1. 離子交換
鉬(Ⅵ)與大量鐵(Ⅲ)的0.5mol/LHCl溶液,通過陽離子交換樹脂後,可用0.04mol/L硫氰酸銨溶液淋洗鉬(Ⅵ版)。鉬(Ⅵ)與錸權的氫氧化鈉溶液通過陰離子交換樹脂後,可用1mol/L草酸鉀溶液淋洗鉬(Ⅵ),再用7mol/LHCl淋洗錸。
2. 腐殖質與金屬離子之間作用關系
無論是煤炭腐殖質還是其他類型腐殖質,都與金屬離子的絡合作用及離子交換作用有著密切的關系。在環境保護方面,可以利用腐殖質與金屬之間的化學作用,來處理含有重金屬離子的工業廢水和含廢油、染料、農葯、細菌等城市污水。農業上可利用腐殖質來富集土壤中的礦物質成分和微量元素,提高肥力。目前我們發現的地下沉積地層中某些金屬礦床的形成,與腐殖質的特殊化學作用有密切的關系。因此,腐殖酸(或黃腐酸)與金屬離子的相互作用關系的研究是一個十分引人注目,又十分重要的課題。
(一)離子交換
從廣義上講,離子交換是指當一電解質溶液與一不溶性物體相接觸時,因該物體基質上帶有正電荷或負電荷的取代基結合著可以移動的離子,則離子交換作用就可以發生。對於腐殖酸或黃腐酸來說,離子交換作用的進行是通過金屬陽離子與腐殖酸和黃腐酸所形成的大分子陰離子原子團相互作用而發生的。在水溶液中,腐殖酸或黃腐酸中離子交換官能團(如—COOH),可以發生電離:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
電離出來的氫離子可以與溶液中的金屬陽離子進行離子交換,這一離子交換過程可以簡單表示為:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
其中Mn+表示n價金屬離子。一般情況下,離子交換後所生成的「結合體」,如上式中的(FA—COO)nM或(HA—COO)nM均是可以發生電離子離子型基團。目前的觀點,在酸性和中性環境中,腐殖酸或黃腐酸具有羧基型離子交換劑的作用,在鹼性環境中氫離子和苯酚羥基能夠參加離子交換作用。
(二)絡合或螯合反應
經典理論認為,絡合是指由電子供體(配位體,以L表示)的孤電子對,給予電子受體(金屬離子,以H表示),形成帶有共價鍵性質的配位鍵。在金屬絡合物中,一個金屬原子結合了比簡單化合鍵更多的離子或分子。各種配位體中只含有一個可提供電子對的配位原子,如H2O:、:NH3、:CN、:F-等,稱為單齒配位體;如果配位體中含有兩個以上的配位原子,如乙二胺(H2N..—CH2—CH2—N..H2),稱為多齒配位體。單齒配位體以配位鍵與金屬離子結合時,只有一個結合點。若金屬離子的配位數是n,則一個金屬離子可與n個配位體結合,形成MLn型絡合物,如
吐哈盆地鈾有機地球化學研究及侏羅系劃分
由於形成了環狀結構,絡合物的穩定性增高。螯合物的穩定性與成環數目有關。當配位原子相同時,環越多螯合物越穩定;螯合物的穩定性還與螯環的大小有關,一般五員或六員環最為穩定。
1.金屬與腐殖質形成絡合物(螯合物)的本質
腐殖酸和黃腐酸的絡合能力,主要取決於它們的含氧官能團的含量。例如COOH、酚OH和各種C=O基團。還可能包括氨基和亞氨基。腐殖酸或黃腐酸的結構,提供了多種螯合的可能位置。可能在腐殖物質的1,2-二羥基或羥基醌位置上發生絡合作用,腐殖物質中可能有多重配位位置。研究認為,腐殖酸保持Zn至少有三種位置,最不穩定的絡合物據認為是與酚OH和弱酸性COOH聯系在一起;比較穩定的絡合物是包含有強酸性的COOH。雖然強結合Zn只佔總保留量的1%以下,據信其有關位置具有很大的重要性,因為少量的Zn將首先結合為最穩定的絡合物。研究認為,在金屬與黃腐酸的相互作用中有兩種類型的反應,最重要的一種包括有酚OH和COOH基。重要性較差的反應只包括酸度較小的COOH。這個反應是:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
