離子交換樹脂在長期工作過程中,經常會被原水中含有的各種雜質所污染,例如有機物,鐵,硅,懸浮物等,受不同污染物質污染後的樹脂,需要採用相應的解決辦法,有效的排除污染難題,恢復其性能。
羅門哈斯4000CL樹脂硅污染的處理方法
硅化合物污染發生在強鹼陰離子交換器中,尤其是在強、弱型陰樹脂聯合應用的設備和系統中,其結果往往導致陰交換器的除硅效率下降。
發生這種污染的原因是再生不充分,或樹脂失效後沒有及時再生。處理方法,可用稀的溫鹼液浸泡溶解。鹼液濃度為2%,溫度約40度。污染嚴重時,可使用加溫的4%氫氧化鈉溶液循環清洗。
羅門哈斯4000CL樹脂受有機物污染的處理方法
苯乙烯系強鹼性陰樹脂易受有機物污染,其征狀為:(1)樹脂顏色變深;(2)工作交換容量下降;(3)出水電導率增大;(4)出水pH值降低;(5)出水二氧化硅含量增大;(6)清洗水量增加。
防止有機物污染的基本措施是在預處理中將水中有機物盡量除去,並採用抗污染樹脂,如大孔弱鹼陰樹脂,丙烯酸系陰樹脂對抗有機物污染很有效。
常用復甦方法為鹼性鹽法。即用10%NaCl+4-6%NaOH混合液,用量為3個床體積,以緩慢的流速通過樹脂層,當第2個床體積通過入後,浸泡樹脂8小時或放置過夜,再通入第3床體積混合液。混合液需加溫至40-50度。若在混合液中加1%左右磷酸鈉或硝酸鈉,或結合壓縮空氣攪拌樹脂層,則效果更佳。
當用鹼性鹽法效果不佳時,可以考慮用次氯酸鈉溶液清洗。此時,在陰單床或混床系統,先用至少一個床體積的10%NaCl溶液通過樹脂層,使樹脂徹底失效。次氯酸鈉溶液濃度為有效氯含量1%,用量為3個樹脂床體積。第2個床體積溶液在樹脂床內浸泡4小時,溶液不用加熱。最後,微量的次氯酸鈉必須淋洗(沖洗)干凈,包括下水道中的廢液。
羅門哈斯分離樹脂鐵污染的處理方法
陽樹脂中的鐵主要來源於原水中的鐵離子,特別是鐵鹽作為混凝劑時。陰樹脂中的鐵主要來源於再生液。被鐵污染的樹脂顏色變深,交換容量降低,並會加速陰樹脂有降解。
清除鐵化合物的方法,通常是用加抑制劑的高濃度鹽酸(10-15%)浸泡樹脂5-12小時,甚至更長。也可用檸檬酸、氨基三乙酸、EDTA等絡合物進行處理。
B. 離子交換樹脂污染有哪些
廢樹脂污染
再生過程產生污染
C. 什麼是高價陽離子污染如何處理及預防
強酸性陽離子交換樹脂高價陽離子污染主要是由高價陽離子通過交換占據交換基團或產生沉澱堵塞一部分交換基團引起的。同時,重金屬離子對氧化劑氧化陽離子交換樹脂能起到催化作用,加速樹脂的污染變質。
處理措施:(1)鐵污染後的強酸性陽離子交換樹脂可以使用10%、20%或更濃的28-35%的鹽酸進行清洗;(2)樹脂顆粒表面的鐵化合物可以用4%Na2SO3溶液浸泡4-12h,也可以配合EDTA、三乙酸銨、草酸、檸檬酸和酒石酸等絡合劑進行綜合處理;也有採用0.08%Na2SO3、4%NaCl、4%HCl混合液處理的;(3)當發生Al3+污染嚴重時,鹽酸清洗不一定有效,可以考慮先用Fe3+交換出Al3+,再進行處理。
