導航:首頁 > 凈水問答 > 農業陽離子交換量的測定

農業陽離子交換量的測定

發布時間:2022-01-10 06:22:00

❶ 如何評價土壤陽離子交換量的數據

土壤陽離子交換量的測定受多種因素的影響,如交換劑的性質、鹽溶液濃度和pH、淋洗方法等,必須嚴格掌握操作技術才能獲得可靠的結果。 聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。中性乙酸銨法也是我國土壤和農化實驗室所採用的常規分析方法,適於酸性和中性土壤。最近的土壤化學研究表明,對於熱帶和亞熱帶的酸性、微酸性土壤,常規方法由於浸提液pH值太低和離子強度太高,與實際情況相差較大,所得結果較實際情況偏高很多。新方法是將土壤用BaCl2 飽和,然後用相當於土壤溶液中離子強度那樣濃度的BaCl2溶液平衡土壤,繼而用MgSO4交換Ba測定酸性土壤陽離子交換量。 石灰性土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國內廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。 隨著土壤分析化學的發展,現在已有了測定土壤有效陽離子交換量的方法。如美國農業部規定用求和法測定陽離子交換量;對於可變電荷為主的熱帶和亞熱帶地區高度風化的土壤,國際熱帶農業研究所建議測定用求和法土壤有效陽離子交換量(ECEC);最近國際上又提出測定土壤有效陽離子交換量(ECEC或Q+,E)和潛在陽離子交換量(PCEC或Q+,P)的國際標准方法,如ISO 11260:1994(E)和ISO 13536:1995(P),這兩種國際標准方法適合於各種土壤類型。

❷ 魯東農業生態地球化學調查

一、目標任務

在我國構建和諧社會的過程中,社會經濟的發展對資源開發、環境保護、農產品質量安全等提出了更高的要求。地質工作不僅要提供經濟保障,而且要關注生態環境問題;不僅要健康服務於經濟建設,而且要更多地服務於農業、環境發展,實現經濟社會同資源環境協調發展。為此,中國地質調查局於2002年開始,在全國逐步試點的基礎上,啟動了多目標區域地球化學調查和農業地質環境調查工作。山東省首先啟動了省部合作項目「山東省黃河下游流域生態地球化學調查」,並取得了一系列成果。

魯東地區是山東半島藍色經濟區的主體部分,也是山東經濟最發達地區。改革開放以來,區內經濟持續快速穩定發展,城市化進程步伐加快,開發資源導致重金屬污染環境問題、「工業三廢」排放問題、農葯化肥大量使用和污水灌溉問題及由此引發的生態環境污染問題日趨嚴重,導致與人類生活密切相關且關繫到人類生存的生態環境問題不斷出現。為查明區內生態環境現狀及發展趨勢,為區內社會經濟可持續發展提供科學依據,山東省人民政府於2006年部署了「山東省東部地區農業生態地球化學調查與評價」(魯國土資字[2006709])。項目歸口管理部門為山東省國土資源廳,項目實施單位為山東省地質調查院。工作項目起止時間為2007~2011年。

「山東省東部地區生態地球化學調查與評價」的總體目標是:通過開展生態地球化學調查,全面實施多目標區域地球化學調查和生態地球化學評價與研究,為社會經濟可持續發展規劃提供科學依據,為生態管護、農業種植適宜性、農產品質量安全、環境污染治理等各方面服務。

總體任務是:

一是開展多目標區域地球化學調查,調查內容主要包括系統採集並測定土壤和淺層地下水中元素含量並查明其分布、分配特徵;確定整個工作區及其各類子區的土壤地球化學基準值、背景值;圈定環境類、農業類、礦致類等各類地球化學異常,並對重要異常進行查證。

二是根據調查結果,依據相關的標准、方法,開展區域評價、綜合評價,包括土壤地球化學分區和生態地球化學環境分區,區域土壤環境質量、淺層地下水環境質量、大宗農產品及人居環境安全性評估,獲得對農業地質環境質量現狀的全面認識;進行區域農業地質環境適宜性評價,並提出規劃建議。

三是以多學科理論為指導,運用多種方法、技術,針對重大農業地質環境問題開展多層面、多角度的綜合研究。研究有毒有害元素或有益元素組成、存在方式、分布特徵與成因來源,准確把握影響系統安全性的危害要素,進行地球化學預測預警;研究元素在岩石-土壤-植物中的遷移轉化規律及影響機制;綜合研究區域地球化學條件對於農業環境的生態效應及影響模式,建立區域評價指標和評價模型。

二、技術思路與實施

(一)技術思路

山東省東部地區農業生態地球化學調查范圍涉及青島、煙台、威海、日照及濰坊、臨沂市6個地級市,共46個縣市(區)、1198個鄉鎮,面積54 370km2

堅持以地學為基礎,以地質科學、農業科學、環境科學等為理論指導,以多部門協作、多學科聯合的合作形式開展是基本的技術思路。以調查為基礎、評價為核心、研究為紐帶,是總體技術路線。

(二)主要技術指標

1)1:25萬表層土壤地球化學調查。系統採集表層土壤樣品(地表0~20cm深)進行化驗分析,查明表層土壤中54種元素或指標全量的分布、分散富集特徵,采樣密度1件/km2,以偶數方里網格內的4件樣品等量組合成1件樣品進行分析。

2)1:25萬深層土壤地球化學調查。系統採集自然環境土壤樣品(原則采樣深度為1.5m以下,低山丘陵區樣品採集按照2007年2月中國地質調查局下發的《關於我國低山丘陵與黃土高原地區多目標區域地球化學調查采樣技術有關要求的通知》執行)進行化驗分析,查明深層土壤中54種元素或指標全量的分布、分散富集特徵,采樣密度為1件/4km2,以2倍偶數方里網格內的4件樣品等量組合成1件樣品進行分析。

3)表層土壤有效態地球化學調查。系統採集表層土壤樣品進行化驗分析,查明表層土壤中元素有效態含量的分布、分散富集特徵,采樣密度1件/36km2,單樣分析。

4)淺層地下水地球化學調查。系統採集淺層地下水樣品,查明淺層地下水中相關地球化學指標的分布和分散富集特徵,采樣密度1件/16km2

5)選擇煙台地區開展有機污染物地球化學調查,進行有機污染區域性評價,采樣密度1件/36km2,單樣分析。分析項目為DDT和HCH總量及分量共10項指標。

6)在青島市人口密集區 1500km2范圍內開展大密度土壤放射性核素(238U,232Th和40K)和地表γ測量,對其放射性特徵和分布規律進行深入研究,對環境放射性質量進行全面評價。

