A. 離子交換膜
初中和高中學的是選擇透過性膜 也就是說只讓某個離子和水分子透過的膜
下面是離子交換膜的一些相關資料
離子交換膜
ion exchange membranes
一種含離子基團的、對溶液里的離子具有選擇透過能力的高分子膜。因一般在應用時主要是利用它的離子選擇透過性,所以也稱為離子選擇透過性膜。
按其功能和結構的不同,可分為陽離子交換膜、陰離子交換膜、兩性交換膜、鑲嵌離子交換膜、聚電解質復合膜5種。離子交換膜的構造和離子交換樹脂相同,但為膜的形式。
離子交換膜可製成均相膜和非均相膜兩類。採用高分子的加工成型方法製造。①均相膜。先用高分子材料如丁苯橡膠、纖維素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等製成膜,然後引入單體如苯乙烯、甲基丙烯酸甲酯等,在膜內聚合成高分子,再通過化學反應引入所需功能基。也可通過甲醛、苯酚等單體聚合製得。②非均相膜。用粒度為200~400目的離子交換樹脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合後加工成膜製得。為免失水乾燥而變脆破裂,須保存在水中。
離子交換膜主要應用於海水淡化,甘油、聚乙二醇的除鹽,放射性元素、同位素及氨基酸的分離,有機物及無機物純化,放射性廢液處理,燃料電池隔膜及選擇性電極等。
B. 離子交換膜
一種含離子基團的、對溶液里的離子具有選擇透過能力的高分子膜。因為一般在應用時主要是利用它的離子選擇透過性,所以也稱為離子選擇透過性膜。1950年W.朱達首先合成了離子交換膜。1956年首次成功地用於電滲析脫鹽工藝上。
離子交換膜是具有離子交換性能的、由高分子材料製成的薄膜(也有無機離子交換股,但其使用尚不普通)。它與離子交換樹脂相似,都是在高分子骨架上連接一個活性基團,但作用機理和方式、效果都有不同之處。當前市場上離子交換膜種類繁多,也沒有統一的分類方法。一般按膜的宏觀結構分為三大類:
1. 非均相離子交換膜 由粉末狀的離子交換樹脂加黏合劑混煉、拉片、加網熱壓而成。樹脂分散在黏合劑中,因而其化學結構是不均勻的。
2. 均相離子交換膜 均相離子交換膜系將活性基團引入一惰性支持物中製成。它沒有異相結構,本身是均勻的。其化學結構均勻,孔隙小,膜電阻小,不易滲漏,電化學性能優良,在生產中應用廣泛。但製作復雜,機械強度較低。
3. 半均相離子交換膜 也是將活性基團引入高分子支持物製成的。但兩者不形成化學結合,其性能介於均相離子交換膜和非均相離子交換膜之間。
此外,離子交換膜按功能及結構的不同,可分為陽離子交換膜、陰離子交換膜、兩性交換膜、鑲嵌離子交換膜、聚電解質復合物膜五種類型。離子交換膜的構造和離子交換樹脂相同,但為膜的形式。
C. 為什麼氯鹼工業中用陽離子交換膜 不用陰離子 不用交換膜不行
因為氯離子和氫氧根離子都是陰離子要向陽極運動,同種電荷排斥異種電荷吸引。不用交換膜分離物質困難
D. 下列說法不正確的是()A.離子交換膜在工業生產中廣泛應用,如氯鹼工業使用了陰離子交換膜B.人造纖
A.氯鹼工業使用了陽離子交換膜,鈉離子移向陰極,故A錯誤;
B.以天然纖維版素纖維(樹皮、紙漿權、廢棉紗)為原料熔融紡絲、紡紗製造的,都是人造纖維;以石油化工為原料製造的,都是合成纖維,故B正確;
C.原子利用率高,符合綠色化學原則,故C正確;
D.CO2的增加導致溫室效應,海水中溶解了CO2,酸度增大,珊瑚、貝殼類等生物的生存將會,故D正確.
