先通入兩倍樹脂體積的約4%HCl的浸泡4-8h,用清水洗到pH為3-5左右,再用兩倍樹脂體積的版約4%NaOH的浸泡4-8h,用清水洗到權pH為9-10左右,之後就可再生使用。
樹脂在預處理後,第一次再生都要加倍再生,即所用的再生液為平時再生液的兩倍。即用4倍樹脂體積的約4%NaOH溶液,通過後將最後一倍樹脂體積的再生溶液浸泡樹脂4-8h,用清水洗到pH呈中性即可使用。
② 氯型717陰離子交換樹脂能轉換成碳酸氫根陰離子樹脂嗎
可以轉換。但由於樹脂對氯離子的吸附強度比對碳酸氫根強很多,因此要內得到高的轉型率並不容易。容首先,轉型一定要在交換柱中進行,用浸泡的方法轉型率會很低。其次,碳酸氫鈉的用量要大大過量。最後,所用的碳酸氫鈉純度要高。
祝你好運。
③ 用何種陰離子交換樹脂處理廢水中的氯離子
離子交換樹脂交換能力依其交換能力特徵可分: 1. 強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除。 這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。2. 弱鹼型陰離子交換樹脂:這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。3 . 對陰離子的吸附 強鹼性陰離子樹脂對無機酸根的吸附的一般順序為: SO42-> NO3- > Cl- > HCO3- > OH- 弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-注意事項1、保持一定水分離子交換樹脂含有一定水份,不宜露天存放,儲運過程中應保持濕潤,以免風干脫水,使樹脂破碎,如貯存過程中樹脂脫水了,應先用濃食鹽水(25%)浸泡,再逐漸稀釋,不得直接放入水中,以免樹脂急劇膨脹而破碎。2、保持一定溫度冬季儲運使用中,應保持在5-40℃的溫度環境中,避免過冷或過熱,影響質量,若冬季沒有保溫設備時,可將樹脂貯存在食鹽水中,食鹽水濃度可根據氣溫而定。3、雜質去除離子交換樹脂的工業產品中,常含有少量低聚合物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質,當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量,因此,新樹脂在使用前必須進行預處理,一般先用水使樹脂充分膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去,洗到近中性即可。如在醫葯制備中使用,須用乙醇浸泡處理。4、定期活化處理樹脂在使用中,防止與金屬(如鐵、銅等)油污、有機分子微生物、強氧化劑等接觸,免使離子交換能力降低,甚至失去功能,因此,須根據情況對樹脂進行不定期的活化處理,活化方法可根據污染情況和條件而定,一般陽樹脂在軟化中易受Fe的污染可用鹽酸浸泡,然後逐步稀釋,陰樹脂易受有機物污染,可用10%NaC1+2-5%NaOH混合溶液浸泡或淋洗,必要時可用1%雙氧水溶液泡數分鍾,其它,也可採用酸鹼交替處理法,漂白處理法,酒精處理及各種滅菌法等等。5、新樹脂預處理新樹脂的預處理:離子交換樹脂的工業產品中,常含有少量低聚物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質。當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量。因此,新樹脂在使用前必須進行預處理。一般先用水使樹脂膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去洗到近中性即可。6、樹脂型號規格110* 弱酸性丙烯酸系陽離子交換樹脂 -COOH (a)≥12(H型)(b)≥4(H型) (美)Amberlite IRC-84 水處理,電鍍含鎳廢水處理以及制葯工業等。 D151* 大孔弱酸丙烯酸系陽離子交換樹脂 -COOH (a)≥9.5(H型)(b)≥3(H型) (美)Amberlite IRC-72 水處理,制葯工業,食品製糖工業等。 