預防措施:(1)當水的預處理採用鋁鹽或三氯化鐵作為混凝劑時,在保證澄清池出水水質的情況下,盡可能降低鋁鹽和三氯化鐵的用量;(2)加強設備的防腐處理,防止鐵等腐蝕產物污染樹脂。
D. 離子交換器廢液是怎麼回事
離子交換復器是周期性工作的製取制設備,當離子交換器體內的工作載體,吸附溶液中陰或陽離子飽和時,就必須啟動離子交換器再生程序,對設備體內載體進行再生還原,目的是將交換器體內載體(離子交換樹脂)中,飽和的陰離子或陽離子物質置換出來(置換出來的物質就是你所講的廢液),當設備在再生工作過程中,廢液完全排出交換器體外後,交換器體內載體(離子交換樹脂)自然恢復了正常製取工作…。一傑華粼
E. 強酸性陽離子交換樹脂蒸汽吹掃為什麼會有刺激性氣味
強酸性陽離子交換樹脂曾吹少,為什麼會有刺激味道?它們在空氣中交流,往事會產生一種刺激性的味道,刺鼻而且有毒
F. 離子交換樹脂受污染的原因有哪些
離子交換在運行過程中,如果發現顏色變深;樹脂交換容量不斷地下降;清洗水不斷地增加;出水水質變差;周期性制水容量不斷地下降等現象,可以認為樹脂受到污染。污染的原因主要有:
(1).有機物引起的污染 有機物質在水中往往帶有負電,成為
陰離子交換樹脂
污染的主要物質.有機物主要存在於天然水中的腐殖酸,膠團性的有機雜質,相對分子質量從500到5000的高分子化合物以及多元有機羚酸等,這些物質吸附在樹脂上,有的占據或者結合了樹脂上的活性基團,有的使樹脂的強鹼活性基團鹼性降低而降解,使樹脂降低了 離子交換能力。這類污染從COD的監測中可以檢出。
(2).油脂引起的污染水中往往含有油類物類物質,形成膜狀物,堵塞或包裹了樹脂的微孔中的活性基團進行離子交抽象.
(3).懸浮物引起的污染水中懸浮物質,緊裹著樹脂表面的液膜層,從而隔斷了樹脂的離子交換過程,使樹脂受到污染,這種污染以
陽離子交換樹脂
為多。
(4).膠體物質引起的污染 水中膠體顆粒常帶負離子,使陰離子交換樹脂受到污染,膠體物質中以膠體硅對樹脂的危害最大,它吸附並在樹脂的表面上聚合,阻止樹脂進行離子交換.
(5).高價金屬離子引起的污染 原水中的高價金屬離子(如混凝劑中高價金屬離子的後移等),如A13+、Fe3+等壙散進入陽離子交換樹脂的內部,同於這些高價金屬離子的交換勢能高,與樹脂中的固定離子-SO32-牢固結合形成AL(SO3)3、Fe(SO3)3等,從而使用這部分的固定離子失去作用,喪失了離了子交換能力。
(6).再生劑不純引起的污染 離子交換樹脂的再生劑不純往往混有許多雜質,龍其是燒鹼(NaOH)中的雜質甚多,如Fe3+純、NaCl、Na2CO3等,對陰離子交換樹脂的污染最為嚴重。
此外,細菌,藻類以及水中含氮,氨基酸之類物質等也會不同程度地使樹脂受到污染。
G. 離子交換樹脂受污染的因素有哪些
離子交換樹脂會受到哪些污染?
離子交換樹脂在使用中常見污染類型主要有這幾種:
有機物引起的污染、油脂引起的污染、懸浮物引起的污染、膠體物質引起的污染、高價金屬離子引起的污染、再生劑不純引起的污染。
離子交換樹脂的污染有什麼原因?
