子
劉福生等(2002)給出的金雲母-蛭石間層礦物樣品的可交換性陽離子氧化物的含量(不考慮H2O+)分別為,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考慮所含H2O+後樣品的可交換性陽離子氧化物的含量分別為,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,這些數值與表2中CaO和Na2O的腐蝕量非常相近(其差別來源於對樣品進行不同的處理及分析的誤差)。由於水化陽離子與結構層間的結合最弱,故CaO和Na2O的酸浸取率最高,其中CaO幾乎全部浸出,Na2O的浸取率在82.27%~89.24%之間。
(2)在結構中以離子鍵相結合的陽離子
在結構中與陰離子呈離子鍵結合的陽離子主要有:K+、Mg2+、Fe2+、Al3+。相應氧化物酸浸取率分別為 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。離子鍵的結合力高於蛭石晶層層間水化陽離子與結構層之間的結合力,而又小於硅氧四面體內的共價鍵結合力,因此,以離子鍵結合的陽離子氧化物的酸浸取率低於層間水化陽離子氧化物,而又高於以共價鍵結合的陽離子氧化物。
(3)在結構中以共價鍵結合的陽離子
在結構中與陰離子呈共價鍵結合的陽離子只有Si4+,SiO2的酸浸取率最低,為2.15%~3.02%。
蛭石晶層的水化陽離子最容易被酸淋濾出來,即使在低濃度的鹽酸溶液中,且它們的酸蝕量隨鹽酸濃度的增大變化很小;其次是處於金雲母晶層的層間K+離子。MgO、Fe2O3和Al2O3也具有較高的酸蝕量百分數,其中MgO、Al2O3的酸蝕量隨鹽酸濃度的增大而急劇增大,Fe2O3酸蝕量隨鹽酸濃度的增大而緩慢增大;SiO2的酸蝕量最低,且酸蝕量隨鹽酸濃度的增大變化很小。
金雲母-蛭石樣品與金雲母樣品相比較,層間陽離子、八面體陽離子、四面體陽離子都具有較高的氧化物酸蝕量百分數。這表明金雲母-蛭石的結構穩定性較金雲母差,即使是金雲母-蛭石間層結構中的金雲母晶層也是如此。這一結果與熱分析所得出的結果(彭同江等,1995)是完全一致的。
(三)金雲母-蛭石間層礦物酸蝕機理
對於蛭石及含蛭石晶層的間層礦物酸蝕機理的研究不多。但對於蒙脫石酸活化機理研究已經很深入,並得出比較一致的結論。即當用酸處理蒙脫石時 蒙脫石層間的可交換性陽離子(如Ca2+、Mg2+、Na+、K+等)可被氫離子交換而溶出,同時隨之溶出的還有蒙脫石八面體結構中的鋁離子及羥基。因此,活化後的蒙脫石比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(張曉妹,2002)。下面結合前面的試驗與分析結果對金雲母-蛭石間層礦物酸蝕機理進行討論。
1.酸浸取反應機理
金雲母-蛭石間層礦物中蛭石晶層的結構和陽離子佔位與蒙脫石的大致相同,只是蛭石晶層八面體中的陽離子主要是Mg2+,而蒙脫石則主要是Al3+,而與蛭石晶層相間排列的還有金雲母晶層。因此,金雲母-蛭石間層礦物的酸蝕機理可以看成是蛭石晶層和金雲母晶層分別與酸進行作用。
蛭石晶層與鹽酸產生離子交換反應和酸腐蝕反應,後者導致結構的局部破壞。其中離子交換反應是氫離子將樣品中蛭石晶層的層間可交換陽離子如K+、Na+、Ca2+、Mg2+等置換出來。
氫質蛭石晶層在酸的繼續作用下結構產生局部破壞,溶出八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。
金雲母晶層與鹽酸產生酸腐蝕反應,產生局部結構被破壞,溶出層間陽離子、八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。
上述反應可歸三類:H+離子與蛭石晶層層間可交換陽離子的交換反應;H+離子與結構中八面體片上的(OH)-和四面體片中Si-OH上的(OH)-中和形成H2O的反應;陽離子從結構上解離形成鹽和偏硅酸的反應。
2.酸浸取規律的晶體化學分析
金雲母-蛭石間層礦物屬三八面體層狀硅酸鹽礦物。由金雲母的晶體結構特點可知,結構中陽離子與陰離子結合有兩種化學鍵,即離子鍵和共價鍵。其中,四面體陽離子(主要為 Si4+)與陰離子(氧)的化學鍵主要為共價鍵,因而在結構中的聯結力最強;八面體陽離子(主要為Mg2+)以離子鍵與陰離子(氧和羥基)結合,聯結力相對較強;層間陽離子位於層間域內與底面氧以弱離子鍵結合,聯結力較弱。金雲母-蛭石間層礦物結構中金雲母晶層的情形與金雲母相類似,蛭石晶層的八面體和四面體兩種位置的化學鍵特點與金雲母的情形也相類似。在金雲母-蛭石間層結構中聯結力相對最弱的位置是蛭石晶層層間水化陽離子的位置,由於水分子的存在,層間陽離子與結構層的聯結力比金雲母的更弱。