(三)分析測試

湖北省地質實驗研究所承擔區域地球化學調查土壤元素全量、土壤重金屬形態和農產品等樣品的分析測試工作。所分析的全量54項指標是在1:20萬區域化探全國掃面計劃中規定分析的 Ag,As,Au,B,Ba,Be,Bi,Cd,Co,Cr,Cu,F,Hg,La,Li,Mn,Mo,Nb,Ni,P,Pb,Sb,Sn,Sr,Th,Ti,U,V,W,Y,Zn,Zr,Al,Ca,Mg,K,Na,Si,Fe 39種元素的基礎上,考慮農業和環境的研究需要,增加分析Br,C,Ce,Cl,Ga,Ge,I,N,Rb,S,Sc,Se,Tl 13種元素及有機碳(OrgC)和 pH 2 項指標;小麥(根系土、根、莖、葉)樣品分析As,Cd,Hg,Pb,Cr,Cu,Zn,Ni,Se,F共10項指標;小麥根系土重金屬形態分析As,Cd,Cr,Cu,Zn,Ni,Hg,Pb 8個重金屬元素的水溶態、離子交換態、碳酸鹽結合態、弱有機(腐殖酸)結合態、鐵錳結合態、強有機結合態、殘渣態共計56項指標。

山東省地質科學實驗研究院承擔淺層地下水、土壤有效量測試工作。淺層地下水分析項目為總硬度、溶解性總固體、氯化物(Cl-)、亞硝酸鹽(

)、高錳酸鹽指數(COD)、氰化物(CN-)、氟化物(F-)、碘化物(I-)、六價鉻(Cr6+)、As,Ba,Be,Ca,Cd,Co,Cu,Fe,Hg,Mg,Mn,Mo,Ni,Pb,Se,Zn,N,K,P,Sr,Th,U,pH 共32 項;土壤元素有效量分析項目為鹼解氮、速效磷、速效鉀、有效硼、有效鉬、有效(活性)錳、有效銅、有效鋅、有效鐵、有效硫、有效硒11項指標,同時分析相應指標的全量及陽離子交換量(CEC)、有機質和pH。

山東省農業科學院中心實驗室承擔土壤有機氯農葯殘留量(DDT和HCH總量及分量10項)的分析測試工作。這些高質量的海量數據,具多部門、多學科、多領域的長遠應用價值。

(四)綜合研究

在系統收集山東省農業、環保、國土資源等部門的以往研究成果,對國內外農業地質、農業環保等方面的研究現狀和進展進行調研的基礎上,相繼開展了土地環境質量評價、淺層地下水污染評價、土壤元素時空演變、土壤酸性緩沖能力、產品安全現狀、重金屬在土壤植物系統中遷移機理、農業地質環境評價方法體系、農業綜合區劃等方面的綜合研究工作。本書是對這些成果的集成總結與再研究。

三、主要成果及創新點

通過項目的實施,獲取了魯東地區豐富的區域地球化學資料,查明了農業地質環境現狀,較深入地研究了重金屬對農業地質環境的影響,探討了元素從土壤-農作物的遷移轉化規律及影響因素,提升了環境地球化學的研究水平;根據調查研究成果,結合調查區實際進行了農業綜合區劃和環境預測預警,並對農業地質環境的保護提出了一系列建議與對策。所獲得的調查、研究成果具有重要的科學意義和多領域的實際應用價值,展示了廣泛的應用前景。

(一)主要成果

1)獲得多介質、多元素或指標的高精度實測數據,編制了系列基礎性地球化學圖件,全面更新和充實了區域地球化學資料。

2)建立了魯東地區54種元素(指標)的土壤地球化學基準值、背景值和10種元素有效態含量平均值,總結了元素分布特點與規律,同時對控制土壤元素分布的主要因素進行了分析。

3)查明了魯東地區農業地質環境現狀,達到了「摸清家底」的目的。①查明了土壤環境質量現狀和土壤污染問題。②查明了淺層地下水的環境質量狀況和污染現狀。③查明了土壤營養元素的豐缺現狀,探討了影響元素有效性的控制因素。④進行省級土地質量地球化學評估;圈定綠色及無公害食品生產基地,圈定了找礦遠景區。

4)研究了土壤Se的豐缺分布狀況和Se生物有效性的控制因素,為發展高效生態農業,實現農民增收提供了新思路。

5)開展了具有針對性的有關土壤污染、區域生態安全、環境變化的預測預警工作,深化了對農業地質環境的認識,提高了綜合研究水平。

6)研究表層與深層土壤元素間相關關系,利用富集系數進行土壤污染評價,為甄別人為活動導致土壤污染提供了一條新思路。

7)在青島地區開展了大密度放射性環境地質調查。查明了青島市環境γ輻射吸收計量率的分布、來源及其影響因素。為城市未來的規劃和建設及長遠發展提供了依據。

8)建成了「生態地球化學調查資料庫」,全面更新了區域地球化學調查資料。

(二)主要創新點

本次調查充分考慮到勘查地球化學調查資料的社會需要,實現了元素地球化學總量與有效量和形態分析的結合、無機元素與有機污染物的結合、地球化學環境調查與生物效應調查的結合,既豐富了調查內容,又大大提高了資料的有效利用程度,縮短了認識過程。表現在以下幾個方面:

1)通過土壤重金屬元素的形態研究發現,不同重金屬元素的富存形態,對作物的生物活性和遷移能力各有差異,以Cd的離子交換態和水溶態(活動態)比例最高,這是決定土壤重金屬污染生態風險的重要因素。不同的pH、有機質、CEC、黏粒等環境下土壤元素形態組成也有很大差異,預示著土壤環境變化有可能引起土壤中重金屬活化而導致生態風險。

2)研究了As,Cr,Cd等有害元素從土壤-農作物的遷移轉化規律及其影響因素,從而為元素的生態環境效應評價提供了依據,具有學術意義和應用價值;探討了提高糧食生產安全的各項措施,為確保農產品安全、保障人類健康提供了科學依據。

3)首次在省級層次(1:25萬尺度)利用國家各項食品衛生標准,對研究區小麥質量進行安全性預測。結果表明,研究區90.15%的區域可種植綠色、無公害小麥,其中3.47%的區域可種植富硒小麥。

4)通過對煙台市有機污染物(六六六、DDT)的調查,推進了環境綜合評價的深度和廣度,使評價成果更具有實用性。

5)通過對土壤鹽基離子(K,Ca,Na,Mg之和)與pH關系的研究,首次建立了土壤酸化緩沖能力預警模型。

❸ 土壤檢測常規7項指標包括哪些

土壤檢測的項目有很多Cd、Hg、As、Pb、Cr、Ni等金屬元素全分析;六六六、滴滴涕DDT、pH、陽離子交換量、農殘、有機質、水分、全磷、全鉀、有效磷、鉀、硫化物、有機汞、水溶性鹽等; 危險廢物浸出毒性、腐蝕性、急性毒性初篩等你說的七項應該是指pH值、有機質、有效磷、速效鉀、效氮含量、陽離子交換量和水分含量。

