導航:首頁 > 凈水問答 > 反滲透膜通量和截留率研究

反滲透膜通量和截留率研究

發布時間:2021-11-02 05:04:21

㈠ 膜技術的膜分離

膜是一種起分子級分離過濾作用的介質,當溶液或混和氣體與膜接觸時,在壓力下,或電場作用下,或溫差作用下,某些物質可以透過膜,而另些物質則被選擇性的攔截,從而使溶液中不同組分,或混和氣體的不同組分被分離,它與傳統過濾的不同在於,膜可以在分子范圍內進行分離,並且這過程是一種物理過程,不需發生相的變化和添加助劑。膜的孔徑一般為微米級,依據其孔徑的不同(或稱為截留分子量),可將膜分為微濾膜、超濾膜、納濾膜和反滲透膜,根據材料的不同,可分為無機膜和有機膜,無機膜主要是陶瓷膜和金屬膜,其過濾精度較低,選擇性較小。有機膜是由高分子材料做成的,如醋酸纖維素、芳香族聚醯胺、聚醚碸、聚氟聚合物等等。錯流膜工藝中各種膜的分離與截留性能以膜的孔徑和截留分子量來加以區別,下圖簡單示意了四種不同的膜分離過程:(箭頭反射表示該物質無法透過膜而被截留): 微濾(MF) 又稱微孔過濾,它屬於精密過濾,其基本原理是篩孔分離過程。微濾膜的材質分為有機和無機兩大類,有機聚合物有醋酸纖維素、聚丙烯、聚碳酸酯、聚碸、聚醯胺等。無機膜材料有陶瓷和金屬等。鑒於微孔濾膜的分離特徵,微孔濾膜的應用范圍主要是從氣相和液相中截留微粒、細菌以及其他污染物,以達到凈化、分離、濃縮的目的。
對於微濾而言,膜的截留特性是以膜的孔徑來表徵,通常孔徑范圍在0.1~1微米,故微濾膜能對大直徑的菌體、懸浮固體等進行分離。可作為一般料液的澄清、保安過濾、空氣除菌。 超濾(UF) 是介於微濾和納濾之間的一種膜過程,膜孔徑在0.05μm至1000μm之間。超濾是一種能夠將溶液進行凈化、分離、濃縮的膜分離技術,超濾過程通常可以理解成與膜孔徑大小相關的篩分過程。以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當水流過膜表面時,只允許水及比膜孔徑小的小分子物質通過,達到溶液的凈化、分離、濃縮的目的。
對於超濾而言,膜的截留特性是以對標准有機物的截留分子量來表徵,通常截留分子量范圍在1000~300000,故超濾膜能對大分子有機物(如蛋白質、細菌)、膠體、懸浮固體等進行分離,廣泛應用於料液的澄清、大分子有機物的分離純化、除熱源。
既可除去水中病菌、病毒、熱源、膠體、COD等有害物質,又可透析對人體有益的無機鹽,已廣泛應用於牛奶脫脂、果汁濃縮、黃酒純化、白酒陳化、啤酒除菌、味精提純 、蔗糠脫色、氨基酸濃縮、醬油除菌等生產中,而且還廣泛應用於醫療針劑水、輸液水、洗瓶水、外科手術洗潔水的制備。因其克服了蒸餾水中含有細菌屍體的缺點,且具有生物活性,所以更有利於病人恢復健康而備受醫學界推崇。
富氧膜以其分離氣體的特殊功能,產生富氧空氣,目前廣泛應用於醫院、養魚場、工業發酵與氧化等場所,尤其在高山缺氧地區特別需要。 膜技術正在把我們的生活帶入一個更新的時代。 濃縮提純技術---納濾膜技術。納濾(NF) 是介於超濾與反滲透之間的一種膜分離技術, 其截留分子量在80~1000的范圍內,孔徑為幾納米,因此稱納濾。基於納濾分離技術的優越特性,其在制葯、生物化工、 食品工業等諸多領域顯示出廣闊的應用前景。
對於納濾而言,膜的截留特性是以對標准NaCl、MgSO4、CaCl2溶液的截留率來表徵,通常截留率范圍在60~90%,相應截留分子量范圍在100~1000,故納濾膜能對小分子有機物等與水、無機鹽進行分離,實現脫鹽與濃縮的同時進行。
濃縮提純工藝上主要採用截留分子量在100~1000Dal的納濾膜。納濾膜對二價離子,功能性糖類,小分子色素,多肽,頭孢菌素等物質的截留性高於98%,而對一些單價離子,小分子酸鹼,醇等有30-50%的透過性能,常用於溶質的分級,溶液中低分子物質的洗脫和離子組分的調整,溶液體系的濃縮等流體物質的分離、精製、濃縮、脫鹽等工藝過程中。比如結晶母液的回收,樹脂解析液的濃縮,熱敏性物質的濃縮純化等。
納濾膜分離技術常被用於取代傳統的冷凍乾燥、薄膜蒸發、離子交換除鹽、樹脂工藝濃縮、中和等工藝過程。
濃縮提出技術可採用的膜組件主要有:卷式膜,管式膜,中空纖維膜。
採用納濾膜分離技術濃縮提純的優點:
1. 濃縮純化過程在常溫下進行,無相變,無化學反應,不帶入其他雜質及造成產品的分解變性,特別適合於熱敏性物質。
2. 可脫除產品的鹽分,減少產品灰分,提高產品純度,相對於溶劑脫鹽,不僅產品品質更好,且收率還能有所提高。
3. 工藝過程收率高,損失少4. 可回收溶液中的酸,鹼,醇等有效物質,實現資源的循環利用
5. 設備結構簡介緊湊,佔地面積小,能耗低
6. 操作簡便,可實現自動化作業,穩定性好,維護方便。 反滲透(RO) 是利用反滲透膜只能透過溶劑(通常是水)而截留離子物質或小分子物質的選擇透過性,以膜兩側靜壓為推動力,而實現的對液體混合物分離的膜過程。反滲透是膜分離技術的一個重要組成部分,因具有產水水質高、運行成本低、無污染、操作方便運行可靠等諸多優點 ,而成為海水和苦鹹水淡化,以及純水制備的最節能、最簡便的技術.目前已廣泛應用於醫葯、電子、化工、食品、海水淡化等諸多行業。反滲透技術已成為現代工業中首選的水處理技術。
反滲透的截留對象是所有的離子,僅讓水透過膜,對NaCl的截留率在98%以上,出水為無離子水。反滲透法能夠去除可溶性的金屬鹽、有機物、細菌、膠體粒子、發熱物質,也即能截留所有的離子,在生產純凈水、軟化水、無離子水、產品濃縮、廢水處理方面反滲透膜已經應用廣泛。 基本流程
由於膜分離過程是一種純物理過程,具有無相變化,節能、體積小、可拆分等特點,使膜廣泛應用在發酵、制葯、植物提取、化工、水處理工藝過程及環保行業中。對不同組成的有機物,根據有機物的分子量,選擇不同的膜,選擇合適的膜工藝,從而達到最好的膜通量和截留率,進而提高生產收率、減少投資規模和運行成本。

