① 高中生應該會做的化學實驗
全國高中化學競賽大綱說明:
1. 本基本要求旨在明確全國初賽和決賽試題的知識水平,作為試題命題的依據。本基本要求不涉及國家隊選手選拔的要求。
2. 現行中學化學教學大綱、新近發布的普通高中化學課程標准實驗教科書(A1-2,B1-6)及高考說明規定的內容均屬初賽要求。具有高中文化程度的公民的常識以及高中數學、物理、生物、地理與環境科學等學科的基本內容(包括與化學相關的我國基本國情、宇宙、地球的基本知識等)也是化學競賽的內容。初賽基本要求對某些化學原理的定量關系、物質結構、立體化學和有機化學作適當補充,一般說來,補充的內容是中學化學內容的自然生長點。
3. 決賽基本要求是在初賽基本要求的基礎上作適當補充。
4. 全國高中學生化學競賽是學生在教師指導下的研究性學習,是一種課外活動。課外活動的總時數是制定競賽基本要求的重要制約因素。本基本要求估計初賽基本要求需40單元(每單元3小時)的課外活動(註:40單元是按高一、高二兩年約40周,每周一單元計算的);決賽基本要求需追加30單元課外活動(其中實驗至少10單元)(註:30單元是按10、11和12月共三個月約14周,每周2~3個單元計算的)。
5. 最近三年同一級別競賽試題涉及符合本要求的知識自動成為下屆競賽的要求。
6. 本基本要求若有必要做出調整,在競賽前三個月發出通知。新基本要求啟用後,原基本要求自動失效。
初賽:
1. 有效數字。在化學計算和化學實驗中正確使用有效數字。定量儀器(天平、量筒、移液管、滴定管、容量瓶等等)測量數據的有效數字。運算結果的有效數字。
2. 氣體。理想氣體標准狀態。理想氣體狀態方程。氣體密度。分壓定律。氣體相對分子質量測定原理。氣體溶解度(亨利定律)。
3. 溶液。溶液濃度。溶解度。溶液配製(按濃度的精確度選擇儀器)。重結晶及溶質/溶劑相對量的估算。過濾與洗滌(洗滌液選擇、洗滌方式選擇)。溶劑(包括混合溶劑)。膠體。
4. 容量分析。被測物、基準物質、標准溶液、指示劑、滴定反應等基本概念。酸鹼滴定的滴定曲線(酸鹼強度、濃度、溶劑極性對滴定突躍影響的定性關系)。酸鹼滴定指示劑的選擇。高錳酸鉀、重鉻酸鉀、硫代硫酸鈉、EDTA為標准溶液的基本滴定反應。分析結果的計算。分析結果的准確度和精密度。
5. 原子結構。核外電子運動狀態: 用s、p、d等來表示基態構型(包括中性原子、正離子和負離子)核外電子排布。電離能、電子親合能、電負性。
6. 元素周期律與元素周期系。主族與副族。過渡元素。主、副族同族元素從上到下性質變化一般規律;同周期元素從左到右性質變化一般規律。原子半徑和離子半徑。s、p、d、ds、f-區元素的基本化學性質和原子的電子構型。元素在周期表中的位置與核外電子結構(電子層數、價電子層與價電子數)的關系。最高氧化態與族序數的關系。對角線規則。金屬性、非金屬性與周期表位置的關系。金屬與非金屬在周期表中的位置。半金屬。主、副族重要而常見元素的名稱、符號及在周期表中的位置、常見氧化態及主要形態。鉑系元素的概念。
7. 分子結構。路易斯結構式(電子式)。價層電子對互斥模型對簡單分子(包括離子)幾何構型的預測。雜化軌道理論對簡單分子(包括離子)幾何構型的解釋。共價鍵。鍵長、鍵角、鍵能。σ 鍵和π 鍵。離域π 鍵。共軛(離域)的一般概念。等電子體的一般概念。分子的極性。相似相溶規律。
