導航:首頁 > 凈水問答 > 蒙脫石具有很高的陽離子交換能力

蒙脫石具有很高的陽離子交換能力

發布時間:2022-01-27 18:30:31

Ⅰ 蒙脫石/膨潤土的膨脹容、膠質價和陽離子交換容量有關系嗎它們之間有什麼聯系

陽離子交換容量:在一定pH值(=7)時,每千克土中所含有的全部交換性陽離子(K+、Na+、Ca2+、
Mg2+、NH4+、H+、Al3+等)的厘摩爾數(potential CEC).
膠質價:膨潤土與水按比例混合後,加適量氧化鎂,使其凝聚形成的凝膠體的體積,稱為膠質價。 以15克樣形成的凝膠體積的毫升數表示。膠質價顯示試樣顆粒分散與水化程度,是分散 性、親水性和膨脹性的綜合表現,它的大小與膨潤土礦的屬型和蒙脫石含量密切相關,鈉 基比鈣基、酸性膨潤土的膠質價高,同一屬型的膨潤土,含蒙脫石愈多,膠質價愈高。所 以,膠質價是鑒定膨潤土礦石屬型和估價膨潤土質量的技術指標之一。
膨脹容:膨潤土的膨脹性能以膨脹容表示,膨潤土在稀鹽酸溶液中膨脹後的容積稱為膨脹容,以毫 升/克樣表示。鈉基膨潤土比鈣基、酸性膨潤土的膨脹容高;同一屬型的膨潤土,含蒙脫石 愈多,膨脹容愈高。膨脹容是鑒定膨潤土礦石屬型和估價膨潤土質量的技術指標之一
聯系:CEC中K+ Na+含量高----膠質價 膨脹容就高。反之就低。

Ⅱ 倉鼠的蒙脫石散多少錢

摘要 蒙脫石散的主要成分蒙脫石,具有特殊的化學結構和物理性質,葯物進入胃腸後,在胃粘膜形成一層保護層,並對消化道內的病毒、細菌以及它們所產生的毒素具有固定以及抑制的作用。蒙脫石還具有陽離子交換能力,在胃腸道粘膜表層形成離子屏障,改善細胞正常的吸收與分泌功能,並在一定程度上增強胃腸道的免疫力。

Ⅲ 蒙脫石散的葯理作用是什麼

蒙脫石散的主要成分蒙脫石呈層狀結構,具有巨大的表面積(約110m2/g)及非均勻性電荷分布,因而具有很強的覆蓋能力,較高的定位能力及較強的吸附能力。以蒙脫石為原料生產的葯品具有以下葯理作用。
(1)蒙脫石遇水後,通過顆粒間的滲透膨脹和層間水化,顆粒分散,疊層之間發生剝離,帶負電的層面與端面相互作用,交聯締合形成水化凝膠。這些水化凝膠除有顯著的粘附性,還能與消化道中的粘液結合,顯著增強粘液的內聚力和粘彈性,牢固地覆蓋於損傷的粘膜表面,在創面所帶電荷很定的情況下,這種無理作用的強度和蒙脫石凝膠所帶負電荷的數量呈正相關。有研究表明,蒙脫石在胃粘膜表明形成的保護層厚達93nm,並且能夠持續6h以上。
(2)蒙脫石具有陽離子交換能力,在胃內可把某些有機陽離子(包括乙醇、胃蛋白酶、纖維蛋白片段、膽鹽等)吸附到表面,最終將其固定至層間,形成蒙脫石-有機絡合物,以減少這些有害的侵襲性物質對胃粘膜的直接傷害,並在質和量兩個方面增加粘液屏障,起到防止胃酸、胃蛋白酶、膽鹽及非甾體類消化葯對消化道粘膜的侵蝕,幫助和加速上皮細胞的再生和修復,促進受損粘膜的癒合。
(3)蒙脫石可覆蓋在整個消化道表面,通過靜電作用及「卡房式」凝膠結構,可將帶電性的致病菌(包括致病性大腸桿菌、霍亂弧菌、金黃色葡萄球菌、幽門螺旋桿菌(HP)、空腸彎麴菌等)、病毒(尤其輪狀病毒)及它們產生的毒素吸附、固定,而後隨腸蠕動排除體外,使其產生致病作用,並能抑制輪狀病毒的復制和傳播。
(4)蒙脫石能提高其和免疫球蛋白(1gA)的抗攻擊能力和消化道的免疫功能。
(5)蒙脫石顆粒可激活凝血因子VII、VIII、XII,具有消化道局部止血作用。
(6)改善細胞正常的吸收與分泌功能,減少腸細胞的運動失調和水及電解質的流失。
(7)僅作用於消化道,不進入血液循環,不影響X射線檢查,不改變正常的腸蠕動和大便顏色,對肝、腎、中樞神經及心血管等方面沒有影響。

