導航:首頁 > 凈水問答 > 離子交換質量法

離子交換質量法

發布時間:2021-11-26 05:30:04

㈠ 什麼叫離子交換樹脂的選擇性與什麼因素有關

什麼是離子交來換源樹脂的選擇性?

離子交換樹脂的選擇性是指離子交換樹脂能吸附的金屬離子,污水中有很多金屬離子而離子交樹脂不可能可以把所有的金屬離子都吸咐干凈的,有一些金屬離子樹脂對它的吸附能力是比較弱的而有一些則比較強,也就是說離子交換樹脂只能針對性的吸附某一些金屬離子,這就是離子交換樹脂的選擇性。

離子交換樹脂的選擇性怎樣?

離子交換反應和其他化學反應一樣,完全服從質量作用定律。離子交換親和力,也就是離子交換樹脂對水中金屬離子的吸附能力。離子交換樹脂對離子的吸附能力與離子半徑大小和離子所帶的電荷數有關。離子交換樹脂的吸附能力與金屬離子的電荷數、價態和金屬離子的半徑成正比。

離子交換樹脂的選擇性:

經過實驗證明,低濃度、常溫下,離子交換樹脂對不同離子的吸附能力順序有下列規律。

陽離子交換樹脂對金屬離子的吸附順序是:

Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。

強鹼性陰離子樹脂對陰離子的吸附順序是:

SO42->NO3->CI->HCO3->OH-。

弱鹼性陰離子樹脂對陰離子的吸附順序是:

OH->檸檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-

>HCO3-。

㈡ 離子交換是什麼

離子交換法
一、前言
離子交換法(ion exchange process)是液相中的離子和固相中離子間所進行的的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中。

離子交換樹脂一般呈現多孔狀或顆粒狀,其大小約為0.1~1mm,其離子交換能力依其交換能力特徵可分:

1. 強酸型陽離子交換樹脂:主要含有強酸性的反應基如磺酸基(-SO3H),此離子交換樹脂可以交換所有的陽離子。

2. 弱酸型陽離子交換樹脂:具有較弱的反應基如羧基(-COOH基),此離子交換樹脂僅可交換弱鹼中的陽離子如Ca2+、Mg2+,對於強鹼中的離子如Ca2+、K+等無法進行交換。

3. 強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除。

4. 弱鹼型陰離子交換樹脂:具有較弱的反應基如氨基,僅能去除強酸中的陰離子如SO42-,Cl-或NO3-,對於HCO3-,CO32-或SiO42-則無法去除。

不論是離子交換樹脂或是沸石,都有其一定的可交換基濃度,稱為離子交換容量(ion exchange capacity)。對陽離子交換樹脂而言,大約在200~500meq/100g。因為陽離子交換為一化學反應,故必須遵守質量平衡定律。離子交換樹脂的一般方程式可以表示如下:
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050106235836920.doc

離子交換的基本知識
為了除去水中離子態雜質,現在採用得最普遍的方法是離子交換。這種方法可以將水中離子態雜質清除得以較徹底,因而能製得很純的水。所以,在熱力發電廠鍋爐用水的制備工藝中,它是一個必要的步驟。

離子交換處理,必須用一種稱做離子交換劑的物質(簡稱交換劑)來進行。這種物質遇水時,可以將其本身所具有的某種離子和水中同符號的離子相互交換,離子交換劑的種類很多,有天然和人造、有機和無機、陽離子型和陰離子型等之分,大概情況如表所示。此外,按結構特徵來分,還有大孔型和凝膠型等。
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050107000541376.doc

㈢ 為什麼說離子交換色譜法是分離蛋白質的最佳方法

它是根據蛋白質的組成物質氨基酸的物理性質(基於氨基酸電荷行為)為分離基礎的方法。相對透析和超過濾及凝膠過濾來說,可以針對多種蛋白質中的某一種(前提是知道蛋白質的氨基酸組成及其離子交換樹脂的親和度及洗脫強度)進行分離。(而透析和超過濾還有凝膠過濾方法更大的取決於相對分子質量及其結構 分離出的單一蛋白質純度相對要低 並且凝膠過濾要求凝膠對要求組分不能有吸附作用 適用性較低 ) 相對鹽溶和鹽析來說,分離單一蛋白質的純度要高,且更好的保留其天然理化性(鹽溶要求蛋白質分子吸附某一鹽離子從而改變其溶解性 但有些蛋白質吸附某些鹽離子後其蛋白質構象及理化性會發生改變)。 相對有機溶劑分級分離法,更好的保留其天然理化性(有機溶劑分類法易造成蛋白質不可逆變形 且適用范圍窄) 相對凝膠電泳和等電聚焦來說 更易於實現大量制備分離 且不改變蛋白質結構和功能(電泳會影響蛋白質結構 且操作繁瑣 成本高) 相對親和層析來說 它更加易於實現且成本低廉效果也不錯(親和層析需要制備其配體並與載體交聯 因而制備難且成本較高)
PS: 最好的分離方法不是例子交換色譜法 而是高效液相色譜法 相對離子交換色譜來說有著更高的效率、更高的解析度和過柱速度