8. 配合物。路易斯酸鹼的概念。配位鍵。重要而常見的配合物的中心離子(原子)和重要而常見的配體(水、羥離子、鹵離子、擬鹵離子、氨分子、酸根離子、不飽和烴等)。螯合物及螯合效應。重要而常見的絡合劑及其重要而常見的配合反應。配合反應與酸鹼反應、沉澱反應、氧化還原反應的聯系(定性說明)。配合物幾何構型和異構現象基本概念。配合物的雜化軌道理論。八面體配合物的晶體場理論。Ti(H2O)63+的顏色。
9. 分子間作用力。范德華力。氫鍵。其他分子間作用力的一般概念。
10. 晶體結構。晶胞。原子坐標。晶格能。晶胞中原子數或分子數的計算及與化學式的關系。分子晶體、原子晶體、離子晶體和金屬晶體。配位數。晶體的堆積與填隙模型。常見的晶體結構類型,如NaCl、CsCl、閃鋅礦(ZnS)、螢石(CaF2)、金剛石、石墨、硒、冰、乾冰、尿素、金紅石、鈣鈦礦、鉀、鎂、銅等。
11. 化學平衡。平衡常數與轉化率。弱酸、弱鹼的電離常數。溶度積。利用平衡常數的計算。熵的概念。
12. 離子方程式的正確書寫。
13. 電化學。氧化態。氧化還原的基本概念和反應的書寫與配平。原電池。電極符號、電極反應、原電池符號、原電池反應。標准電極電勢。用標准電極電勢判斷反應的方向及氧化劑與還原劑的強弱。電解池的電極符號與電極反應。電解與電鍍。電化學腐蝕。常見化學電源。pH、絡合劑、沉澱劑對氧化還原反應影響的定性說明。
14. 元素化學。鹵素、氧、硫、氮、磷、碳、硅、錫、鉛、硼、鋁。鹼土金屬、鹼金屬、稀有氣體。鈦、釩、鉻、錳、鐵、鈷、鎳、銅、銀、金、鋅、汞、鉬、鎢。過渡元素氧化態。氧化物和氫氧化物的酸鹼性和兩性。常見難溶鹽。氫化物的基本分類和主要性質。常見無機酸鹼的形態和基本性質。水溶液中的常見離子的顏色、化學性質、定性檢出(不使用特殊試劑)和分離。制備單質的一般方法。
15. 有機化學。有機化合物基本類型——烷、烯、炔、環烴、芳香烴、鹵代烴、醇、酚、醚、醛、酮、酸、酯、胺、醯胺、硝基化合物、磺酸的系統命名、基本性質及相互轉化。異構現象。C=C加成。馬可尼科夫規則。C=O加成。取代反應。芳香烴取代反應及定位規則。芳香烴側鏈的取代反應和氧化反應。碳鏈增長與縮短的基本反應。分子的手性及不對稱碳原子的R、S構型判斷。糖、脂肪、蛋白質。
16. 天然高分子與合成高分子化學初步知識。
決賽:
本基本要求在初賽要求基礎上增加下列內容,不涉及微積分。
1. 原子結構。四個量子數的物理意義及取值。單電子原子軌道能量的計算。S、p、d原子軌道圖像。
2. 分子結構。分子軌道基本概念。定域鍵鍵級。分子軌道理論對氧分子、氮分子、一氧化碳分子、一氧化氮分子的結構和性質的解釋。一維箱中粒子能級。超分子基本概念。
3. 晶體結構。點陣的基本概念。晶系。宏觀對稱元素。十四種空間點陣類型。
4. 化學熱力學基礎。熱力學能(內能)、焓、熱容、自由能和熵的概念。生成焓、生成自由能、標准熵及有關計算。自由能變化與反應的方向性。吉布斯-亥姆霍茲方程及其應用。范特霍夫等溫方程及其應用。標准自由能與標准平衡常數。平衡常數與溫度的關系。熱化學循環。熱力學分解溫度(標態與非標態)。相、相律和相圖。克拉貝龍方程及其應用(不要求微積分)。
5. 稀溶液通性(不要求化學勢)。