❹ 離子交換怎麼試驗

離子交換法是一種藉助於離子交換劑上的離子和廢水中的離子進行交換反應而除去廢水中有害離子的方法。離子交換是一種特殊吸附過程,通常是可逆性化學吸附;其特點是吸附水中離子化物質,並進行等電荷的離子交換。
離子交換劑分無機的離子交換劑如天然沸石,人工合成沸石,及有機的離子交換劑如磺化煤和各種離子交換樹脂
在應用離子交換法進行水處理時,需要根據離子交換樹脂的性能設計離子交換設備,決定交換設備的運行周期和再生處理。通過本實驗希望達到下述目的:
1) 加深對離子交換基本理論的理解;學會離子交換樹脂的鑒別;
2) 學會離子交換設備操作方法;
3) 學會使用手持式鹽度計,掌握pH計、電導率儀的校正及測量方法。
二、實驗內容和原理
由於離子交換樹脂具有交換基因,其中的可游離交換離子能與水中的同性離子進行等當量交換。 用酸性陽離子交換樹脂除去水中陽離子,反應式如下:
nRH + M+n → RnM + nH+
M——陽離子 n——離子價數
R——交換樹脂
用鹼性陰離子交換樹脂除去水中的陰離子,反應式如下:
nROH + Y−n → RnY + nOH-
Y——陰離子
離子交換法是固體吸附的一種特殊形式,因此也可以用解吸法來解吸,進行樹脂再生。
本實驗採用自來水為進水,進行離子交換處理。因為自來水中含有較多量的陰、陽離
子,如Cl¯, NH4+,Ca,Mg,Fe,Al,K,Na等。在某些工農業生產、科研、醫療衛生等工作中所用的水,以及某些廢水深度處理過程中,都需要除去水中的這些離子。而採用離子交換樹脂來達到目的是可行的方法。

❺ 除了實驗中所用的方法外,還有那些方法可以用來測定土壤陽離子交換容量 各有什麼優

土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國內廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。 隨著土壤分析化學的發展,現在已有了測定土壤有效陽離子交換量的方法。如美國農業部規定用求和法測定陽離子交換量;對於可變電荷為主的熱帶和亞熱帶地區高度風化的土壤,國際熱帶農業研究所建議測定用求和法土壤有效陽離子交換量(ECEC);最近國際上又提出測定土壤有效陽離子交換量(ECEC或Q+,E)和潛在陽離子交換量(PCEC或Q+,P)的國際標准方法,如ISO 11260:1994(E)和ISO 13536:1995(P),這兩種國際標准方法適合於各種土壤類型。

還可以答中性乙酸銨法或乙酸鈉法。中性乙酸銨法適於酸性和中性土壤,與實際情況相差較大,所得結果較實際情況偏高很多。新方法是將土壤用BaCl2 飽和,然後用相當於土壤溶液中離子強度那樣濃度的BaCl2溶液平衡土壤,繼而用MgSO4交換Ba測定酸性土壤陽離子交換量。 石灰性土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國內廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。

萬里的吧

❻ 什麼是陽離子交換量

土壤陽離子交換量的測定受多種因素的影響,如交換劑的性質、鹽溶液濃度和、淋洗方法等,必須嚴格掌握操作技術才能獲得可靠的結果。 聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。中性乙酸銨法也是我國土壤和農化實驗室所採用的常規分析方法,適於酸性和中性土壤。最近的土壤化學研究表明,對於熱帶和亞熱帶的酸性、微酸性土壤,常規方法由於浸提液pH值太低和離子強度太高,與實際情況相差較大,所得結果較實際情況偏高很多。新方法是將土壤用BaCl2 飽和,然後用相當於土壤溶液中離子強度那樣濃度的BaCl2溶液平衡土壤,繼而用MgSO4交換Ba測定酸性土壤陽離子交換量。 石灰性土壤陽離子交換量的測定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前應用的較多、而且認為較好的是NH4Cl–NH4OAc法,其測定結果准確、穩定、重現性好。NaOAc法是目前國內廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。 隨著土壤分析化學的發展,現在已有了測定土壤有效陽離子交換量的方法。如美國農業部規定用求和法測定陽離子交換量;對於可變電荷為主的熱帶和亞熱帶地區高度風化的土壤,國際熱帶農業研究所建議測定用求和法土壤有效陽離子交換量(ECEC);最近國際上又提出測定土壤有效陽離子交換量(ECEC或Q+,E)和潛在陽離子交換量(PCEC或Q+,P)的國際標准方法,如ISO 11260:1994(E)和ISO 13536:1995(P),這兩種國際標准方法適合於各種土壤類型。

❼ 土壤化學指標

一、土壤酸鹼度(pH值)

土壤酸鹼度對土壤肥力及植物生長影響很大,我國西北、北方不少土壤pH值大,南方紅壤pH值小。因此可以種植和土壤酸鹼度相適應的作物和植物。如紅壤地區可種植喜酸的茶樹,而苜蓿的抗鹼能力強等。土壤酸鹼度對養分的有效性影響也很大,如中性土壤中磷的有效性大;鹼性土壤中微量元素(錳、銅、鋅等)有效性差。在農業生產中應該注意土壤的酸鹼度,積極採取措施,加以調節。

1.電位法

土壤實驗室基本上都採用電位法測定土壤pH值,電位法有準確、快速、方便等優點。其基本原理是:用pH計測定土壤懸濁液的pH值時,由於玻璃電極內外溶液H離子活度的不同產生電位差。

2.比色法

取土壤少許(約黃豆大),弄碎後放在白磁碟中,滴入土壤混合指示劑數滴,到土壤全部濕潤,並有少量剩餘。震盪磁碟,使指示劑與土壤充分作用,靜置1min,和標准比色卡比色,即得出土壤的酸鹼度。

3.原位酸鹼度感測器法

土壤原位pH測定儀可直接埋入土壤測試,直接讀數,非常方便,在指導農業科研及農業生產中起到了非常重要的作用。

二、土壤氧化還原電位(Eh)

土壤氧化還原電位是以電位反映土壤溶液中氧化還原狀況的一項指標,用Eh表示,單位為mV。

土壤氧化還原電位的高低,取決於土壤溶液中氧化態和還原態物質的相對濃度,一般採用鉑電極和飽和甘汞電極電位差法進行測定。影響土壤氧化還原電位的主要因素有:①土壤通氣性;②土壤水分狀況;③植物根系的代謝作用;④土壤中易分解的有機質含量。

旱地土壤的正常Eh為200~750mV,若Eh﹥750mV,則土壤完全處於氧化狀態,有機質消耗過快,有些養料由此喪失有效性,應灌水適當降低Eh。若Eh﹤200mV,則表明土壤水分過多,通氣不良,應排水或鬆土以提高其Eh值。