Ⅳ 蒙脫石在飼料中有何作用

蒙脫石對家禽家畜有增加食慾、助消化、調節機體平衡、增加免疫機能、防病保健等作用。
(1)補充礦物質和必需元素
動物實驗等研究證實蒙脫石含有畜禽等多種動物生長發育所必需的多種具有生物學功能的常量元素和微量元素,除Si、Al外,還含有Fe、Zn、Cu、K、Na、Ca、Mg、P、I、Se等多種常量元素和微量元素及生物活性物質,這些元素可補充動物營養所需的物質,也是生物酶、激素等生物活性物質的組分,能使生物酶、激素的活性或免疫反應發生明顯變化,還是以可交換性離子和可溶性鹽的形式存在,易被動物吸收利用。
(2)脫霉脫毒護腸
根據蒙脫石的陽離子交換能力及非均勻性電荷分布的電負性,在蒙脫石晶體層間可形成具有極性的水合薄膜,而病毒、病菌也具有很好極性,兩者之間通過H-O-H范德華力而非化學鍵結合,將消化道內的病毒、病菌及其產生的毒素吸入礦物層間,有極強的固定和抑製作用,被吸附後的真菌毒素和細菌毒素隨糞便排出體外,減少了腸道對這些毒素的吸收,從而避免對動物的侵害。
消化道內大量的分散液使蒙脫石形成凝膠,從而增強覆蓋能力和保護作用。並通過與粘液糖蛋白相互結合,從質和量兩方面修復、提高粘膜屏障對攻擊因子的防禦功能。因此對於腹瀉、痢疾等各種消化道炎症有良好療效。
(3)飼料改良劑
由於特有的吸水膨脹性、高分散性、懸浮性、觸變性、潤滑性和吸附性等,蒙脫石一是能夠提高飼料的適口性和改進飼料的鬆散性,延緩飼料通過消化道的速度,增加營養物質本身反應的表面積,也增加了營養物質與消化道粘膜接觸的表面積,使營養物吸收得更充分,從而提高飼料利用率。二是可降低家禽糞便中的水分,保持欄內乾燥,減少發病率。