曾應用紅外光譜(IR)技術試圖測定腐殖酸中金屬與羧基結合的離子化程度。分析的基礎是COOH基在1720cm-1處C=O吸收帶當與金屬離子反應時便消失,而新的吸收帶出現在近1600cm-1和1380cm-1處。這些帶分別為COO-結構不對稱和對稱伸縮振盪所形成的。不對稱帶的位置,提供了它的鍵是離子鍵抑或共價鍵的跡象。尤其是當形成共價鍵時,不對稱帶便移向較高的頻率。Stevenson的結論是,對於Cu2+,在添加的金屬離子水平低時形成共價鍵,但當腐殖酸被這種金屬飽和時,離子鍵便逐漸增加。有些IR研究表明,OH、C=O和NH基在COOH基以外亦參與了金屬離子的絡合。Robert 利用核磁共振技術(NMR)研究腐殖酸與金屬離子絡合位置,認為起主要作用的官能團是羧基COOH和羥基OH。在黃腐酸(腐殖酸)與金屬離子相互作用時,通常認為對一價金屬離子可能是離子交換,而對於多價金屬離子則可能既有離子交換又有絡合(或螯合)作用。同離子交換作用一樣,黃腐酸(腐殖酸)分子中的羧基(—COOH)和酚羥基(—OH)也是與金屬離子進行絡合(或螯合)的主要部位(結合點)。特別是鄰苯二甲酸型(即兩個羧基處於芳環的兩個相互相鄰的位置上)的鄰位羧基和水楊酸型(即一個羧基和一個羥基處於芳環的兩個相互相鄰的位置上)的鄰位羧基與酚羥基是發生絡合(或螯合)的主要部位(結合點):
吐哈盆地鈾有機地球化學研究及侏羅系劃分
另有研究證明醌羰基和鄰位酚羥基結構以及互為鄰位的兩個酚羥基結構也有可能成為金屬離子絡合的部位(結合點):
吐哈盆地鈾有機地球化學研究及侏羅系劃分
實際上,在分子較大、結構較復雜的黃腐酸(腐殖酸)分子中不會僅存在一種類型的絡合位點,而是幾種類型同時共存,即便是同一類絡合位點,由於所處的化學環境不同,絡合能力也會有所不同。因此,黃腐酸(腐殖酸)對金屬離子的絡合,有可能是多個位點同時發生,而最終得到混合型的金屬絡合物(或螯合物)。但是也並非完全不可控制,如果我們對絡合環境的pH值加以控制,就有可能使得某種類型的絡合成為主要形式。一般認為在中性和酸性環境中(pH=4~7),黃腐酸(腐殖酸)的鄰苯二甲酸型的兩個鄰位羧基易發生絡合(或螯合),其金屬絡合物以下列兩種結合形式為主:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
在鹼性環境中(pH>7),酚羥基上的氫才能發生解離,使得黃腐酸(腐殖酸)金屬絡合物以另外兩種結合形式為主:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
Schnitzer研究腐殖酸與金屬離子的絡合反應,認為即存在單齒的也存在多齒的絡合。絡合的形式是多樣的,多核絡合物也可能存在,其中一些腐殖酸和黃腐酸與金屬的反應重要類型已經被證實:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
一些金屬離子與腐殖酸絡合物形成腐殖酸鹽的順序是:
腐殖質與金屬離子形成腐殖酸鹽絡合物與 pH 值關系,已有研究證實,他觀察到在Cu2+、Zn2+、Fe3+、Mn2+、Al3+與腐殖酸形成絡合物後,若在酸性介質中,會發生不溶性腐殖酸鹽沉澱。沉澱物中各種金屬含量受pH值影響較大。當pH=1時,所有絡合物完全溶解。
2.腐殖酸鹽或黃腐酸鹽絡合物溶解性質