水田土壤Eh變動較大,在淹水期間Eh值可低至-150mV,甚至更低;在排水曬田期間,土壤通氣性改善,Eh值可增至500mV以上。一般地說,稻田適宜的Eh值在200~400mV之間,若Eh經常在180mV以下或低於100mV,則水稻分櫱或生長發育受阻。若長期處於-100mV以下,水稻會嚴重受害甚至死亡,此時應及時排水曬田以提高其Eh值。

1.二電極法

測定氧化還原電位的常用方法是鉑電極直接測定法,方法是基於鉑電極本身難以腐蝕、溶解,可作為一種電子傳導體。當鉑電極與介質(土壤、水)接觸時,土壤或水中的可溶性氧化劑或還原劑,將從鉑電極上接受電子或給予電子,直至在鉑電極上建立起一個平衡電位,即該體系的氧化還原電位。由於單個電極電位是無法測得的,故須與另一個電極電位固定的參比電極(飽和甘汞電極)構成電池,用電位計測量電池電動勢,然後計算出鉑電極上建立的平衡電位,即氧化還原電位Eh值。

2.去極化測定儀法

對復雜的介質,可採用去極化法測定氧化還原電位。可以在較短時間內得到較為精確的結果,用去極化法測得的平衡Eh值,與直接電位法平衡48h後測得的穩定Eh值,差數一般﹤10mV。所以去極化法能縮短測定時間,並有較高的測定精度。

將鉑電極接到極化電壓的正端(極化電壓為600mV或750mV),以銀-氯化銀電極作為輔助電極,接到電源的負端,陽極極化10 s以上(自由選擇)。接著切斷極化電源,進行去極,時間在20 s以上(視極化曲線而定),在去極化後監測鉑電極的電位(對甘汞電極),對於大多數的測試樣品,電極電位E(mV)和去極化時間的對數log t間存在直線關系。以相同的方法進行陰極極化和隨後的去極化和監測電位。陽極去極化曲線與陰極去極化曲線的延長線的交點相當於平衡電位。

三、土壤陽離子交換量(CEC)

CEC的大小,基本上代表了土壤可能保持的養分數量,即保肥性的高低。陽離子交換量的大小,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。

1.乙酸銨交換法

適用於酸性與中性土壤陽離子交換量的測定。原理:用1mol/L乙酸銨溶液(pH7.0)反復處理土壤,使土壤成為銨離子飽和土。過量的乙酸銨用95%乙醇洗去,然後加氧化鎂,用定氮蒸餾方法進行蒸餾,蒸餾出的氨用硼酸溶液吸收,然後用鹽酸標准溶液滴定,根據銨離子的量計算土壤陽離子交換量。

2.EDTA——銨鹽法

銨鹽法不僅適用於中性、酸性土壤,並且適用於石灰性土壤陽離子交換量的測定。採用0.005mol/L EDTA與1mol/L的醋酸銨混合液作為交換劑,在適宜的pH條件下(酸性土壤pH7.0,石灰性土壤pH8.5),這種交換配合劑可以與2價鈣離子、鎂離子和3價鐵離子、鋁離子進行交換,並在瞬間即形成電離度極小而穩定性較大的配合物,不會破壞土壤膠體,加快了2價以上金屬離子的交換速度。同時由於醋酸緩沖劑的存在,對於交換性氫和1價金屬離子也能交換完全,形成銨質土,再用95%酒精洗去過剩的銨鹽,用蒸餾法測定交換量。對於酸性土壤的交換液,同時可以用作為交換性鹽基組成的待測液用。

3.氯化鋇-硫酸強迫交換法

土壤中存在的各種陽離子可被氯化鋇(BaCl2)水溶液中的陽離子(Ba2+)等價交換。土壤用BaCl2溶液處理,使之和Ba2+飽和,洗去剩餘的BaCl2溶液後,再用強電解質硫酸溶液把交換到土壤中的Ba2+交換下來,由於形成了硫酸鋇(BaSO4)沉澱,而且氫離子(H)的交換吸附能力很強,使交換反應基本趨於完全。這樣可以通過計算消耗硫酸的量,計算出陽離子交換量。

四、土壤鹼化度(ESP)

土壤的鹼化度是用Na的飽和度來表示,它是指土壤膠體上吸附的交換性Na占陽離子交換量的百分率。當鹼化度達到一定程度時,土壤的理化性質會發生一系列的變化,土壤呈極強的鹼性反應pH﹥8.5甚至超過10.0,且土粒分散、濕時泥濘、不透氣、不透水、干時硬結、耕性極差,土壤理化性質所發生的這一系列變化稱為鹼化作用。鹼化度是鹽鹼土分類、利用、改良的重要指標。一般把鹼化度﹥20%定為鹼土,5%~20%定為鹼化土(15%~20%為強鹼化土,10%~15%為中度鹼化土,5%~10%為輕度鹼化土)。

計算公式:

鹼化度=(交換性鈉/陽離子交換量)× 100%

式中:交換性鈉[cmol(Na)/kg]用乙酸銨-氫氧化鈉銨交換-火焰光度法測得;陽離子交換量[cmol(+)/kg]用氯化銨-乙酸銨交換法測得。

五、土壤水溶性全鹽量(易溶鹽)

土壤水溶性鹽是鹽鹼土的一個重要屬性,是限製作物生長的障礙因素。我國的鹽鹼土分布廣,面積大,類型多。在乾旱、半乾旱地區鹽漬化土壤,以水溶性的氯化物和硫酸鹽為主。濱海地區由於受海水浸漬,生成濱海鹽土,所含鹽分以氯化物為主。在我國南方(福建、廣東、廣西等省區)沿海還分布著一種反酸鹽土。鹽土中含有大量水溶性鹽類,影響作物生長,同一濃度的不同鹽分危害作物的程度也不一樣。鹽分中以碳酸鈉的危害最大,增加土壤鹼度和惡化土壤物理性質,使作物受害。其次是氯化物,氯化物又以MgCl2的毒害作用較大,另外,氯離子和鈉離子的作用也不一樣。

土壤(及地下水)中水溶性鹽的分析,是研究鹽漬土鹽分動態的重要方法之一,對於了解鹽分對種子發芽和作物生長的影響以及擬訂改良措施都是十分必要的。

1.電導法

土壤中的水溶性鹽是強電介質,其水溶液具有導電作用,導電能力的強弱可用電導率表示。在一定濃度范圍內,溶液的含鹽量與電導率呈正相關,含鹽量愈高,溶液的滲透壓愈大,電導率也愈大。土壤水浸出液的電導率用電導儀測定,直接用電導率數值表示土壤的含鹽量。