1.有機物引起的污染
有機物污染的主要原因是由生物肢體腐爛後產生的富里酸、腐殖酸和單寧酸等帶負電基團的線性大分子,與離子樹脂發生交換反應。有機物污染的主要現象是離子交換樹脂顏色變深,正洗水量逐漸增大,運行時電導率增大,pH值降低。
2.油脂引起的污染
油脂污染發生的主要原因是由於潤滑油等脂類物質存在於原水中,同時,由於水處理系統設備不嚴密滲入了一些油脂,導致離子交換樹脂發生污染。油脂污染的主要現象是離子交換樹脂顏色發黑,交換容量下降,並且使樹脂粘接在一起,樹脂層水流不均勻,產生偏流致使出水水質變差。
3.膠體物質引起的污染
水中膠體顆粒常帶負離子,使陰樹脂受到污染,膠體物質中以膠體硅對樹脂的危害最大,它吸附並在漂萊特陰陽離子交換樹脂的表面上聚合,阻止樹脂進行離子交換。
4.高價金屬離子引起的污染
高價金屬離子引起的污染的原因是水源含鐵,進水管道或交換器被腐蝕產生鐵化物,再生劑中含有鐵雜質等。污染一般有兩種形式,一種是以膠態或懸浮鐵化物形式進入交換器另一種是以亞鐵離子進入交換器。高價金屬離子污染的主要現象是離子交換樹脂從外觀上看,顏色明顯變深,甚至呈黑色。
5.再生劑不純引起的污染
離子交換樹脂的再生劑不純往往混有許多雜質,龍其是燒鹼(NaOH)中的雜質甚多,如Fe3+純、NaCl、Na2CO3等,特別強調再生液中含有Fe,0:、NaCl02時,會生成高價鐵酸鹽,對離子交換樹脂的污染最為嚴重。
如何判斷離子交換樹脂受到了污染?
離子交換在運行過程中,如果發現顏色變深,樹脂交換容量不斷地下降,清洗水不斷地增加,出水水質變差,周期性制水容量不斷地下降等現象,可以認為離子交換樹脂受到了污染。
H. 影響陽離子交換能力的因素有哪些
土壤溶液來中的陽離子進行交自換,稱為陽離子的交換作用。影響因素有——(1)陽離子的代換能力隨離子價數的增加而增大,因為高價陽離子的電荷量大、電性強所以代換能力也大,各種陽離子代換力的大小順序:Na+<K+<NH4+<Mg2+<Ca2+<H+<Al3+<Fe3+(2)等價離子代換能力的大小,隨原子序數的增加而增大(3)離子運動速度愈大,交換力愈強(4)陽離子的相對濃度及交換生成物的性質。
影響土壤陽離子交換量的因素有:陽離子交換量:每千克干土中所含的全部陽離子總量,以厘摩爾(+)每千克土或 c mol(+)kg的-1次冪表示。影響因素——(1)膠體的種類,有機膠體>無機膠體,有機質高的>有機質低的,次生鋁硅酸鹽(2:1>1:1)>次生氧化物(2)溶液的pH值(3)土壤質地,質地愈細交換量愈高。
I. 陽離子交換作用 對土壤污染有何影響
陽離子交換使土壤比較重要的性質之一,使土壤本身的特有屬性,主要原因就是土壤膠體的負電特性,其電荷分為可變電荷和固定電荷,當pH較低時(到達等電點時),整個性質就會發生變化.陽離子交換,顧名思義,負電荷的土壤膠體表面吸附有一些可交換態的陽離子如K、Mg、Ca等,當污染物特別是重金屬類物質與土壤接觸時,由於其於土壤膠體表面基團具有更強的結合能力,從而取代部分正電性基團,但是陽離子交換過程並不穩定,屬於靜電作用,因此自身並不穩定,如上述內容所說,易受pH影響,低pH條件下容易被淋洗.同時由於其具有很強的水溶性,因此生物有效性較高,容易被動植物吸收而貯藏在體內,是土壤化學反應較為活躍的一部分,受土壤環境影響較大.
吸附作用是一種泛稱,涉及內容較多,分配、離子交換、絡合等都包括在內,以有機質吸附為例,土壤環境中存在很多的有機污染物如農葯(有機氯、有機磷)、PAH、PCBs等,通過分配作用,這些污染物易與土壤中的腐殖質、植物殘體、黑炭等結合,這一過程既可以促進有機污染物的分解,也可以抑制該過程.例如一些污染物進入當碳粒內部,從而抑制微生物的降解,也就限制了污染物的降解,但是也有一部分可能絡合在碳顆粒表面,碳粒表層有較大的比表面積,提供了大量的微生物附著位點,為其降解提供了條件,本身也可以當做電子受體.
這一問題應因具體環境而異,因污染物性質變化而異,環境是復雜的體系,具體結果如何完全看如何讀復雜過程進行解讀,現在很多過程還是無法解釋清楚的,我們目前位置更多的是控制條件,找出影響因素,因此並不是雖有條件都適用的.