故選A.
E. 膜分離技術的歷史與現狀
膜分離現象廣泛存在於自然界中,特別是生物體內,但人類對它的認識和研究卻經過了漫長而曲折的道路。膜分離技術的工程應用是從20世紀60年代海水淡化開始的-1960)年洛布和索里拉金教授製成了第一張高通量和高脫鹽率的醋酸纖紙素膜,這種膜具有推對稱結構,從此使反滲透從實驗室走向工業應用。其後各種新型膜陸續問世,1967年美國杜邦公司首先研製出以尼龍-66為膜材料的中空纖維膜組件;1970年又研製出以芳香聚醯胺為膜材料的「Pemiasep B-9」中空纖維膜組件,並獲得1971年美國柯克帕特里克化學工程最高獎。從此反滲透技術在美國得到迅猛的發展,隨後在世界各地相繼應用。其間微濾和超濾技術也得到相應的發展。
膜在大自然中,特別是在生物體內是廣泛存在的。我國膜科學技術的發展是從1958年研究離子交換膜開始的。60年代進入開創階段。1965年著手反滲透的探索,1967年開始的全國海水淡化會戰,大大促進了我國膜科技的發展。70年代進入開發階段。這時期,微濾、電滲析、反滲透和超濾等各種膜和組器件都相繼研究開發出來,80年代跨入了推廣應用階段。80年代又是氣體分離和其他新膜開發階段。 隨著我國膜科學技術的發展,相應的學術、技術團體也相繼成立。他們的成立為規范膜行業的標准,在促進膜行業的發展中起著舉足輕重的作用。半個世紀以來,膜分離完成了從實驗室到大規模工業應用的轉變,成為一項高效節能的新型分離技術。1925年以來,差不多每十年就有一項新的膜過程在工業上得到應用。
由於膜分離技術本身具有的優越性能,故膜過程已經得到世界各國的普遍重視。在能源緊張、資源短缺、生態環境惡化的今天,產業界和科技界把膜過程視為二十一世紀工業技術改造中的一項極為重要的新技術。曾有專家指出:誰掌握了膜技術誰就掌握了化學工業的明天。
80年代以來我國膜技術跨入應用階段,同時也是新膜過程的開發階段。在這一時期,膜技術在食品加工、海水淡化、純水、超純水制備、醫葯、生物、環保等領域得到了較大規模的開發和應用。並且,在這一時期,國家重點科技攻關項目和自然科學基金中也都有了膜的課題。
這一潛力巨大的新興行業正在以蓬勃的激情挑戰市場,為眾多的企業帶來了較為顯著的經濟效益、社會效益和環境效益。 除了以上四種常用的膜分離過程,另外還有滲析、控制釋放、膜感測器、膜法氣體分離、液膜分離法等。
F. 離子交換膜的材質是什麼最好舉例說明.
一種含離子基團的、對溶液里的離子具有選擇透過能力的高分子膜.因為一般在應用時主要是利用它的離子選擇透過性,所以也稱為離子選擇透過性膜.
制備方法
離子交換膜分均相膜和非均相膜兩類,它們可以採用高分子的加工成型方法製造.
①均相膜
先用高分子材料如丁苯橡膠、纖維素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等製成膜,然後引入單體如苯乙烯、甲基丙烯酸甲酯等,在膜內聚合成高分子,再通過化學反應,引入所需的功能基團.均相膜也可以通過單體如甲醛、苯酚、苯酚磺酸等直接聚合得到.
②非均相膜
用粒度為200~400目的離子交換樹脂和尋常成膜性高分子材料,如聚乙烯、聚氯乙烯、聚乙烯醇、氟橡膠等充分混合後加工成膜.無論是均相膜還是非均相膜,在空氣中都會失水乾燥而變脆或破裂,故必須保存在水中.