2.質量法

吸取一定量的土壤浸出液放在瓷蒸發皿中,在水浴上蒸干,用過氧化氫(H2O2)氧化有機質,然後在105~110℃烘箱中烘乾,稱重,即得烘乾殘渣質量。

六、土壤養分元素

土壤養分元素是指由土壤提供的植物生長所必需的營養元素,能被植物直接或者轉化後吸收。土壤養分可大致分為大量元素、中量元素和微量元素,包括氮(N)、磷(P)、鉀(K)、鈣(Ca)、鎂(Mg)、硫(S)、鐵(Fe)、硼(B)、鉬(Mo)、鋅(Zn)、錳(Mn)、銅(Cu)和氯(Cl)等13種。在自然土壤中,土壤養分主要來源於土壤礦物質和土壤有機質,其次是大氣降水、坡滲水和地下水。在耕作土壤中,還來源於施肥和灌溉。

根據在土壤中存在的化學形態,土壤養分的形態分為:①水溶態養分,土壤溶液中溶解的離子和少量的低分子有機化合物;②代換態養分,水溶態養分的來源之一;③礦物態養分,大多數是難溶性養分,有少量是弱酸溶性的(對植物有效);④有機態養分,礦質化過程的難易強度不同。

根據植物對營養元素吸收利用的難易程度,土壤養分又分為速效性養分和遲效性養分。一般來說,速效養分僅占很少部分,不足全量的1%。應該注意的是速效養分和遲效養分的劃分是相對的,兩者是處於動態平衡之中。

土壤養分的總儲量中,有很小一部分能為當季作物根系迅速吸收同化的養分,稱速效性養分;其餘絕大部分必須經過生物的或化學的轉化作用方能為植物所吸收的養分,稱遲效性養分。一般而言,土壤有效養分含量約占土壤養分總儲量的百分之幾至千分之幾或更少。故在農業生產中,作物經常出現因某些有效養分供應不足而發生缺素症的現象。

1.全氮測定法

(1)開氏定氮法。土壤、植株和其他有機體中全氮的測定通常都採用開氏消煮法,用硫酸鉀-硫酸銅-硒粉做加速劑。此法雖然消煮時間長,但控制好加速劑的用量,不易導致氮素損失,消化程度容易掌握,測定結果穩定,准確度較高,適用於常規分析。

土壤中的含氮有機化合物在加速劑的參與下,經濃硫酸消煮分解,有機氮轉化為銨態氮,鹼化後把氨蒸餾出來,用硼酸吸收,標准酸滴定,求出全氮含量。硫酸鉀起提高硫酸溶液沸點的作用,硫酸銅起催化劑作用,加速有機氮的轉化,硒粉是一種高效催化劑,用量不宜過多,否則會引起氮素損失。

(2)半微量開氏法。樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮。鹼化後蒸餾出來的氨用硼酸吸收,以標准酸溶液滴定,求出土壤全氮含量(不包括全部硝態氮)。

包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化為銨態氮。

2.全磷硫酸-高氯酸消煮測定法

在高溫條件下,土壤中含磷礦物及有機磷化合物與高沸點的硫酸和強氧化劑高氯酸作用,使之完全分解,全部轉化為正磷酸鹽而進入溶液,然後用鉬銻抗比色法測定。

3.全鉀測定法

土壤中的有機物先用硝酸和高氯酸加熱氧化,然後用氫氟酸分解硅酸鹽等礦物,硅與氟形成四氟化硅逸去。繼續加熱至剩餘的酸被趕盡,使礦質元素變成金屬氧化物或鹽類。用鹽酸溶液溶解殘渣,使鉀轉變為鉀離子。經適當稀釋後用火焰光度法或原子吸收分光光度法測定溶液中的鉀離子濃度,再換算為土壤全鉀含量。

4.鹼解氮測定法

土壤水解性氮或稱鹼解氮包括無機態氮(銨態氮、硝態氮)及易水解的有機態氮(氨基酸、醯銨和易水解蛋白質)。用鹼液處理土壤時,易水解的有機氮及銨態氮轉化為氨,硝態氮則先經硫酸亞鐵轉化為銨。以硼酸吸收氨,再用標准酸滴定,計算水解性氮含量。

5.速效磷測定法

(1)碳酸氫鈉法。石灰性土壤由於存在大量的游離碳酸鈣,不能用酸溶液來提取速效磷,可用碳酸鹽的鹼溶液。由於碳酸根的同離子效應,碳酸鹽的鹼溶液降低了碳酸鈣的溶解度,也就降低了溶液中鈣的濃度,這樣就有利於磷酸鈣鹽的提取。同時由於碳酸鹽的鹼溶液也降低了鋁和鐵離子的活性,有利於磷酸鋁和磷酸鐵的提取。此外,碳酸氫鈉鹼溶液中存在著OH-

等陰離子有利於吸附態磷的交換,因此,碳酸氫鈉不僅適用於石灰性土壤,也適用於中性和酸性土壤中速效磷的提取。待測液用鉬銻抗混合顯色劑在常溫下進行還原,使黃色的銻磷鉬雜多酸還原成為磷鉬藍進行比色。

(2)鉬銻抗比色法。酸性土壤中的磷主要是以Fe—P、Al—P的形態存在,利用氟離子在酸性溶液中有配合Fe3+,Al3+的能力,可使這類土壤中比較活性的磷酸鐵鋁鹽被陸續活化釋放,同時由於H的作用,也能溶解出部分活性較大的Ca—P,然後用鉬銻抗比色法進行測定。

6.速效鉀測定法

用1mol/L NH4OAc浸提土壤,可將膠體表面吸附的鉀離子全部浸提出來,而與黏土礦物晶格固定的鉀截然分開。

7.有機質重鉻酸鉀容量測定法

在加熱的條件下,用過量的重鉻酸鉀-硫酸(K2Cr2O7-H2SO4)溶液,來氧化土壤有機質中的碳,

等被還原成Cr+3,剩餘的重鉻酸鉀(K2Cr2O7)用硫酸亞鐵(FeSO4)標准溶液滴定,根據消耗的重鉻酸鉀量計算出有機碳量,再乘以常數1.724,即為土壤有機質量。

七、土壤重金屬

土壤的重金屬主要包括汞(Hg)、鎘(Cd)、鉛(Pb)、鉻(Cr)和類金屬砷(As)等生物毒性顯著的元素,以及有一定毒性的鋅(Zn)、銅(Cu)、鎳(Ni)等元素。主要來自農葯、廢水、污泥和大氣沉降等,如汞主要來自含汞廢水,鎘、鉛污染主要來自冶煉排放和汽車廢氣沉降,砷則被大量用作殺蟲劑、殺菌劑、殺鼠劑和除草劑。過量重金屬可引起植物生理功能紊亂、營養失調,鎘、汞等元素在作物子實中富集系數較高,即使超過食品衛生標准,也不影響作物生長、發育和產量,此外汞、砷能減弱和抑制土壤中硝化、氨化細菌活動,影響氮素供應。重金屬污染物在土壤中移動性很小,不易隨水淋濾,不為微生物降解,通過食物鏈進入人體後,潛在危害極大,應特別注意防止重金屬對土壤的污染。一些礦山在開采中尚未建立石排場和尾礦庫,廢石和尾礦隨意堆放,致使尾礦中富含難降解的重金屬進入土壤,加之礦石加工後餘下的金屬廢渣隨雨水進入地下水系統,造成嚴重的土壤重金屬污染。