㈣ 在進行離子交換操作過程中,為什麼要控制流出液的流速,如太快,將會

保持液面下是防止表層樹脂乾燥,沒有交換效果還有水對樹脂的沖擊,造成樹脂浮游,還有會帶人空氣,造成氣穴,影響樹脂裝填規整,影響交換效果。

控制水的流量是保證水與樹脂能有充分的接觸時間完成交換,否則流量太快可能有部分水分子沒有充分作用,達不到交換效果,一般保證每小時5倍樹脂體積的流量比較合適。

溶液中待交換的離子與交換樹脂中的離子交換有一個過程:溶液中待交換的離子向樹脂顆粒表面遷移並通過樹脂表面的邊界水膜,進入樹脂內部的孔道與樹脂的離子交換,被交換下的離子再從樹脂孔道往外移動,穿孔樹脂膜到溶液中,這個交換過程是需要一定時間的。

如果待處理的液體流速太快,就有一部份離子來不及交換,造成泄漏,影響處理質量;如果速度太慢就會減小處理流量,降低處理效率.所以要控制液體流速。

(4)離子交換質量法擴展閱讀:

水溶液中的一些陽離子進入反離子層,而原來在反離子層中的陽離子進入水溶液,這種發生在反離子層與正常濃度處水溶液之間的同性離子交換被稱為離子交換作用。

離子交換主要發生在擴散層與正常水溶液之間,由於黏土顆粒表面通常帶的是負電荷,故離子交換以陽離子交換為主,故又稱為陽離子交換。離子交換嚴格服從當量定律,即進入反離子層的陽離子與被置換出反離子層的陽離子的當量相等。

㈤ 離子交換法有哪些優點

離子交換法是液相中的離子和固相中離子間所進行的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中

㈥ 什麼是離子交換過程,影響離子交換過程的因素有哪些

離子交換是藉助於固體離子交換劑中的離子與稀溶液中的離子進行交換,以達到提取或去除溶液中某些離子的目的.它是一種屬於傳質分離過程的單元操作.
離子交換法
一、前言
離子交換法(ion exchange process)是液相中的離子和固相中離子間所進行的的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中.
離子交換樹脂一般呈現多孔狀或顆粒狀,其大小約為0.1mm,其離子交換能力依其交換能力特徵可分:
1.
強酸型陽離子交換樹脂:主要含有強酸性的反應基如磺酸基(-SO3H),此離子交換樹脂可以交換所有的陽離子.
2.
弱酸型陽離子交換樹脂:具有較弱的反應基如羧基(-COOH基),此離子交換樹脂僅可交換弱鹼中的陽離子如Ca2+、Mg2+,對於強鹼中的離子如Ca2+、K+等無法進行交換.
3.
強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除.
4.
弱鹼型陰離子交換樹脂:具有較弱的反應基如氨基,僅能去除強酸中的陰離子如SO42-,Cl-或NO3-,對於HCO3-,CO32-或SiO42-則無法去除.
不論是離子交換樹脂或是沸石,都有其一定的可交換基濃度,稱為離子交換容量(ion exchange capacity).對陽離子交換樹脂而言,大約在200~500meq/100g.因為陽離子交換為一化學反應,故必須遵守質量平衡定律.離子交換樹脂的一般方程式可以表示如下:
全文請看:
離子交換的基本知識
為了除去水中離子態雜質,現在採用得最普遍的方法是離子交換.這種方法可以將水中離子態雜質清除得以較徹底,因而能製得很純的水.所以,在熱力發電廠鍋爐用水的制備工藝中,它是一個必要的步驟.
離子交換處理,必須用一種稱做離子交換劑的物質(簡稱交換劑)來進行.這種物質遇水時,可以將其本身所具有的某種離子和水中同符號的離子相互交換,離子交換劑的種類很多,有天然和人造、有機和無機、陽離子型和陰離子型等之分,大概情況如表所示.此外,按結構特徵來分,還有大孔型和凝膠型等.
全文請看:

㈦ 離子交換法有哪些優點

離子交換法用於凈化和富集金屬組分具有選擇性好、作業回收率高、作業內成本低、可以得到容質量較高的化學精礦等許多優點,還可以從浸出礦漿中直接提取目的組分,亦可將浸出作業和吸附作業合在一起進行。以提高浸出率和省去固液分離作業。

㈧ 陽離子交換質量作用方程

(一)陽離子吸附親合力

就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。

按各元素吸附親合力的排序如下:

水文地球化學基礎

上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。

值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。

(二)陽離子交換質量作用方程

按質量作用定律,陽離子交換反應可表示為:

水文地球化學基礎

式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。

以Na-Ca交換為例,其交換反應方程為:

水文地球化學基礎

(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。

在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。

Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。

上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。

摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下

水文地球化學基礎

式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。

按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:

水文地球化學基礎

式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。

以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:

水文地球化學基礎

式中,

稱為選擇系數,其他符號含義同前。選擇系數已為許多學者所應用。從理論上講,該方程(1.150式)提供了一個預測陽離子交換反應對地下水陽離子濃度影響的有效方法。

從理論上講,

基本上是一個常數,但隨水的離子強度的改變,稍有變化。它的數值的大小,能說明各種離子在競爭吸附中,優先吸附何種離子。如

說明B離子比A離子更易被吸附;反之,則相反。選擇系數方面的信息在文獻中已很普遍。就

來說,在(Mgx)/(Cax)和水中離子強度變化比較大的范圍內,

在0.6—0.9間,變化很小。

值的范圍說明,Ca2+比Mg2+更易被吸附。

在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。

例題1.8

在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。

假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數

計算步驟:

(1)求新的地下水進入該地段前的NCa和NMg

按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則

NCa=NMg=0.5

(2)求新的地下水剛進入該地段時,起始狀態的

按質量作用定律,Ca-Mg交換方程為:

水文地球化學基礎

交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。

設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。

把上述假設代入(1.151)式,則

水文地球化學基礎

因達到新的交換平衡時,

把它代入(1.152)式,經整理後,得:

水文地球化學基礎

因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:

水文地球化學基礎

把(1.154)式代入(1.153)式,得:

水文地球化學基礎

由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:

水文地球化學基礎

式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。

整理(1.156)式,得:

水文地球化學基礎

把(1.157)式代入(1.155)式,整理後得:

水文地球化學基礎

解方程(1.158),得:

Z=0.250046,即交換平衡後,Cax=0.250046mmol/g

那麼,Mgx=0.5-0.250046=0.249954mmol/L

按上述計算摩爾分數的方法,得:

NCa=0.50009,NMg=0.49991

把所算得的Z值代入(1.157),得:

x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L

那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L

上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。

上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。

(三)地下水系統中的Na-Ca交換

地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。

地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:

水文地球化學基礎

(2.159)反應最常用的質量作用方程是Gappn方程:

水文地球化學基礎

在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:

水文地球化學基礎

式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。

(1.161)式左邊項表示為:

水文地球化學基礎

式中的ESR稱為「交換性鈉比」。

(1.16l)式右邊項表示為:

水文地球化學基礎

式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:

水文地球化學基礎

(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。

表1.20Na-Ca交換的回歸方程

表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。

表1.21Na-Ca試驗中某些參數的變化〔2〕

表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;

(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。

表1.22SAR值不同的污水現場試驗結果〔2〕

註:硬度以CaCO3計(mg/L)。

(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。

SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。

閱讀全文

與離子交換質量法相關的資料

熱點內容
水凈化過濾器怎麼換濾芯 瀏覽:755
什麼水泵可以抽污水 瀏覽:232
超濾用什麼洗 瀏覽:300
汽油濾芯怎麼插 瀏覽:190
船舶生活污水取樣檢測 瀏覽:793
深圳長壽命RO膜廠家 瀏覽:946
長安褔特空調濾芯怎麼換 瀏覽:534
業主戶內污水反冒是物業責任嗎 瀏覽:583
怎麼投訴洗砂廠排放污水 瀏覽:350
琉璃瓦與樹脂瓦哪個好 瀏覽:610
排污水一晚上能排多少 瀏覽:490
四個介面的反滲透怎麼安裝 瀏覽:602
怎麼改變空氣凈化器的濾網 瀏覽:741
年產一萬噸純凈水機器多少錢 瀏覽:236
單缸四輪車液壓提升器 瀏覽:167
洗衣機過濾網 瀏覽:120
tds低有水垢 瀏覽:132
污水提升泵應急方案 瀏覽:455
漢斯頓13怎麼重置濾芯 瀏覽:331
超純水設備的出水標準是什麼 瀏覽:762