上述晶體化學特點決定了四面體陽離子Si4+的酸浸取率最小,八面體陽離子Mg2+、Al3+、Fe2+酸浸取率較大,層間可交換性陽離子Na+、Ca2+最大。
因此,金雲母-蛭石間層礦物樣品不同氧化物酸浸取率的大小取決於晶體結構的強度和陰陽離子之間的化學鍵強度的大小。
3.酸蝕作用歷程與結構破壞
根據酸蝕試驗和分析結果,結合金雲母-蛭石的晶體結構特點,得出金雲母-蛭石酸蝕作用和結構破壞的過程如下。
酸蝕過程中各種酸蝕反應首先沿礦物顆粒邊緣和結構缺陷部位進行。H+離子與層間可交換陽離子產生交換反應,形成氫質蛭石,交換出來的陽離子Na+、Ca2+、K+等形成鹽;H+離子與八面體中的(OH)-作用,形成H2O,其結果導致與(OH)-呈配位關系的Mg2+和其他陽離子隨(OH)-的解離而裸露於外表面並變得不穩定,從而脫離結構表面並進入溶液形成鹽;H+離子與四面體片邊緣的Si-O(或OH)作用,中和後形成H2O,並使Si4+裸露,進一步使Si4+解離並形成偏硅酸配陰離子;伴隨著H+離子的這些反應,還會導致金雲母晶層邊緣的層間陽離子(主要為K+)從結構中解離出來;整個結構的破壞程度和酸蝕量隨H+濃度增大和反應時間的增長而增大。酸蝕反應主要發生在結構層的邊緣、層間域和結構缺陷部位。
X射線分析結果表明,金雲母-蛭石間層礦物具有較好的耐酸蝕性能,層間可交換性陽離子的氫交換反應和邊緣與缺陷部位離子的解離和浸取,沒有導致金雲母-蛭石間層結構的破壞。但結合酸浸取物和酸浸取殘留物的研究,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。
三、結論
金雲母-蛭石間層礦物具有良好的陽離子交換性。因此,它可用於環保,吸附水中的重金屬離子或有機污染物,回收有用物質;在農業上用作儲水和儲肥載體,改良土壤等等。含蛭石晶層礦物結構中的Ca、Mg、K、Fe等元素在酸性條件下易被淋濾出來。因此,它可在農業上用作儲水和儲肥載體,同時又是長效肥料。一方面可為植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透氣性能等等。
酸浸取的結果導致金雲母-蛭石間層礦物中蛭石晶層的可交換性陽離子幾乎全部被淋濾交換出來,同時也在結構層邊緣和結構缺陷部位淋濾出其他組分。其結果導致金雲母-蛭石間層礦物比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(Suquet et al.,1991;Suquet et al.,1994)。因此,酸處理後的金雲母-蛭石間層礦物可用於環保方面作污水處理劑。
An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals
Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan
(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)
Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na+,Ca2+,and Mg2+,K+,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na+,K+in the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.
Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.
❿ 陽離子交換量的概念介紹
土壤陽離子交換量源(CEC)
Cation Exchange Capacity
在一定pH值(=7)時,每千克土壤中所含有的全部交換性陽離子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩爾數(potential CEC)。
常用單位:cmol(+)/kg土
國際單位:mmol/kg土
CEC的大小,基本上代表了土壤可能保持的養分數量,即保肥性的高低。陽離子交換量的大小,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。