6. 化學動力學基礎。反應速率基本概念。反應級數。用實驗數據推求反應級數。一級反應積分式及有關計算(速率常數、半衰期、碳-14法推斷年代等等)。阿累尼烏斯方程及計算(活化能的概念與計算;速率常數的計算;溫度對速率常數影響的計算等)。活化能與反應熱的關系。反應機理一般概念。推求速率方程。催化劑對反應影響的本質。
7. 酸鹼質子理論。緩沖溶液。利用酸鹼平衡常數的計算。溶度積原理及有關計算。
8. Nernst方程及有關計算。原電池電動勢的計算。pH對原電池的電動勢、電極電勢、氧化還原反應方向的影響。沉澱劑、絡合劑對氧化還原反應方向的影響。
9. 配合物的配位場理論的初步認識。配合物的磁性。分裂能與穩定化能。利用配合物的平衡常數的計算。絡合滴定。軟硬酸鹼。
10. 元素化學描述性知識達到國際競賽大綱三級水平。
11. 自然界氮、氧、碳的循環。環境污染及治理、生態平衡、綠色化學的一般概念。
12. 有機化學描述性知識達到國際競賽大綱三級水平(不要求不對稱合成,不要求外消旋體拆分)。
13. 氨基酸、多肽與蛋白質的基本概念。DNA與RNA。
14. 糖的基本概念。葡萄糖、果糖、甘露糖、半乳糖。糖苷。纖維素與澱粉。
15. 簡單有機化合物的系統命名。
16. 有機立體化學基本概念。構型與構象。順反異構(trans-、cis-和Z-、E-構型)。手性異構。endo-和exo-。D,L構型。
17. 利用無機和有機的基本反應對簡單化合物的鑒定和結構推斷。
18. 有機制備與有機合成的基本操作。電子天平。配製溶液、加熱、冷卻、沉澱、結晶、重結晶、過濾(包括抽濾)、洗滌、蒸發濃縮、常壓蒸餾與迴流、傾析、分液、攪拌、乾燥。通過中間過程檢測(如pH、溫度、顏色等)對實驗條件進行控制。產率和轉化率的計算。實驗室安全與事故緊急處置的知識與操作。廢棄物處置。儀器洗滌和乾燥。實驗工作面的安排和整理。原始數據的記錄。
19. 常見容量分析的基本操作、基本反應及分析結果的計算。容量分析的誤差分析。
20. 分光光度法。比色分析。
國際大綱一級要求:
1. 電子構型:主族、Pauli摒斥原理、Hund規則。
2. 周期性(主族):電負性、原子的大小、最高氧化數。
3. 物理性質的周期性(主族):熔點、沸點、金屬性。
4. 命名:主族化合物、過渡金屬化合物、配位數。
5. 計量學:配平方程式、質量與體積關系、實驗式、阿佛加德羅數、濃度計算。
6. 同位素:核子的計算、放射性衰變。
7. s區:Ⅰ,Ⅱ族金屬與水反應的產物及產物的鹼度、金屬與鹵素反應的產物、重元素的反應性更強。
8. p區:最簡非金屬氫化物計量學、CH4,NH3,H2S,H2O,HX的酸鹼性、NO與O2反應生成NO2、NO2與N2O4的平衡、NO2與水反應的產物、HNO2及其鹽作還原劑、HNO3及其鹽作氧化劑、B(III) Al(III) Si(IV) P(V) S(IV) S(VI) O(II) F(I) Cl(I) Cl(III),Cl(V) Cl(VII)是第2,3周期元素與鹵素和含氧陰離子的化合物的正常氧化態、非金屬氧化物與水的反應及生成的酸的計量學、從F2到Cl2的鹵素氧化性和反應性的遞減。
9. d區:Cr(III) Cr(VI) Mn(II) Mn(IV) Mn(VII) Fe(II) Fe(III) Co(II) Ni(II) Cu(I) Cu(II) Ag(I) Zn(II) Hg(I) Hg(II)是d區的常見元素的常見氧化態、Cr Mn Fe Ni Co溶於稀鹽酸,而Cu Ag Hg不溶、Cr(OH)3 Zn(OH)2是兩性的而其它氫氧化物不呈兩性、MnO4- CrO4- Cr2O72-是強氧化劑。