1.原子吸收分光光度法

原子吸收分光光度法的測量對象是呈原子狀態的金屬元素和部分非金屬元素,是由待測元素燈發出的特徵譜線通過供試品經原子化產生的原子蒸氣時,被蒸氣中待測元素的基態原子所吸收,通過測定輻射光強度減弱的程度,求出供試品中待測元素的含量。原子吸收一般遵循分光光度法的吸收定律,通常借比較對照品溶液和供試品溶液的吸光度,求得供試品中待測元素的含量。所用儀器為原子吸收分光光度計,它由光源、原子化器、單色器、背景校正系統、自動進樣系統和檢測系統等組成。

2.X射線熒光光譜(XRF)法

XRF法是介於原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。它的基本原理是基態原子(一般蒸氣狀態)吸收合適的特定頻率的輻射而被激發至高能態,而後激發過程中以光輻射的形式發射出特徵波長的熒光。該方法可定量分析測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度。原子熒光的波長在紫外、可見光區。氣態自由原子吸收特徵波長的輻射後,原子的外層電子從基態或低能態躍遷到高能態,經10~8 s,又躍遷至基態或低能態,同時發射出熒光。若原子熒光的波長與吸收波長相同,稱為共振熒光;若不同,則稱為非共振熒光。共振熒光強度大,分析中應用最多。在一定條件下,共振熒光強度與樣品中某元素濃度成正比。該法的優點是靈敏度高,譜線簡單;在低濃度時校準曲線的線性范圍寬達3~5個數量級,特別是用激光做激發光源時更佳。主要用於金屬元素的測定,在環境科學、高純物質、礦物、水質監控、生物製品和醫學分析等方面有廣泛的應用。

3.電感耦合等離子光譜(ICP)法

高頻振盪器發生的高頻電流,經過耦合系統連接在位於等離子體發生管上端,銅制內部用水冷卻的管狀線圈上。石英製成的等離子體發生管內有3個同軸氫氣流經通道。冷卻氣(Ar)通過外部及中間的通道,環繞等離子體起穩定等離子體炬及冷卻石英管壁,防止管壁受熱熔化的作用。工作氣體(Ar)則由中部的石英管道引入,開始工作時啟動高壓放電裝置讓工作氣體發生電離,被電離的氣體經過環繞石英管頂部的高頻感應圈時,線圈產生的巨大熱能和交變磁場,使電離氣體的電子、離子和處於基態的氖原子發生反復猛烈的碰撞,各種粒子的高速運動,導致氣體完全電離形成一個類似線圈狀的等離子體炬區面,此處溫度高達6000~10 000℃。樣品經處理製成溶液後,由超霧化裝置變成全溶膠由底部導入管內,經軸心的石英管從噴嘴噴入等離子體炬內。樣品氣溶膠進入等離子體焰時,絕大部分立即分解成激發態的原子、離子狀態。當這些激發態的粒子回收到穩定的基態時要放出一定的能量(表現為一定波長的光譜),測定每種元素特有的譜線和強度,和標准溶液相比,就可以知道樣品中所含元素的種類和含量。

發射光譜分析方法只要將待測原子處於激發狀態,便可同時發射出各自特徵譜線同時進行測定。ICP-AES儀器,不論是多道直讀還是單道掃描儀器,均可以在同一試樣溶液中同時測定大量元素(30~50個,甚至更多)。已有文獻報道的分析元素可達78個,即除He,Ne,Ar,Kr,Xe惰性氣體外,自然界存在的所有元素,都已有用ICP-AES法測定的報告。

❽ 如何判斷檢測方法是否是全量消解土壤

如何判斷檢測方法是否是全量消解土壤
土壤是一個有機無機復合體,包括很多膠體、有機螯合物、空隙等等;這些有機無機復合體會吸附、固定很多養分、金屬離子等。
消解是為了使這些養分、金屬離子等你所需要測定的物質從這些有機無機復合體中釋放出來,從而准確的測定土壤中你所需要測定的物質。
測定土壤理化指標有很多標准文件,部分指標有國家標准,部分用農業行業標准,由於指標太多,故列出土壤測定的一些方法,通過方法可以搜索到行業標准或國家標準的具體內容,供參考:
土壤質地國際制;指測法或密度計法(粒度分布儀法)測定
土壤容重環刀法測定
土壤水分烘乾法測定
土壤田間持水量環刀法測定
土壤pH土液比1:2.5,電位法測定
土壤交換酸氯化鉀交換——中和滴定法測定
石灰需要量氯化鈣交換——中和滴定法測定
土壤陽離子交換量EDTA-乙酸銨鹽交換法測定
土壤水溶性鹽分總量電導率法或重量法測定
碳酸根和重碳酸根電位滴定法或雙指示劑中和法測定
氯離子硝酸銀滴定法測定
硫酸根離子硫酸鋇比濁法或EDTA間接滴定法測定
鈣、鎂離子原子吸收分光光度計法測定
鉀、鈉離子火焰光度法或原子吸收分光光度計法測定
土壤氧化還原電位電位法測定。
土壤有機質油浴加熱重鉻酸鉀氧化容量法測定
土壤全氮凱氏蒸餾法測定
土壤水解性氮鹼解擴散法測定
土壤銨態氮氯化鉀浸提——靛酚藍比色法(分光光度法)測定
土壤硝態氮氯化鈣浸提——紫外分光光度計法或酚二磺酸比色法(分光光度法)測定
土壤有效磷碳酸氫鈉或氟化銨-鹽酸浸提——鉬銻抗比色法(分光光度法)測定
土壤緩效鉀硝酸提取——火焰光度計、原子吸收分光光度計法或ICP法測定
土壤速效鉀乙酸銨浸提——火焰光度計、原子吸收分光光度計法或ICP法測定
土壤交換性鈣鎂乙酸銨交換——原子吸收分光光度計法或ICP法測定
土壤有效硫磷酸鹽-乙酸或氯化鈣浸提——硫酸鋇比濁法測定
土壤有效硅檸檬酸或乙酸緩沖液浸提-硅鉬藍比色法(分光光度法)測定
土壤有效銅、鋅、鐵、錳DTPA浸提-原子吸收分光光度計法或ICP法測定
土壤有效硼沸水浸提——甲亞胺-H比色法(分光光度法)或姜黃素比色法(分光光度法)或ICP法測定

❾ 含蛭石晶層間層礦物的陽離子交換容量及酸浸研究

彭同江 劉福生 張寶述 孫紅娟

(西南科技大學礦物材料及應用研究所,四川綿陽 621010)