腐殖酸和黃腐酸可與多價金屬離子形成可溶和不溶的絡合物,這種溶解性質決定了在地球化學環境中金屬元素的遷移和金屬沉積礦床的形成。黃腐酸由於其高度酸性和較低的分子量,所以它的金屬絡合物溶解度要遠大於腐殖酸。
實際上,在地球化學環境中,金屬離子與腐殖質之間的作用關系是相互的,一方面金屬離子可與腐殖酸或黃腐酸形成不溶性鹽而發生沉澱;另一方面腐殖質的絡合能力束縛了金屬離子從而影響了腐殖質的溶解特性。當腐殖酸或黃腐酸溶解於水中時,酸性基團就發生解離,由於帶電基團排斥的關系,分子成為伸展的結構。當加入金屬離子時,通過形成鹽而降低電荷,分子便萎縮,因而降低了溶解度。多價陽離子亦具有將各個分子連接起來以形成類似鏈狀結構的潛能。按照Stevenson的理論,腐殖酸的金屬絡合物在低金屬-腐殖酸比率時(鏈中有少數相結合的分子)是可溶的,但是,當鏈狀結構增長而且游離的COOH基通過鹽橋而中和時,便發生沉澱。發生沉澱的條件受離子強度、pH、腐殖酸濃度和金屬陽離子類型等因素的影響。
下面的圖解說明了以上的情況,金屬離子(B)將兩個分子結合在1條鏈中:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
金屬離子與腐殖物質相互作用而被固定,可通過或者形成不溶性絡合物,或者與黏粒表麵包被的腐殖質起固相絡合。通過在黏粒—有機質界面上的直接交換,或通過形成可溶性絡合物後又被礦物表面吸附而連結起來,是可以發生吸著的。有些陽離子將腐殖質絡合物連結到黏粒表面上,其他的占據著邊緣的位置並易與土壤溶液的配位體進行交換。
3.黃腐酸(腐殖酸)與金屬離子絡合作用的研究方法
雖然由於黃腐酸(腐殖酸)都是非均質性的化合物,使其與金屬離子的相互作用不能夠用嚴格的數學術語來描述,也較難於精確量化和解釋。那些在獨立化學體系中定義清楚的概念,如配位體濃度(絡合容量)、穩定常數等,對黃腐酸(腐殖酸)類物質來說就變得意義模糊不清了。然而相關材料信息的積累,卻可以幫助我們描繪出可以用來解釋黃腐酸(腐殖酸)類物質的「平均行為」的簡易方法。在對黃腐酸(腐殖酸)與金屬離子絡合作用的研究中,絡合穩定常數是描述絡合反應最重要的特徵數據。
目前測定黃腐酸(腐殖酸)與金屬離子絡合反應的條件穩定常數已有許多方法,但是都不甚完善。應用最廣泛的要數離子交換法和電化學法。現分別簡單介紹如下:
(1)離子交換平衡法
配位體(L)和金屬離子(B)進行絡合(或螯合)反應,可以用以下平衡式表示為:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
因此絡合物(或螯合物)形成常數或穩定常數是:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
在一金屬離子的溶液中,加入一定的陽離子交換樹脂,達到平衡後,吸附在單位質量樹脂上的金屬摩爾數Mr和溶液中金屬摩爾濃度之比用λ0來表示,則
λ0=Mr/[B] (6-2)
λ0是可以通過實驗方法進行測定的數值。
保持其他條件不改變,只是加入了配位體L,此時達到一新的平衡,單位質量樹脂上吸附的金屬摩爾數Mr和溶液中游離金屬離子加絡合物濃度之和的比用λ來表示,即:
λ=Mr/([B]+[BLn]) (6-3)
將式(6-2)與式(6-3)聯立可得:
[BLn]=Mr/λ Mr/λ0 (6-4)
現將式(6-4)和式(6-2)代入式(6-1)可得:
K=(λ0/λ-1)/[L]n(6-5)
或
lg(λ0/λ-1)=lgK +nlg[L] (6-6)
如果以lg(λ0/λ-1)對lg[L]作圖,則縱坐標的截距就是lgK,斜率即為n值,從而就可以求得絡合穩定常數K值。