Ⅳ 礦石中蒙脫石族礦物為什麼具有陽離子交換性和晶格可膨脹性

蒙脫石族是以鋁的含水硅酸鹽為主體的一類粘土礦物,在晶體構造層間含水及一些交換陽離子,有較高的離子交換容量,所以具有陽離子交換性,並且具有較高的吸水膨脹能力。

Ⅵ 膨潤土的性質

吸附是所有固體物質存在的自然現象。我們將某些分子聚集在膨潤土表面的現象,稱為膨潤土的吸附作用。這種吸附作用在工業上得到了廣泛應用。如鑽井泥漿經常利用膨潤土礦物的吸附特性來調整不同使用目的的泥漿參數,如添加降濾失劑,就是通過高分子聚合物一端吸附在膨潤土顆粒表面,另一端溶於水使膨潤土顆粒和水分子之間產生了一種間接的聯系。形成了一種橋聯作用,減少了泥漿中的自由水,改變了泥漿的性能參數,達到降低濾失率的目的。
膨潤土吸附可以分為物理吸附、化學吸附和離子交換吸附三種類型。
l)物理吸附。物理吸附是靠吸附劑與吸附質之間分子間引力產生的,即我們常說的范德華力產生的。物理吸附是一種可逆的吸附過程,吸附速度與脫附速度在一定條件下呈動態平衡。產生物理吸附的主要原因是膨潤土表面分子其有表面能。由於膨潤土在水中高度分散,物理吸附現象十分明顯。
2)化學吸附。化學吸附是靠吸附劑與吸附質之間的化學鍵力而產生的,化學吸附作用一般不可逆。在鑽井泥漿中應用化學處理劑就是化學吸附作用的典型例子,如鐵鉻木質素磺酸鹽加入到膨潤土泥漿中就是利用鉻離子在膨潤土晶體的邊緣上發生整合吸附。這種化學吸附作用明顯比物理吸附作用要穩定。因此用鐵鉻木質素磺酸鹽處理的膨潤土泥漿具有較高的抗溫能力,可作為地熱和超深井的抗高溫泥漿體系。
3)離子交換吸附。膨潤土礦物晶體一般帶負電荷,因此在膨潤土顆粒表面要吸附等當量的相反電荷的陽離子。吸附的陽離子可以和溶液中的陽離子發生交換作用,這種作用稱為離子交換吸附。離子交換吸附的特點是:同號離子相互交換,等電量相互交換。離子交換吸附的反應是可逆的,吸附和脫附的速度受離子濃度的影響,這種影響符合質量作用定律。
影響膨潤土礦物吸附作用的因素是:
1)膨潤土類型的影響。鈉質膨潤土的吸附能力明顯比鈣質等其他類型的膨潤土礦物吸附能力強。
2)膨潤土顆粒粉碎粒度大小的影響。根據固體吸附的理論,進行粉碎的膨潤土礦物的吸附能力明顯提高,粉碎礦物越細,吸附作用越強。
3)溶液介質的影響。根據雙電層理論,膨潤土礦物晶體帶負電,在形成雙電層時會進行離子交換。如果溶液中離子濃度過高會壓縮膨潤土顆粒雙電層,抑制膨潤土的分散和擴散,甚至使膨潤土產生凝聚和聚結。 膨潤土遇水就膨脹,這種自然現象產生的主要原因是膨潤土礦物晶層間距加大,水分子進入了礦物的晶層,另外引起膨潤土膨脹的原因還有膨潤土礦物的陽離子交換作用。膨脹性與膨潤土的屬性和蒙脫石含量關系極大,鈉質膨潤土的膨脹性明顯比鈣質膨潤土要強,另外純度較高、蒙脫石含量高的膨潤土的膨脹性要強。因此,在實際應用時,如果我們主要想利用膨潤土礦物的膨脹性,那麼我們在考慮膨潤土礦物的種類時首先要選擇鈉質膨潤土礦,其次要考慮蒙脫石含量高的鈉質膨潤土。在機械鑄造和鐵礦球團工作中,對膨脹性要求較高。大量的鈣質膨潤土質,達不到使用要求,因此在使用前需要對鈣質膨潤土進行改性處理。
鈉質膨潤土的分散程度較鈣質膨潤土高,鈉質膨潤土的吸水率高、膨脹倍數大。鈉質膨潤土和鈣質膨潤上吸水膨脹產生不同結果的原因是:
1)陽離子可以將膨潤土顆粒聯結在起,制約了膨潤土顆粒的分散。多價離子比一價離子電荷密度大,顆粒之間產生較強的靜電引力,使膨潤土顆粒聯結的能力強,因此鈣質膨潤土的分散能力比鈉質膨潤土要弱。