摘要 對采自新疆尉犁蛭石礦、河南靈寶-陝西潼關蛭石礦的工業蛭石礦物樣品進行了可交換性陽離子、交換容量和酸處理試驗研究。結果發現新疆尉犁蛭石礦金雲母-蛭石中的可交換性陽離子主要為Na和Ca2+,其次有Mg2+和K、Ba2+和Sr2+。而河南靈寶-陝西潼關蛭石礦工業蛭石樣品主要為Ca2+和Mg2+,其次為Na、K等。金雲母-蛭石和綠泥石-蛭石間層礦物的陽離子交換容量隨間層結構中蛭石晶層的含量增加而增大,一般在56.92~98.95 m mol/100 g之間,僅為蛭石最大陽離子交換容量的一半。金雲母-蛭石樣品陽離子交換容量大小與K2O含量呈負相關關系,與(Na2O+CaO)含量呈正相關關系。層間可交換性陽離子的氧化物CaO和Na2O的酸浸取率最高,層間不可交換性陽離子的氧化物 K2O次之,八面體中陽離子的氧化物MgO、Fe2O3和Al2O3具有較高的酸浸取率,而四面體陽離子的氧化物SiO2的酸浸取率最低;金雲母-蛭石間層礦物中蛭石晶層含量高的樣品酸浸取率高,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。

關鍵詞 金雲母-蛭石;間層礦物;陽離子交換容量;酸浸取物;酸浸取率。

第一作者簡介:彭同江,男,1958年4月出生,博士,教授,礦物晶體化學專業。E-mail:[email protected]

一、含蛭石晶層間層礦物的陽離子交換容量

(一)原理

根據工業蛭石樣品的化學成分研究,蛭石晶層中可交換性陽離子的種類主要有:K、Na、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸銨(NH4Ac)作為淋洗劑,

離子可將工業蛭石中的可交換性陽離子交換出來:

中國非金屬礦業

相關系數為0.90。

圖1 金雲母-蛭石樣品陽離子交換容量(CEC) 隨K2O 和Na2O+CaO 含量(質量分數) 的變化

可以看出,隨著K2O含量的增加,樣品的陽離子交換容量減小;隨(Na2O+CaO)含量的增加,陽離子交換容量增加。從而表明,隨K2O含量的增加,蛭石晶層的含量降低;隨(Na2O+CaO)含量的增加,蛭石晶層的含量增加。由此可以得出,在金雲母變化為金雲母-蛭石的過程中,溶液中富含Na和Ca2+離子組分。

對於金雲母-蛭石樣品來說,我們發現其陽離子交換容量的大小與樣品的粉末X射線衍射譜特徵有一定關系。一般說來,陽離子交換容量小於75 m mol/100 g的樣品,其粉末X射線衍射圖上發現有較強的金雲母的衍射峰;高於95 m mol/100 g樣品,發現有蛭石的衍射峰。這進一步表明對樣品陽離子交換容量的貢獻主要來自於間層結構中蛭石晶層的含量。蛭石晶層的含量越高,間層礦物的陽離子交換容量越大。

二、酸浸實驗研究

(一)酸處理實驗與酸浸取物分析

酸處理試驗步驟與實驗方法如下:

1)將燒杯在100℃下烘乾1 h後稱重。

2)分別在燒杯中加0.5 g樣品。

3)將盛樣品的燒杯放在烘箱中在100℃下烘乾2 h。

4)從烘箱中取出燒杯在乾燥器中涼至室溫後稱重,計算出樣品除去吸附水後的質量。

5)將燒杯中分別加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀鹽酸30 mL,攪拌均勻後靜止作用12 h。

6)過濾、洗滌、定溶後用原子吸收光譜法測定濾液中K、Na、Mg、Si、Fe、Al的含量。

利用上述方法對所選的3個樣品進行了酸處理和酸浸取物的分析。測定結果轉換成氧化物百分含量後列入表2中。

表2 不同濃度的稀鹽酸對樣品不同氧化物的腐蝕量(wB/%)

註:X為鹽酸溶液的濃度,單位mol/L。

(二)酸蝕量與酸浸取物的變化規律

由表2可以看出,在不同鹽酸濃度溶液的情況下金雲母樣品主要氧化物的酸蝕量都大大低於金雲母-蛭石樣品主要氧化物的酸蝕量,這表明金雲母的耐酸性能高於金雲母-蛭石間層礦物。

金雲母-蛭石間層礦物兩個樣品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分為三種情形。

(1)處於蛭石晶層層間域中的水化陽離子

劉福生等(2002)給出的金雲母-蛭石間層礦物樣品的可交換性陽離子氧化物的含量(不考慮H2O)分別為,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考慮所含H2O後樣品的可交換性陽離子氧化物的含量分別為,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,這些數值與表2中CaO和Na2O的腐蝕量非常相近(其差別來源於對樣品進行不同的處理及分析的誤差)。由於水化陽離子與結構層間的結合最弱,故CaO和Na2O的酸浸取率最高,其中CaO幾乎全部浸出,Na2O的浸取率在82.27%~89.24%之間。

(2)在結構中以離子鍵相結合的陽離子

在結構中與陰離子呈離子鍵結合的陽離子主要有:K、Mg2+、Fe2+、Al3+。相應氧化物酸浸取率分別為 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。離子鍵的結合力高於蛭石晶層層間水化陽離子與結構層之間的結合力,而又小於硅氧四面體內的共價鍵結合力,因此,以離子鍵結合的陽離子氧化物的酸浸取率低於層間水化陽離子氧化物,而又高於以共價鍵結合的陽離子氧化物。

(3)在結構中以共價鍵結合的陽離子

在結構中與陰離子呈共價鍵結合的陽離子只有Si4+,SiO2的酸浸取率最低,為2.15%~3.02%。

蛭石晶層的水化陽離子最容易被酸淋濾出來,即使在低濃度的鹽酸溶液中,且它們的酸蝕量隨鹽酸濃度的增大變化很小;其次是處於金雲母晶層的層間K離子。MgO、Fe2O3和Al2O3也具有較高的酸蝕量百分數,其中MgO、Al2O3的酸蝕量隨鹽酸濃度的增大而急劇增大,Fe2O3酸蝕量隨鹽酸濃度的增大而緩慢增大;SiO2的酸蝕量最低,且酸蝕量隨鹽酸濃度的增大變化很小。

金雲母-蛭石樣品與金雲母樣品相比較,層間陽離子、八面體陽離子、四面體陽離子都具有較高的氧化物酸蝕量百分數。這表明金雲母-蛭石的結構穩定性較金雲母差,即使是金雲母-蛭石間層結構中的金雲母晶層也是如此。這一結果與熱分析所得出的結果(彭同江等,1995)是完全一致的。