10. 其它無機化學問題:H2SO4 NH3 Na2CO3 Na Cl2和NaOH的工業製法。
11.烷:丁烷的異構體、命名(IUPAC)、物理性質的趨勢、取代(例如與Cl2)產物、環烷的命名。
12.烯:平面結構、E/Z(cis/trans)異構、與Br2,HBr的加成產物。
13.炔:線性結構。
14.芳香烴:苯的化學式、電子的離域、共振的穩定化作用。
15.醇與酚:氫鍵——醇與醚對比、烯烴的氫化、甘油的化學式。
16.羰基化合物:命名、制備(醇的氧化)、反應(醛的氧化)。
17.羧酸:與醇反應產物(酯)、草酸(名稱與化學式)。
18.含氮化合物:胺類是鹼。
19.大分子:肥皂的製造;聚合反應的產物(乙烯的)。
20.氨基酸與肽:氨基酸的離子性結構、肽的結合。
21.蛋白質:蛋白質的一級結構。
22.化學平衡:化學平衡的動態模型、化學平衡的相對濃度表達式。
23.離子平衡:酸鹼的Arrhenius理論、質子理論,共軛酸鹼、pH的定義、水的離子積、共軛酸鹼的Ka和Kb的相互關系、鹽的水解、溶度積的定義、用溶度積計算溶解度(水中的)、用Ka計算弱酸的pH。
24.電極平衡:電動勢的定義、第一類電極、標准電極電勢。
25.均相體系的動力學:影響反應速率的因素、速率方程、速率常數。
26.相的體系:理想氣體方程、分壓的定義。
27.分析化學:移液管的使用、滴定管的使用、酸度法中指示劑的選擇、Ag+,Ba2+,Cl-,SO42-的鑒定、Al3+,NO2-,NO3-,Bi3+的鑒定、K,Ca,Sr的焰色法。
28.絡合物:寫出絡合反應。
國際競賽大綱的二、三級知識不要求記憶。
國際化學競賽大綱實驗要求:
1.無機物與有機物的合成
1.1 使用燃具和電熱板加熱 1
1.2 液體的加熱 1
1.3 易燃物和易燃材料的處理與操作 1
1.4 用分析天平稱量 1
1.5 量筒、移液管、滴定管的使用 1
1.6 由固體和溶劑制備溶液 1
1.7 溶液的混合與稀釋 1
1.8 液體的混合與攪拌 1
1.9 攪拌器和電磁攪拌器的使用 2
1.10 滴液漏斗的使用 1
1.11 在平底燒瓶里進行合成—一般原理 1
1.12 在圓底燒瓶里進行合成—一般原理 1
1.13 在密閉儀器裝置里進行合成——一般原理 1
1.14 用微型儀器進行合成 3
1.15 迴流下加熱反應混合物 2
1.16 常壓蒸餾 2
1.17 減壓蒸餾 3
1.18 水蒸氣蒸餾 3
1.19 透過平攤的濾紙的過濾 1
1.20 透過卷攏的濾紙的過濾 1
1.21 減壓水泵操作 1
1.22 布氏漏斗操作 1
1.23 玻璃漏斗(垂熔漏斗、燒結漏斗)過濾 1
1.24 傾析法洗滌沉澱 1
1.25 在漏鬥上洗滌沉澱 2
1.26 在漏鬥上用恰當的溶劑乾燥沉澱 2
1.27 在水溶液中重結晶 1
1.28 在給定的(已知的)有機溶劑里進行重結晶 2
1.29 選擇適當的溶劑進行重結晶 3
1.30 在乾燥箱里進行乾燥 2
1.31 在保干器里進行乾燥 2
1.32 洗氣瓶的連結和使用 2
1.33 用不相溶的溶劑進行萃取 1
2.無機物和有機物的鑒定——一般原理
2.1 試管反應 1
2.2 使用點滴板和濾紙的反應操作技術 1