2)蒙脫石晶格置換產生的負電荷要吸附電性相反的離子來平衡溶液的電性。這些電性相反的離子是以水化離子形式存在於溶液當中,帶負電荷的蒙脫石顆粒吸附水化陽離子形成雙電層。雙電層的厚度與反離子價數的兩次方成反比,即陽離子價高,水化膜薄,膨脹倍數低;而陽離子價效低,水化膜厚,膨脹倍數高。
3)鈉質膨潤土晶層吸附水的厚度是三層,鈣質膨潤土晶層吸附水的厚度是四層。在極性水分子的作用下,由於靜電引力較小,鈉質膨潤土晶層之間可以產生較大的晶層間距,而鈣質膨潤土由於晶層間的朴電引力較大,極性水分子不易進入晶層之間,因此,鈣質膨潤土晶層間產生的距離明顯比鈉質膨潤土小,表現在鈣質膨潤土比鈉質膨潤土難於在水中分散、膨脹倍數低。實質上,蒙脫石的膨脹性受其化學成分控制,含鈉離子多的蒙脫石可以待續不斷地膨脹,直至成為一種凝膠狀態。含鈣離子多的蒙脫石只能從干操狀態到含水狀態膨脹是有限度的。我們在了解了影響膨潤上膨脹性的深層次的原因後,可以人為有效地控制膨潤土礦物的膨脹性能,使之達到最佳使用效果。 造漿率是膨潤土顆粒在水中分散形成懸浮液,並且這種懸浮液的表觀粘度為15*10-3Ps·s時每噸膨潤土造漿的立方數是衡量膨潤土質量的一項重要指標,一般鈉質膨潤土的造漿性能比鈣質膨潤土要好。計其選漿率公式是:
造槳率(m3/t)=水的體積(mL)/土的質量(g)+1/土的密度一般在測試表觀粘度時配製表觀粘度在10~25(*10-3 Pa·s)范圍內三杯泥漿,經過攪拌靜止放置16h,再攪拌,測試粘度,然後在單對數坐標紙上標出三點的位置,進行連線,在坐標上求出表觀粘度為15*10-3 Pa·s時的加土量。 蒙脫石的性質和層間的交換性陽離子種類有很大關系。根據層間主要交換性陽離子的種類,通常蒙脫石分為鈣蒙脫石和鈉蒙脫石。
蒙脫石有吸附性和陽離子交換性能,可用於除去食油的毒素、汽油和煤油的凈化、廢水處理;由於有很好的吸水膨脹性能以及分散和懸浮及造漿性,因此用於鑽井泥漿、阻燃(懸浮滅火);還可在造紙工業中做填料,可優化塗料的性能如附著力、遮蓋力、耐水性、耐洗刷性等;由於有很好的粘結力,可代替澱粉用於紡織工業中的紗線上漿既節糧,又不起毛,槳後還不發出異味,真是一舉雙得。
總的說,鈉質蒙脫石(或鈉膨潤土)的性質比鈣質的好。
膨潤土(蒙脫石)由於有良好的物理化學性能,可做凈化脫色劑、粘結劑、觸變劑、懸浮劑、穩定劑、充填料、飼料、催化劑等,廣泛用於農業、輕工業及化妝品、葯品等領域,所以蒙脫石是一種用途廣泛的天然礦物材料。
膨潤土可用來作防水材料,如膨潤土防水毯、膨潤土防水板及其配套材料,釆用機械固定法鋪設。應用於PH值為4到10的地下環境,含鹽量較高的環境應採用經過改性處理的膨潤土,並應檢測合格後使用。 1898年美國地質學者Knighl在美國懷俄明州落基山河附近發現了一種綠黃色吸水膨脹的粘土物質,由於產地為:「 Fort Beton 」,因而取名膨潤土(Betonite)。膨潤土也叫斑脫岩或膨土岩,膨潤土的主要礦物功效成分是蒙脫石,高品位的含量在85-90%,膨潤土的一些性質也都是由蒙脫石所決定的。
蒙脫石可呈各種顏色如黃綠、黃白、灰、白色等等。可以成緻密塊狀,也可為鬆散的土狀,用手指搓磨時有滑感,小塊體加水後體積脹大,在水中呈懸浮狀,水少時呈糊狀。蒙脫石有吸附性和陽離子交換性能,可用於除去石油的毒素、汽油和煤油的凈化、廢水處理