這一方法只適用於單核絡合物,即BLn型的絡合物,n必須是等於1或大於1的整數。
(2)陽極溶出伏安法(ASV)
陽極溶出伏安法(ASV)是一個極化微電極上利用控制一定的電極電位——預電解位,另一個電極為工作電極。使水溶液中的金屬離子有選擇地在電極上被還原生成金屬,經過一定時間的預電解電極上積累了一定濃度,然後用各類極譜儀記錄金屬氧化生成離子(稱陽極溶出)所產生的電流-電壓曲線圖。溶出峰電流Ip與被測定離子濃度[B]之間的比例關系簡單地表示為:
Ip=k[B]
上式中k的含義與實驗條件和儀器參數有關,可以由滴入已知濃度c(B)的標准金屬溶液與測定出的峰電流值之間的關系曲線的斜率算出。
如果溶液中存在可與金屬反應生成絡合物的有機配位體L(如黃腐酸和腐殖質),則有絡合反應:
mB +nL==BmLn
k=[BmLn/[Bm][L]n
式中[B]、[L]——分別是游離金屬離子和游離配位體的濃度;[MmLn]——絡合物的濃度;m,n——配比系數;k——絡合物生成的條件穩定常數。
對於黃腐酸和腐殖質這樣結構不確定的有機配位體,只能考慮平均的總的條件穩定常數,以1:1配比求取的條件穩定常數可簡化為:
k=[BL]/[B][L]
式中絡合物的濃度相當於已結合金屬的濃度,即
[BL]=cB[B]
已結合的配位體濃度也與已結合金屬的濃度相等。而游離配位體濃度[L]則等於總配位體濃度[L0]與已結合配位體濃度之差:
[B]=[L0](cB[B])
可得下式:
吐哈盆地鈾有機地球化學研究及侏羅系劃分
既然游離金屬離子濃度與結合金屬濃度之比[B]/cB[B]對游離金屬濃度[B]作圖,可以獲得一條直線,從直線斜率B和截距A就可以求得絡合反應的條件穩定局勢常數:k=B/A。
陽極溶出伏安法(ASV)所得金屬濃度不單是游離金屬離子,而是電化學不安定態的金屬,既包括穩定常數較小的弱絡合物,也包括動力學上迅速解離的絡合物。此法測定腐殖質以及結構不明的天然有機物與金屬絡合物的總平均條件穩定常數是一個較實用的可靠方法。
(三)還原反應
腐殖質中含有相當可觀的自由基(free radicals),它屬於半醌基結構,既能氧化成醌又能還原成酚,因此他們是電子的給體也是受體。腐殖酸中的半醌基比黃腐酸中佔有更重要位置。這些自由基可以是永久性的組成部分,也可以是相對暫時性的組成部分。它受pH變化的化學反應、或輻射等因素影響而產生。自由基可以有幾分鍾的或幾小時的存在時間,這些自由基的存在,對地球化學環境中的一些聚合或氧化還原反應起著重要作用。腐殖質可以以還原電位+0.5~0.7eV還原許多金屬離子,這對可還原金屬的遷移有很大的影響。
腐殖質能還原某些氧化態的金屬離子,最典型的情況是Fe3+還原為Fe2+,據研究腐殖酸可以還原Fe3+為Fe2+,而且在pH=3的條件下,腐殖酸對 Fe3+還原作用最強。Szalay(1982)實驗證實,腐殖酸可還原流動的偏釩酸陰離子(
3. h-na並聯離子交換系統,h為什麼運行到na離子泄漏為止
答:離子來交換的動力學過程一自般可分為五步:(1)水中Na+首先在水中擴散,到達樹脂顆粒表面的邊界水膜,逐漸擴散通過此膜。(2)Na+進入樹脂顆粒內部的交聯網孔,並進行擴散。(3)Na+與樹脂內交換基團接觸,並與交換基團上可交換的H+進行交換。(4)被交換下來的H+在樹脂顆粒內部交聯網孔中向樹脂表面擴散。(5)被交換下來的H+擴散通過樹脂顆粒表面的邊界水膜,進入水溶液中。
4. 有沒有化學動力學方面的書比如說離子交換樹脂吸附金屬離子的動力學過程怎麼研究呢
肯定有的,到圖書館看看就知道了!