2.3 命題人選定某些陽離子和陰離子進行分組反應檢出 2
2.4 命題人選定某些陽離子和陰離子通過個別反應檢出 2
2.5 命題人選定某些陽離子和陰離子通過特殊反應檢出 3
2.6 用鉑絲、MgO棒、鈷玻璃的焰色反應檢出元素 2
2.7 使用手持光譜儀/煤氣燈光譜儀 3
2.8 使用Kofler熔點測定儀或類似儀器 3
2.9 命題人選定有機物基本官能團的定性檢出 2
2.10 使用特殊試劑檢出有機物 3
3.無機物和有機物的測定——一般原理
3.1 利用沉澱反應的定量測定 2
3.2 沉澱在坩堝里灼燒 1
3.3 容量分析 1
3.4 滴定的規則 1
3.5 移液球的使用 1
3.6 標准溶液的制備 2
3.7 酸鹼滴定 2
3.8 酸鹼滴定中的指示劑變色 2
3.9 直接滴定與間接滴定(返滴定) 3
3.10 磁性測定 3
3.11 碘量法 3
3.12 基於氧化還原反應的其他測定類型 3
3.13 配合滴定 3
3.14 配合滴定中溶液的顏色變化 3
3.15 沉澱滴定 3
3.16 量熱滴定 3
4.特殊測量和操作步驟
4.1 用pH計的測量2
4.2 薄層色譜 3
4.3 柱層析 3
4.4 離子交換分離3
4.5 紫外可見光譜 3
4.6 電導測定3
5.實驗結果處理
5.1 有效數字、作圖、誤差分析 1
6.所有未在上表中提到的,命題人確定的實驗技術均自動地屬於三級。
② cate的功函數很高,而且很難摻雜,請問目前採用什麼工藝解決
通過共軛聚合物電解質的電荷摻雜得到了基於溶液法的摻雜薄膜。
參考資料:
【引言】
在製作高性能半導體器件的過程中,需要通過電極和半導體層間良好的歐姆接觸注入最大的電流密度。要得到歐姆接觸,就要求電極分別通過空穴和電子的注入得到高和低的功函數,這里所說的功函數,就是將電子從費米能級轉移到真空環境中所需的最小能量。然而,要得到具有足夠高或低功函數的導電層是極具挑戰的,尤其是對基於溶液法的半導體器件。空穴注入的聚合物有機半導體具有有限但極高的功函數,不過制備具有極低功函數的電子注入材料還是很困難的。其中的關鍵問題就是去摻雜薄膜層的穩定以及抑制摻雜離子的遷移。
【成果簡介】
近日,來自新加坡國立大學的Cindy G.Tang, Mervin C. Y. Ang, Kim-Kian Choo(共同通訊)在Nature上報道了一種通用的思路來達到去摻雜薄膜層的穩定並抑制摻雜離子的遷移。通過共軛聚合物電解質的電荷摻雜得到了基於溶液法的摻雜薄膜,其具有較寬的功函數(3.0-5.8 eV),並且,摻雜薄膜由於內部的離子交換形成了自補償的重摻雜聚合物。聚合物骨架上的移動載流子因為共價連接的反離子而得到補償。自補償的摻雜聚合物僅僅在表面上像是自摻雜聚合物,其原因就在於摻雜電荷載流子的分離和自補償,這使得可以通過使用更強的摻雜劑得到極高或極低的功函數。
實驗表明,基於溶液法的歐姆接觸可以用於高效有機發光二極體、太陽能電池、光電二極體和晶體管,此外,還可應用在全載流子歐姆注入的聚芴中(一種寬禁帶的藍光聚合物有機半導體發光二極體基準物質)。此外,通過摻雜的聚合電解質作用,金屬電極可以轉變為高效的空穴或電子注入接觸,這就使得雙極場效應晶體管轉變為p-溝道或n-溝道晶體管成為可能。這種研究方法不僅可以在有機半導體中形成歐姆接觸,也可應用於其他半導體材料中,比如鈣鈦礦、量子點、納米管以及二維材料。