Ⅶ 蒙脫石ksf是經過哪方面改性的

蒙脫石是由顆粒極細的含水鋁硅酸鹽構成的礦物,它們一般為塊狀或土狀。當溫度達到100~200℃時,蒙脫石中的水分子會逐漸跑掉。失水後的蒙脫石還可以重新吸收水分子或其他極性分子。
蒙脫石改性有鈉化改性、鋁改性、有機化改性等等方法。都是利用蒙脫石失水後留下的空隙,讓它吸附其它分子或物質以後進行某種性能的改變。
ksf則為關鍵成功因素分析法的簡稱,是指用關鍵成功因素分析法對蒙脫石改性過程式控制製得到的產品。本身並沒有具體的改性內容。

蒙脫石(Montmorillonite)屬於單斜晶系的含水層狀硅酸鹽礦物。其顆粒細小,具有膠體分散特性。 蒙脫石屬於2∶1型結構單元層的二八面體型,單位晶胞由兩片頂角朝里的Si-O四面體中夾一片Al-O或 Mg-O八面體形成一結構層。處於八面體空隙中的三價Al3+、Fe3+、和Cr3+離子常常被低價離子取代如Mg2+代替Al3+,Si4+常常被Al3+代替。由於部分高價陽離子被低價陽離子所取代,使結構層中的氧負電荷過剩。為了保證電荷平衡,水,交換性陽離子如Na+和Ca2+和有機液體可以進入層間結構,故蒙脫石具有陽離子交換能力。層間水分子在100~200℃時逐漸脫水,但並不破壞結構單元層的結構。脫水後的蒙脫石又可重新吸附水分子或其他極性分子進入層間。其化學式可表示為Ex (H2O)4 {(Al2-x , Mgx)2 [(Si , Al)4O10] (OH)2}。由於自然界產出的蒙脫石絕大部分為鈣基蒙脫石,鈣基蒙脫石較鈉基蒙脫石性能差,所以常用人工鈉化的方法將鈣基蒙脫石改型為鈉基蒙脫石。
由於蒙脫石存在天然膨潤土中,高純度蒙脫石是由膨潤土而得的。蒙脫石的提純的方法有很多種,目前天然蒙脫石的提純方法主要是濕法提純。常見的濕法提純是以水為介質的,水法提純主要有以下幾種:自然沉降法、重液分離法、絮凝法和離心分離法等。
蒙脫石改性是通過改變蒙脫石層間交換陽離子的種類來改變其物理化學性質。不同的無機陽離子與蒙脫石層間的親合力主要受陽離子的電荷數及其水化能控制。陽離子的水化能越小、電荷數越低,與粘土礦物層間的親合力就越強。常見的親合力順序對鹼金屬而言為:Cs+>Rb2+>Na2+>Li+,對鹼土金屬而言為:Ba2+>Sr2 +>Ca2+>Mg2+。蒙脫石中某些離子交換反應是可逆的,而某些離子交換反應是不可逆的。Ca-蒙脫石的鈉化改性過程中,陽離子交換受其電荷數及其水化能控制,陽離子的水化能越小、電荷數越低,與粘土礦物層間的親合力就越強。無機陽離子與蒙脫石的離子交換反應可分為三個階段,初始階段以表面吸附為主,後期階段以層間離子交換為主,中期階段為過渡階段,介於表面吸附和層間離子交換。
蒙脫石改性一般是蒙脫石鈉化改性,採用向鈣基蒙脫石中加入一定的改性劑Na2CO3,在一定的條件下使陽離子Na+ 置換結構層間的Ca2+、Mg2+,從而實現結構層間離子的轉變改性。
如用[Mont]-X代替蒙脫石化學式(X表示交換陽離子),那麼蒙脫石鈉化改性反應則為:
[Mont]-Ca+Na+ →[Mont]-Na+Ca2+
在蒙脫石的鈉化改性過程中,鈉離子交換可自動發生,但與時間和溫度有關。Ca-蒙脫石鈉化改性實驗證明:Na+離子與Ca-蒙脫石的Ca2+離子交換為一級反應,反應的活化能Ea為16.23kJ•mol-1,反應得頻率因子為1.00048,反應初期離子交換速率非常快,後期較慢並與時間成線性關系。蒙脫石的鈉化改性需解決的問題就是加快蒙脫石改性的離子交換速率,並在一定的時間內不可逆。
由於鈉質蒙脫石的性能優於鈣質蒙脫石,所以其用途最廣,用量最大。在醫葯、造紙、橡膠、油漆、塗料和化妝品生產的過程中常使用蒙脫石作為原料。