5. 地球化學動力學研究步驟和方法
圖4.11 地球化學動力學研究的步驟和方法框圖
地球化學動力學研究步驟如圖4.11所示:首先根據研究的地質-地球化學問題,視問題的主次,忽略次要的、突出主要的,使問題合理簡化,形成地球化學動力學的概念模型(conceptual modesl)。如在研究熱液成礦系統的熱流體對流遷移過程時可側重熱驅動流體的動力學過程,而忽略流體與圍岩的化學反應;在研究礦物蝕變導致礦物自中心到邊緣成分變化、礦物與流體同位素交換等過程時則主要考慮組分的擴散和離子交換反應;研究矽卡岩化過程除考慮流體的滲濾外,還要考慮流體中主要組分K、Na、Ca、Mg、Si、lA的擴散和流體與圍岩的化學作用。對經歷了多期次、多階段、多物質來源的地球化學作用的地球化學系統要重點研究主要階段和主要物質來源。對諸如區域地球化學演化這樣復雜的動力學問題,應對所涉及的各個子系統和過程分別建立動力學模型,從各個側面去把握復雜體系的動力學行為。
圖4.12 典型的水-岩反應動力學實驗裝置示意圖
建立地球化學動力學概念模型,主要有兩條研究途徑:一是應用化學動力學、流體動力學等原理及其相應的數學表述,建立地球化學動力學的數學模型,也稱動力學模型(dynamic models),並在此基礎上,應用有限元、有限差分等數值計算方法,通過計算機數值模擬,獲得動力學系統的演化規律;另一途徑是地球化學動力學實驗。目前主要限於兩類地球化學動力學實驗:一類是高溫高壓水-岩反應動力學實驗,典型的實驗裝置和原理見圖4.12,側重於開放體系中流體與礦物或岩石顆粒之間的化學反應機制和反應速率研究;另一類實驗是在一個大的容器(稱tank)內通過激光攝像和各種探頭實時檢測容器內流體的運動和成分變化,可以模擬宏觀尺度的地球化學輸運-反應動力學過程,但較難控制溫、壓條件,大多在常壓下實驗。
無論是數值模擬還是實驗模擬,都需先確定模型所需的各種動力學參數如流體的密度、粘度系數、圍岩的孔隙度和滲透率、顆粒比表面積等,還要根據實驗研究對象確定邊界條件和初始條件。
數值模擬和實驗模擬各有其長,可以相互補充。計算機模擬的優勢是可以模擬較復雜的地球化學體系,且可以方便地修改模型,或改變動力學參數和邊界、初始條件,得到各種模擬結果,從而研究不同條件下地球化學體系的演化規律。但數值模擬的成果取決於所建立數學模型的合理性和計算機軟體系統的正確性,受研究者主觀判斷和水平的影響。實驗模擬能較為宏觀地模擬地球化學過程,結果更為可信,但受實驗設備和實驗條件等限制,實驗研究只限於比較簡單的地球化學過程和簡單的邊界條件,且較費時費力,目前研究比較成熟的主要限於水-岩反應動力學實驗。
6. 誰有離子交換色譜的ppt啊,給我傳下,[email protected] 越詳細越好!