D152* 大孔弱酸丙烯酸系陽離子交換樹脂 -COOH (a)≥9.5(H型)(b)≥3(H型) (法)Duolite C-464 水處理,三廢酸鹼中和,制葯、食品製糖等。 D113* 大孔弱酸丙烯酸系陽離子交換樹脂 -COOH (a)≥10.8(H型)(b)≥4.2(H型) (德)Lewatit CNP 80 水處理及廢水處理,回收貴金屬,抗菌素提純分離。 DLT** 大孔苯乙烯系膦酸樹脂 -CH2PO(OH)2 (a)≥7.0(b)≥2.4 - 在濃中除鐵離子,對三價鐵離子選擇性好。 +全交換量:(a) 毫摩爾/克(干)(b) 毫摩爾/毫升(濕)*樹脂結構:Acrylic-DVB**樹脂結構:DLT: Sryrene-DVB
④ 活化為氯型時陰離子交換樹脂的活化
出廠的陰離子樹脂一般是氯型的,但其活性不高,而且在樹脂中夾雜著不少有機雜質,仍然需要活化和清洗。一般規定,買來的樹脂先用蒸餾水清洗,然後用濃度為5~7%的NaOH溶液沖洗——水洗到中性——用5~7%的HCl——水洗到中性,如此重復3到4次,最後用NaOH沖洗,用水洗到中性。具體要求可向廠家咨詢。
⑤ 離子交換樹脂出廠的形式,什麼意思啊例如氯型的
是用於交換的離子形式。鈉型的就是說這種是陽離子樹脂,在和水中離子交換時提供鈉離子,把水中的其他金屬離子置換出來。氯型則是陰離子樹脂。一般陽離子出廠時都是鈉型樹脂。使用前用鹽酸處理後改為氫型樹脂。
⑥ 強鹼性陰離子交換樹脂(201)氯型,如何轉化成碳酸氫型
先將抄氯型樹脂用NaOH再生成氫氧型
RCl + NaOH →襲 ROH +NaCl
然後再與碳酸氫鹽反映
ROH + HCO3- → RHCO3 +OH
但是此類反映穩定性不好,因為極易形成CO2↑,濃度不宜過高。
⑦ 陰離子交換樹脂為什麼一般採用氯型樹脂
將水或其它需要提純的液體中存在的陰或陽離子電解質置換.如:硬水純化成為無離子水(Demim water), 水溶性染料提純/葯物提純等等.
⑧ 陰樹脂怎麼樣變成氯型
陰樹脂一般都是採用濃度為4%的NaOH溶液再生,通過氫氧根交換料液中的陰離子(強、弱鹼陰樹脂能交換如硫酸根,氯根,硝酸根等強酸陰離子,但弱鹼陰樹脂因為沒有中性鹽分解能力,所以不具備交換碳酸氫根、硅酸根等弱酸陰離子),但在一些特殊應用工況中,陰樹脂需要以氯型進行交換反應,比如去除水溶液中的硫酸根、提取生物發酵液中的一些酸性物質等(比如對玉米浸泡水提取植酸成分)。這時候,陰樹脂一般是採用4-5%的HCl溶液作為再生劑(嚴格意義上應該稱為解析劑)對陰樹脂進行再生解析處理。也有一些生產環節採用4%的NaOH溶液先再生處理,然後再使用HCl溶液轉為氯型投用運行。
陰樹脂在使用工況中如果直接採用HCl溶液作為解析劑時,由於樹脂在實際使用過程中,容易被溶液中的有機物污染,而鹽酸溶液作為再生解析劑,不具備對樹脂有機物污染起到正常去除能力,所以一般使用後每隔20個周期(視實際使用情況而定),建議採用鹽鹼混合液(10%NaCl溶液+1.5~4%NaOH溶液)對樹脂進行復甦再生,混合液適當加溫至35~40度並伴有壓縮空氣攪拌擦洗,並浸泡後效果更佳!
目前國內很多離子交換樹脂生產企業,一味的採用一個所謂的新工藝,通過套用回收一些化工原料,從而達到降低生產成本的目的,來滿足國內用戶招投標低價競爭的需求,這類產品抗有機物污染,抗氧化性能大大降低,不能滿足一些應用工況之需求,所以一定程度上,低價競爭是不可持續,對於終端用戶而言,也是得不償失的。而國內大多數的生產工藝並沒有達到高標准生產工藝階段,在眾多生產工藝環節,存在更大的優化改進空間,尤其是一些特殊應用環節和細節性優化工藝環節,需要的是離子交換樹脂應用工藝的研究和提升,而不是盲目的進行低價比拼采購。希望國內用戶能理智面對現狀,採用多措施,去合理突破現行低級的低價比拼招標制度。
以上這一段非回答問題之內容,只是借題呼籲一下而已,希望用戶理智,更望國內離子交換樹脂生產企業明白其中之道理,莫將那些高端市場拱手讓與國外同行,自己卻陷入萬劫不復之深淵,謝謝理解,望諒!