③ 金屬鹵素鈣鈦礦具有哪些優異的光學和電學性能
金屬鹵素鈣鈦礦納米晶具有
熒光效率高、色純度高、光譜可調並覆蓋整個可見光波段、易合成等優點。
其中研究最為廣泛的兩種金屬鹵素鈣鈦礦體系是甲胺基鈣鈦礦和銫基鈣鈦礦納米晶。它們在綠光波段的光學性能最佳,在同等制備條件下相比於其他波段熒光效率最高且穩定性最好。隨著合成方法的不斷改進優化,這兩類綠光鈣鈦礦納米晶的光學品質日益提高(半高寬<20 nm,熒光效率可達100%),穩定性也日益改善。
④ 化合物半導體薄膜 鈣鈦礦是半導體嗎
化合物半導體薄膜 鈣鈦礦是半導體
飛秒檢測發現鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。在這種鈣鈦礦結構(,圖1)中,A一般為甲胺基,和也有報道;B多為金屬Pb原子,金屬Sn也有少量報道;X為Cl、Br、I等鹵素單原子或混合原子。目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺(),它的帶隙約為1.5 eV。
在接受太陽光照射時,鈣鈦礦層首先吸收光子產生電子-空穴對。由於鈣鈦礦材激子束縛能的差異,這些載流子或者成為自由載流子,或者形成激子。而且,因為這些鈣鈦礦材料往往具有較低的載流子復合幾率和較高的載流子遷移率,所以載流子的擴散距離和壽命較長。例如,的載流子擴散長度至少為100nm,而的擴散長度甚至大於。這就是鈣鈦礦太陽能電池優異性能的來源。
⑤ CsCu2I3如何溶解
近照明在人類社會無處不在,其消耗的電量佔全人類用電總量的五分之一。最近,鉛基鹵素鈣鈦發光二極體(LED)因其優異的發光性能引起了人們的廣泛關注,其最高外量子效率目前已經超過了20%,可以和商業化的LED性能媲美。但是,鉛基鹵素鈣鈦礦中含有有毒的鉛元素,會破壞人類的神經系統和當地的生態系統。此外,鉛基鹵素鈣鈦礦穩定性差,對水,氧,熱等外界因素敏感,也是其致命的缺點。因此,開發無毒,穩定性高的鈣鈦礦或鈣鈦礦變體是走向實際應用的關鍵一步。
華中科技大學唐江教授課題組郭慶勛博士等採用環境友好,高穩定性的CsCu2I3作為發光層,使用真空沉積法制備了CsCu2I3發光二極體,實現了10 cd/m2的發光亮度和0.02%的外部量子效率(EQE)。CsCu2I3的「軟」晶格特性使其具有很強的光聲耦合作用,其受激發後產生的電子-空穴對很容易引起晶格畸變從而被晶格捕獲,形成自限域態激子(STE)。
圖1:(a) 電流密度-電壓(J-V)和亮度-電壓(L-V)曲線;(b) CsCu2I3LED的EQE曲線;(c) CsCu2I3LED的CIE顏色坐標。
據我們所知,這是第一次通過真空沉積技術成功實現了基於STE材料CsCu2I3的電致發光。相比於目前常用來制備鈣鈦礦層的溶液加工法,真空沉積技術有著制備環境可控,重復性高和大面積制備的優點,更有希望實現鈣鈦礦商業化應用的批量生產。這篇工作創新性的通過真空沉積法制備了CsCu2I3發光層實現了STE材料的電致發光,為鈣鈦礦材料的制備提供另外一種新穎可靠的工藝路線,其制備的黃光LED也有希望為產業界的黃光照明和顯示應用給出新方向。
Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons
Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, Liang Gao, Jiang Tang
J. Semicond. 2020, 41(5): 052204
doi: 10.1088/1674-4926/41/5/052204
Full Text
⑥ 染料敏化太陽電池和鈣鈦礦太陽電池的區別和聯系
飛秒檢測發現鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。在這種鈣鈦礦結構(,圖1)中,A一般為甲胺基,和也有報道;B多為金屬Pb原子,金屬Sn也有少量報道;X為Cl、Br、I等鹵素單原子或混合原子。目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺(),它的帶隙約為1.5 eV。
在接受太陽光照射時,鈣鈦礦層首先吸收光子產生電子-空穴對。由於鈣鈦礦材激子束縛能的差異,這些載流子或者成為自由載流子,或者形成激子。而且,因為這些鈣鈦礦材料往往具有較低的載流子復合幾率和較高的載流子遷移率,所以載流子的擴散距離和壽命較長。例如,的載流子擴散長度至少為100nm,而的擴散長度甚至大於。這就是鈣鈦礦太陽能電池優異性能的來源。
⑦ 鈣鈦礦型太陽能電池是怎麼回事呢
鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。在這種鈣鈦礦結構(,圖1)中,A一般為甲胺基,和也有報道;B多為金屬Pb原子,金屬Sn也有少量報道;X為Cl、Br、I等鹵素單原子或混合原子。目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺(),它的帶隙約為1.5 eV。鈣鈦礦太陽能電池的結構如圖示,鈣鈦礦太陽能電池由上到下分別為玻璃、FTO、電子傳輸層(ETM)、鈣鈦礦光敏層、空穴傳輸層(HTM)和金屬電極。其中,電子傳輸層一般為緻密的納米顆粒,以阻止鈣鈦礦層的載流子與FTO中的載流子復合。通過調控的形貌、元素摻雜或使用其它的n型半導體材料如ZnO等手段來改善該層的導電能力,以提高電池的性能。目前報道的最高效率(~19.3%)的電池使用的即是釔摻雜的。鈣鈦礦光敏層,多數情況下就是一層有機金屬鹵化物半導體薄膜。也有人使用的是有機金屬鹵化物填充的介孔結構(、和骨架),或者兩者都存在,但沒有證據表明這種結構有助於電池性能的提高。空穴傳輸層,在染料敏化太陽能電池中,該層多為液態電解質。由於在液態電解質中不穩定,使得電池穩定性差,這也是早期的鈣鈦礦電池的主要問題。後來,Grätzel 等採用了如spiro-OMeTAD, PEDOT:PSS等固態空穴傳輸材料,電池效率得到了極大提高,並具有良好的穩定性。特別地,鈣鈦礦還可以同時作為吸光和電子傳輸材料或者同時作為吸光和空穴傳輸材料。這樣,就可以製造不含HTM或ETM的鈣鈦礦太陽能電池。
⑧ cspbx3鈣鈦礦的全稱是什麼
鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。在這種鈣鈦礦結構(ABX3,圖1)中,A一般為甲胺基,和也有報道;B多為金屬Pb原子,金屬Sn也有少量報道;X為Cl、Br、I等鹵素單原子或混合原子。目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺,它的帶隙約為1.5 eV。