你這不是問問題。
7. 水-岩作用化學動力學
水-岩作用化學動力學是地球化學動力學最基本和最重要的研究內容,它主要研究開放(流動)體系內流體與礦物或岩石顆粒表面的化學作用機制和化學反應速率。
自然界中的化學反應有可逆反應和不可逆反應、均相反應和多相反應等;可逆反應有溶解-沉澱、離子交換反應及氧化還原反應等。此外,通常也把流體中的成核作用和生長過程包括在內。而在地質-地球化學過程中,水或水溶液與礦物、岩石間的化學反應顯得尤為重要,通常稱為「水-岩相互作用」(water-rock interaction)或「流體-岩石相互作用」(fluid-rock interaction)。風化作用及風化淋濾成礦作用,熱液蝕變及與此相關的熱液成礦作用,油氣運移、地下水及地表水與圍岩的相互作用,污染物與土壤的相互作用等均涉及水-岩相互作用,其實質是礦物溶解-沉澱過程動力學。
圖4.14 霞石在水溶液中溶解的Arrhenius圖
礦物的溶解作用受表面反應和流體中組分向礦物顆粒表面、反應後產物向溶液擴散的控制。若擴散的速率大於反應的速率,則稱為「表面控制」的反應,反之則稱「擴散控制」的反應。對於表面控制的溶解-沉澱導致水溶液中第 i 個組分的濃度ci的變化率Ri可表示為:
地球化學
式中:Am為第m種礦物的表面積;V為總溶液體積;vi,m為組分i在m 種礦物溶解反應式中的化學計量系數;km分別為第m種礦物的溶解速率常數,由實驗測定。許多礦物的溶解反應依賴於溶液中氫離子的活度,其溶解速率常數的經驗公式為:
地球化學
指數 nm介於0~1之間,通常為1/2;ΔGm為第m 種礦物溶解反應的吉布斯自由能。A.C.Lasaga曾對水-岩作用的化學動力學進行過詳細的分析。
8. 乳酸提取中離子交換工藝
我國生產乳酸的工藝主要採用鈣鹽法。乳酸生產工藝及主要排放源:玉米澱粉→噴射糊化→糖化發酵→板框壓濾→沉 淀 →蒸 發 →復分解 →濃 縮→離子交換→廢水廢水主要來源於糖化發酵, 板框壓濾及離子交換3個工段,廢渣來自板框壓濾、沉澱2個工段。夏 群等 乳酸生產廢水處理工程設計及運行結果注意噴射糊化代替噴淋液化,膜分離代替板框壓濾的效果。至於產生哪些污染物,不想說。除了你自己沒人能夠替你學習。
9. 離子交換樹脂系統的離子交換樹脂基本類型
1、 強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
2、 弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
3、 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
4、 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
註:不論強鹼性還是弱鹼性樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
10. 離子交換過程的5個步驟
離子交換過程歸納為如下幾個過程1.水中離子在水溶液中向樹脂表面擴散2.水中離子進入樹脂顆粒的交聯網孔,並進行擴散3.水中離子與樹脂交換基團接觸,發生復分解反應,進行離子交換4.被交換下來的離子,在樹脂的交聯網孔內向樹脂表面擴散5.被交換下來的離子,向水溶液中擴散影響交換的主要因素有流速、原料液濃度、溫度等。流速原料液的流速實際上反映了達到反應平衡的時間,在交換過程中,離子進行擴散—交換—擴散一系列步驟,有效地控制流速很重要。一般,交換液流速大,離子的透析量就高,未來及交換而通過樹脂層流失的量增多。因此,應根據交換容量等選擇適宜的流速。原料液濃度樹脂中可交換的離子與溶液中同性離子既有可能進行交換,也有可能相斥,液相離子濃度高,樹脂接觸機會多,較易進入樹脂網孔內,液相濃度低,樹脂交換容量大時,則相反。但液相離子濃度過高,將引起樹脂表面及內部交聯網孔收縮,也會影響離子進入網孔。實驗證明,在流速一定時,溶液濃度越高,溶質的流失量液越大。溫度溫度越提高,離子的熱運動越劇烈。單位時間碰撞次數增加,可加快反應速率。但溫度太高,離子的吸附強度會降低,甚至還會影響樹脂的熱穩定性,經濟上不利,實際生產中採用室溫操作較宜。
贊同0
暫無評論