Ⅷ 測定膨潤土(蒙脫石)陽離子交換容量CEC有什麼意義

膨潤土(蒙脫石)晶層中的陽離子具有可交換性能,在一定的物理—化學條件下,不僅Ca2+、Mg2+、Na+、K+等可相互交換,而且H+、多核金屬陽離子(如羥基鋁十三聚體)、有機陽離子(如二甲基雙十八烷基氯化銨)也可交換晶層間的陽離子。陽離子交換性是膨潤土(蒙脫石)的重要工藝特性,利用這一特性,可進行膨潤土的改型,由鈣基膨潤土改型為鈉基膨潤土、活性白土、鋰基膨潤土、有機膨潤土、柱撐蒙脫石等產品。 陽離子交換容量(Cation Exchange Capacity)是指PH值為7的條件下所吸附的K+、Na+、Ca2+、Mg2+ 等陽離子總量,簡稱為CEC。膨潤土礦陽離子交換容量和交換性陽離子是判斷膨潤土礦質量和劃分膨潤土礦屬型的主要依據, CEC值愈大表示其帶負電量愈大,其水化、膨脹和分散能力愈強;反之,其水化、膨脹和分散能力愈差。如北票市膨潤土陽離子交換容量CEC 為66.7mmol/100g,阜新市的膨潤土陽離子交換容量CEC 為85.55 mmol/100g,內蒙古優質膨潤土陽離子交換容量CEC為115—139 mmol/100g。
研究表明,蒙脫土的片層中間的CEC通常在60-120mmol/100G范圍內,這是一個比較適合與聚合物插層形成納米復合材料的離子交換容量。因為如果無機物的離子交換容量太高,極高的層間庫侖力使得無機物片層間作用力過大,不利於大分子鏈的插入;如果無機物的離子交換容量太低,無機物不能有效地與聚合物相互作用,不足以保證無機物與聚合物基體的相容性,同樣不能得到插層納米復合物材料。適宜的離子交換容量、優良的力學性能使得蒙脫土成為制備PLS納米復合材料的首選礦物。CEC值和膨潤土(蒙脫石)的內表面積與蒙脫石含量呈正相關關系,用陽離子交換容量CEC 為100mmol/100g的膨潤土和 用陽離子交換容量CEC 為61mmol/100g的膨潤土製備插層納米復合物材料,盡管層間距相差不大(d001=1.98和1.91nm),但比表面(421.5和127.2m2。g-1)和吸氨量(318.3和80.7mg。g-1)卻有較大的差別. 與原料土的比表面(76.0和90.5m2。g-1)及吸氨量(49.2和62.1mg。g-1)相比,分別增加5.5和1.4倍及6.5和1.3倍,比表面和吸氨量的增加倍數有一定的對應關系. 這說明層電荷密度主要影響材料的表面性質. 由於層間距(d001)的變化主要取決於交聯劑的大小, 因而不同層電荷密度對於採用同種的交聯劑制備材料的層間距影響不大。
測定CEC的方法很多,如定氮蒸鎦法、醋酸銨法、氯化銨-醋酸鈉法、氯化銨-無水乙醇法、氯化銨-氨水法、氯化鋇-硫酸法等。目前,膨潤土CEC測定是依據國標JC/T 593—1995(膨潤土試驗方法)。具體方法如下:
(1)方法提要
用含指示陽離子NH4+的提取劑處理膨潤土礦試樣,將試樣中可交換性陽離子全部置換進入提取液中,並使試樣飽和吸附指示陽離子轉化成銨基上。將銨基土和提取液分離,測定提取液中的鉀、鈉、鈣及鎂等離子,則為相應的交換性陽離子量。
(2)主要試劑和材料
a. 離心機:測量范圍為0~400r/min;
b. 磁力攪拌器:測量范圍為50~2 400r/min』
c. 鉀、鈉、鈣、鎂混合標准溶液〔c(0.01Na+、0.005Ca2+、0.005Mg2+、0.002K+)〕稱取0.5004g碳酸鈣(基準試劑),0.201 5g氧化鎂(基準試劑),0.5844g氯化鈉(高純試劑)和0.1491g氯化鉀(高純試劑)於250mL燒杯中,加水後以少量稀鹽酸使之溶解(小心防止跳濺)。加熱煮沸趕盡二氧化碳,冷卻。將溶液移入1 000mL容量瓶中,用水稀釋至刻度,搖勻,移於乾燥塑料瓶中保存;
d. 交換液:稱取28.6g氯化銨置於250mL水中,加入600mL無水乙醇,搖勻,用1+1氨水調節pH為8.2,用水稀釋至1L,即為0.5mol/L氯化銨-60%乙醇溶液。
e. EDTA標准溶液〔c(0.01EDTA)〕:取3.72g乙二胺四乙酸二鈉,溶解於1 000mL水中。
標定:吸取10mL0.01mol/L氯化鈣(基準試劑)標准溶液於100mL燒杯中,用水稀釋至40~50mL左右。加入5mL4mol/L氫氧化鈉溶液,使pH≈12~13,加少許酸性鉻藍K-萘酚綠B混合指示劑,用EDTA溶液滴至純藍色為終點。
c1= c2·V3/ V4
式中:
c1——EDTA標准溶液的實際濃度,mol/L;
c2——氯化鈣標准溶液的濃度,mol/L;
V3——氯化鈣標准溶液的體積,mL;
V4——滴定時消耗EDTA標准溶液的體積,mL。
f. 洗滌液:50%乙醇,95%乙醇。
(3)試驗步驟
稱取在115~110℃下烘乾的試樣1.000g,置於100mL離心管中。加入20mL50%乙醇,在磁力攪拌器上攪拌3~5min取下,離心(轉速為300r/min左右),棄去管內清液,再在離心管內加入50mL交換液,在磁力攪拌器上攪拌30min後取下,離心,清液收集到100mL容量瓶中。將殘渣和離心管內壁用95%乙醇洗滌(約20mL),經攪拌離心後,清液合並於上述100mL容量瓶中,用水稀釋至刻度,搖勻,待測。殘渣棄去。
交換性鈣、鎂的測定,取上述母液25mL,置於150mL燒杯中,加水稀釋至約50mL,加1mL1+1三乙醇胺和3~4mL4mol/L氫氧化鈉,再加少許酸性鉻藍K-萘酚綠B混合指示劑,用0.01mol/LEDTA標准溶液滴定至純藍色,記下讀數V5,然手用1+1鹽酸中和pH為7,再加氨水-氯化銨緩沖溶液(pH=10),再用0.01mol/LEDTA標准溶液滴至純藍色記下讀數V6。
交換性鉀、鈉的測定:取25mL母液於100mL燒杯中,加入2~3滴1+1鹽酸,低溫蒸干。加入1mL1+1鹽酸及15~20mL水,微熱溶解可溶性鹽,冷卻後溶液移入100mL容量瓶中,以水稀釋至刻度、搖勻,在火焰光度計上測定鉀、鈉。標准曲線的繪制:分取0、3、6、9、12、15mL鉀、鈉、鈣、鎂混合標准溶液於100mL容量瓶中,加入2mL1+1鹽酸,用水稀釋至刻度、搖勻。在與試樣同一條件下測量鉀、鈉的讀數,並繪制標准曲線(此標准系列分別相當於每100g樣中含有0、170、345、520、690、860mg的交換性鈉和0、60、120、175、240、295mg的交換性鉀。
(4)結果計算
鈣、鎂的含量按下式計算:
交換性鈣g/100g= (40c5V5)/(2.5m3)
交換性鎂g/100g=[ 24c5(V6-V5)]/ (2.5m3)
式中:
c5—EDTA標准溶液的實際摩爾濃度mol/L;
V6、V5—滴定時耗用EDTA標准溶液的毫升數,mL;
m3——試樣質量,g。
鉀、鈉的含量按(10)式計算:
交換性鉀(g/100g)= Kmg /(2.5m3)
交換性鈉(g/100g)= Namg/(2.5m3)
式中:
Kmg,Namg—由標准曲線上查得的鉀鈉的毫克數;
m3——試樣質量,g。