離子交換膜可裝配成電滲析器而用於苦鹹水的淡化和鹽溶液的濃縮.電滲析裝置的淡化程度可達一次蒸餾水純度.也可應用於甘油、聚乙二醇的除鹽,分離各種離子與放射性元素、同位素,分級分離氨基酸等.此外,在有機和無機化合物的純化、原子能工業中放射性廢液的處理與核燃料的制備,以及燃料電池隔膜與離子選擇性電極中,也都採用離子交換膜.離子交換膜在膜技術領域中佔有重要的地位,它對仿生膜研究也將起重要作用.
G. 離子交換膜的作用
離子交換膜可裝配成電滲析器而用於苦鹹水的淡化和鹽溶液的濃縮。電滲析裝置的淡化程度可達一次蒸餾水純度。也可應用於甘油、聚乙二醇的除鹽,分離各種離子與放射性元素、同位素,分級分離氨基酸等。此外,在有機和無機化合物的純化、原子能工業中放射性廢液的處理與核燃料的制備,以及燃料電池隔膜與離子選擇性電極中,也都採用離子交換膜。離子交換膜在膜技術領域中佔有重要的地位,它對仿生膜研究也將起重要作用。
H. 質子交換膜燃料電池的發展現狀
20世紀60年代,美國首先將PEMFC用於Gemini宇航飛行。伴隨著全氟磺酸型質子交換膜碳載鉑催化劑等關鍵材料的應用和發展,80年代,PEMFC的研究取得了突破性進展,電池的性能和壽命大幅提高,電池組的體積比功率和質量比功率分別達到1000W/L、700W/kg,超過了DOE和PNGV制定的電動車指標。90年代以來,基於質子交換膜燃料電池高速進步,各種以其為動力的電動汽車相繼問世,至今全球已有數百台以PEMFC為動力的汽車、潛艇、電站在國內外示範運行。表4-4-1列出了國內外開發的幾種燃料電池汽車的主要性能指標,性能完全可以與內燃機相媲美。
表4-4-1 國內外開發的幾種燃料電池汽車的主要性能指標 PowerMotor Power最高速度加速時間Climb里程燃料消耗ChaoYue350kW+15Ah65kW(max)122km/h 19(0~100) >20% 230km1.12kg/100kmFokus FCV 75kW 70kW(max) 128km/h 15(0~100) >20% 250km 1.76kg/100km Hydrogen 3 75kW 70kW(max) 140km/h 15(0~100) >20% 400km(liq. H2) 1.75kg/100km 由於質子交換膜燃料電池高效、環保等突出優點,引起了世界各發達國家和各大公司高度重視,並投巨資發展這一技術。美國政府將其列為對美國經濟發展和國家安全至為關鍵的27個關鍵技術領域之一;加拿大政府將燃料電池產業作為國家知識經濟的支柱產業之一加以發展;美國三大汽車公司(GM,Ford ,Chryster)、德國的Dajmier-Benz、日本的Toytomotor等汽車公司均投入巨資開發PEMFC汽車。
處於領先地位的加拿大Ballard公司已經開始出售商業化的各種功率系列的PEMFC裝置。
在我國有中國科學院大連化學物理研究所、清華大學、武漢理工大學、上海空間電源研究所、上海神力等很多單位在開展PEMFC的研究,並取得了長足進展,接近國外先進水平。就技術而言,千瓦級的PEMFC技術已基本成熟,阻礙其大規模商業化的主要原因是燃料電池的價格還遠遠沒有達到實際應用的要求,影響燃料電池成本的兩大因素是材料價格昂貴和組裝工藝沒有突破,例如使用貴金屬鉑作為催化劑;昂貴的質子交換膜及石墨雙極板加工成本等,導致PEMFC成本約為汽油、柴油發動機成本(50$/kW)的10~20倍。PEMFC要作為商品進入市場,必須大幅度降低成本,這有賴於燃料電池關鍵材料價格的降低和性能的進一步提高。