鈣鈦礦太陽能電池中的物理過程
在接受太陽光照射時,鈣鈦礦層首先吸收光子產生電子-空穴對。由於鈣鈦礦材激子束縛能的差異,這些載流子或者成為自由載流子,或者形成激子。而且,因為這些鈣鈦礦材料往往具有較低的載流子復合幾率和較高的載流子遷移率,所以載流子的擴散距離和壽命較長。例如,的載流子擴散長度至少為100nm,而的擴散長度甚至大於。這就是鈣鈦礦太陽能電池優異性能的來源。
然後,這些未復合的電子和空穴分別別電子傳輸層和空穴傳輸層收集,即電子從鈣鈦礦層傳輸到等電子傳輸層,最後被FTO收集;空穴從鈣鈦礦層傳輸到空穴傳輸層,最後被金屬電極收集,如圖2所示。當然,這些過程中總不免伴隨著一些使載流子的損失,如電子傳輸層的電子與鈣鈦礦層空穴的可逆復合、電子傳輸層的電子與空穴傳輸層的空穴的復合(鈣鈦礦層不緻密的情況)、鈣鈦礦層的電子與空穴傳輸層的空穴的復合。要提高電池的整體性能,這些載流子的損失應該降到最低。
最後,通過連接FTO和金屬電極的電路而產生光電流。
⑨ 鈣鈦礦型太陽能電池是什麼原理
飛秒檢測發現鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。
在這種鈣鈦礦結構(,1)中,A一般為甲胺基,和也有報道;
B多為金屬Pb原子,金屬Sn也有少量報道;
X為Cl、Br、I等鹵素單原子或混合原子。
目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺(),它的帶隙約為1.5 eV。
在接受太陽光照射時,鈣鈦礦層首先吸收光子產生電子-空穴對。
由於鈣鈦礦材激子束縛能的差異,這些載流子或者成為自由載流子,或者形成激子。
而且,因為這些鈣鈦礦材料往往具有較低的載流子復合幾率和較高的載流子遷移率,所以載流子的擴散距離和壽命較長。
例如,的載流子擴散長度至少為100nm,而的擴散長度甚至大於。
這就是鈣鈦礦太陽能電池優異性能的來源。
⑩ 鈣鈦礦型太陽能電池是什麼原理
鈣鈦礦型太陽能電池(perovskite solar cells),是利用鈣鈦礦型的有機金屬鹵化物半導體作為吸光材料的太陽能電池,即是將染料敏化太陽能電池中的染料作了相應的替換。在這種鈣鈦礦結構中,A一般為甲胺基;B多為金屬Pb原子,金屬Sn也有少量報道;X為Cl、Br、I等鹵素單原子或混合原子。目前在高效鈣鈦礦型太陽能電池中,最常見的鈣鈦礦材料是碘化鉛甲胺,它的帶隙約為1.5 eV。
在接受太陽光照射時,鈣鈦礦層首先吸收光子產生電子-空穴對。由於鈣鈦礦材激子束縛能的差異,這些載流子或者成為自由載流子,或者形成激子。而且,因為這些鈣鈦礦材料往往具有較低的載流子復合幾率和較高的載流子遷移率,所以載流子的擴散距離和壽命較長。這就是鈣鈦礦太陽能電池優異性能的來源。
然後,這些未復合的電子和空穴分別別電子傳輸層和空穴傳輸層收集,即電子從鈣鈦礦層傳輸到電子傳輸層,最後被FTO收集;空穴從鈣鈦礦層傳輸到空穴傳輸層,最後被金屬電極收集。當然,這些過程中總不免伴隨著一些使載流子的損失,如電子傳輸層的電子與鈣鈦礦層空穴的可逆復合、電子傳輸層的電子與空穴傳輸層的空穴的復合(鈣鈦礦層不緻密的情況)、鈣鈦礦層的電子與空穴傳輸層的空穴的復合。要提高電池的整體性能,這些載流子的損失應該降到最低。
最後,通過連接FTO和金屬電極的電路而產生光電流。