Ⅸ 離子交替吸附作用

離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。

圖2-5-3 有機質表面的負電荷

圖2-5-4 陽離子交替吸附作用圖解

2.5.2.1 離子交換容量

離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:

水文地球化學

在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。

鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:

(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。

表2-5-2 一些粘土礦物及土壤的陽離子交換容量

(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。

2.5.2.2 陽離子交換反應及平衡

陽離子交換反應的一般形式可寫為:

水文地球化學

式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:

水文地球化學

式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:

水文地球化學

顯然,xA+xB=1。這樣式(2-5-7)可改寫為:

水文地球化學

Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:

水文地球化學

同樣,yA+yB=1,這樣式(2-5-7)變為:

水文地球化學

目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:

水文地球化學

交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:

水文地球化學

的交換系數為:

水文地球化學

這是因為(以Vanselow慣例為例):

水文地球化學

故有:

水文地球化學

表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。

需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:

水文地球化學

表2-5-3 不同離子與Na+發生交換反應時的交換系數

其交換系數的定義式如下:

水文地球化學

【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:

(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;

(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;

(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3

(4)含水層中發生的陽離子交換反應為:

水文地球化學

不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:

水文地球化學

試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。

【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:

水文地球化學

整理得:

水文地球化學

已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:

水文地球化學

以式(2-5-25)帶入式(2-5-24)得:

水文地球化學

為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:

水文地球化學

故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:

水文地球化學

式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化學

以式(2-5-26)帶入式(2-5-28)並整理得:

水文地球化學

這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。

2.5.2.3 分配系數及離子的吸附親和力

除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:

水文地球化學

式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:

水文地球化學

由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。

事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。

圖2-5-5 溶液中Ca2+的含量對吸附作用的影響

根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:

(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。

(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。

Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:

水文地球化學

在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。

綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):

水文地球化學

可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。

離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:

水文地球化學

由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。

地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:

水文地球化學

人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+

閱讀全文

與蒙脫石具有很高的陽離子交換能力相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582