(三)金雲母-蛭石間層礦物酸蝕機理

對於蛭石及含蛭石晶層的間層礦物酸蝕機理的研究不多。但對於蒙脫石酸活化機理研究已經很深入,並得出比較一致的結論。即當用酸處理蒙脫石時 蒙脫石層間的可交換性陽離子(如Ca2+、Mg2+、Na、K等)可被氫離子交換而溶出,同時隨之溶出的還有蒙脫石八面體結構中的鋁離子及羥基。因此,活化後的蒙脫石比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(張曉妹,2002)。下面結合前面的試驗與分析結果對金雲母-蛭石間層礦物酸蝕機理進行討論。

1.酸浸取反應機理

金雲母-蛭石間層礦物中蛭石晶層的結構和陽離子佔位與蒙脫石的大致相同,只是蛭石晶層八面體中的陽離子主要是Mg2+,而蒙脫石則主要是Al3+,而與蛭石晶層相間排列的還有金雲母晶層。因此,金雲母-蛭石間層礦物的酸蝕機理可以看成是蛭石晶層和金雲母晶層分別與酸進行作用。

蛭石晶層與鹽酸產生離子交換反應和酸腐蝕反應,後者導致結構的局部破壞。其中離子交換反應是氫離子將樣品中蛭石晶層的層間可交換陽離子如K、Na、Ca2+、Mg2+等置換出來。

氫質蛭石晶層在酸的繼續作用下結構產生局部破壞,溶出八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。

金雲母晶層與鹽酸產生酸腐蝕反應,產生局部結構被破壞,溶出層間陽離子、八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。

上述反應可歸三類:H離子與蛭石晶層層間可交換陽離子的交換反應;H離子與結構中八面體片上的(OH)-和四面體片中Si-OH上的(OH)-中和形成H2O的反應;陽離子從結構上解離形成鹽和偏硅酸的反應。

2.酸浸取規律的晶體化學分析

金雲母-蛭石間層礦物屬三八面體層狀硅酸鹽礦物。由金雲母的晶體結構特點可知,結構中陽離子與陰離子結合有兩種化學鍵,即離子鍵和共價鍵。其中,四面體陽離子(主要為 Si4+)與陰離子(氧)的化學鍵主要為共價鍵,因而在結構中的聯結力最強;八面體陽離子(主要為Mg2+)以離子鍵與陰離子(氧和羥基)結合,聯結力相對較強;層間陽離子位於層間域內與底面氧以弱離子鍵結合,聯結力較弱。金雲母-蛭石間層礦物結構中金雲母晶層的情形與金雲母相類似,蛭石晶層的八面體和四面體兩種位置的化學鍵特點與金雲母的情形也相類似。在金雲母-蛭石間層結構中聯結力相對最弱的位置是蛭石晶層層間水化陽離子的位置,由於水分子的存在,層間陽離子與結構層的聯結力比金雲母的更弱。

上述晶體化學特點決定了四面體陽離子Si4+的酸浸取率最小,八面體陽離子Mg2+、Al3+、Fe2+酸浸取率較大,層間可交換性陽離子Na、Ca2+最大。

因此,金雲母-蛭石間層礦物樣品不同氧化物酸浸取率的大小取決於晶體結構的強度和陰陽離子之間的化學鍵強度的大小。

3.酸蝕作用歷程與結構破壞

根據酸蝕試驗和分析結果,結合金雲母-蛭石的晶體結構特點,得出金雲母-蛭石酸蝕作用和結構破壞的過程如下。

酸蝕過程中各種酸蝕反應首先沿礦物顆粒邊緣和結構缺陷部位進行。H離子與層間可交換陽離子產生交換反應,形成氫質蛭石,交換出來的陽離子Na、Ca2+、K等形成鹽;H離子與八面體中的(OH)-作用,形成H2O,其結果導致與(OH)-呈配位關系的Mg2+和其他陽離子隨(OH)-的解離而裸露於外表面並變得不穩定,從而脫離結構表面並進入溶液形成鹽;H離子與四面體片邊緣的Si-O(或OH)作用,中和後形成H2O,並使Si4+裸露,進一步使Si4+解離並形成偏硅酸配陰離子;伴隨著H離子的這些反應,還會導致金雲母晶層邊緣的層間陽離子(主要為K)從結構中解離出來;整個結構的破壞程度和酸蝕量隨H濃度增大和反應時間的增長而增大。酸蝕反應主要發生在結構層的邊緣、層間域和結構缺陷部位。

X射線分析結果表明,金雲母-蛭石間層礦物具有較好的耐酸蝕性能,層間可交換性陽離子的氫交換反應和邊緣與缺陷部位離子的解離和浸取,沒有導致金雲母-蛭石間層結構的破壞。但結合酸浸取物和酸浸取殘留物的研究,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。

三、結論

金雲母-蛭石間層礦物具有良好的陽離子交換性。因此,它可用於環保,吸附水中的重金屬離子或有機污染物,回收有用物質;在農業上用作儲水和儲肥載體,改良土壤等等。含蛭石晶層礦物結構中的Ca、Mg、K、Fe等元素在酸性條件下易被淋濾出來。因此,它可在農業上用作儲水和儲肥載體,同時又是長效肥料。一方面可為植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透氣性能等等。

酸浸取的結果導致金雲母-蛭石間層礦物中蛭石晶層的可交換性陽離子幾乎全部被淋濾交換出來,同時也在結構層邊緣和結構缺陷部位淋濾出其他組分。其結果導致金雲母-蛭石間層礦物比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(Suquet et al.,1991;Suquet et al.,1994)。因此,酸處理後的金雲母-蛭石間層礦物可用於環保方面作污水處理劑。

An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals

Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan

(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)

Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na,Ca2+,and Mg2+,K,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na,Kin the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.

Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.

閱讀全文

與農業陽離子交換量的測定相關的資料

熱點內容
廢水檢測裝置 瀏覽:436
空氣濾芯製作什麼東西 瀏覽:599
樹脂標號什麼意思 瀏覽:600
甜米酒發酵好要不要蒸餾 瀏覽:622
安利車載空氣凈化器怎麼樣 瀏覽:943
寶寶不吃奶頭用吸奶器吸會回奶么 瀏覽:867
垃圾填埋廠的反滲透裝置 瀏覽:12
凈水器使用前先要放掉多少水 瀏覽:160
水泵房上方有污水管 瀏覽:623
武昌凈水神器怎麼樣 瀏覽:22
生產空氣凈化器企業屬於什麼行業 瀏覽:65
開封污水處理廠項目中標 瀏覽:796
350w小型凈化器多少錢 瀏覽:693
宏森污水處理 瀏覽:68
污水提升器廠家推薦 瀏覽:444
沁園185e凈水機濾芯怎麼安裝 瀏覽:291
污水水解酸化池加什麼葯劑 瀏覽:565
自流平地面和環氧樹脂 瀏覽:801
本田思域拆機油濾芯用什麼扳手 瀏覽:286
找907乙烯基樹脂生產廠家 瀏覽:629