㈡ 哪些因素對反滲透膜通量有影響

反滲透膜的產水量和脫除率是膜元件使用過程中的關鍵參數,反滲透膜產水量和脫除率回主要是受壓力、溫答度、回收率、進水含鹽量和pH值影響。脫鹽率:通過反滲透膜從系統進水中除去總可溶性的雜質濃度的百分率。回收率:指膜系統中給水轉化成為產水或透過液的百分率。
1.壓力的影響
反滲透膜在使用中需要對膜一側的水施加一定的壓力,理論上對反滲透膜施加的壓力越大產水量越高,增加進水壓力也增加了脫鹽率。但是反滲透膜的產水量和脫鹽率都有一定的上當壓力超過一定的壓力值,產水量不再增加。
2.溫度的影響
反滲透膜產水電導對進水溫度的變化非常敏感,隨著水溫的增加,水通量幾乎線性地增大,這主要歸功於透過反滲透膜的水分子的粘度下降、擴散能力增加。增加水溫會導致脫鹽率降低或透鹽率增加。膜元件能夠承受高溫的能力增加了其操作范圍,這對清洗操作也很重要
3.鹽濃度的影響
如果壓力保持恆定,含鹽量越高,通量就越低,滲透壓的增加抵消了進水推動力,導致產水量降低
4.pH值的影響
反滲透膜脫鹽率特性取決於pH值,水通量也會受到影響,在特定的pH范圍內反滲透膜的水通量和脫鹽率相當穩定。

㈢ 影響中空纖維膜水通量和截留率的因素

抗污性、膜材質、微觀表面光滑度、光潔度等

㈣ 膜分離技術是什麼變化

物理
膜分離技術是指在分子水平上不同粒徑分子的混合物在通過半透膜時,實現選擇性分離的技術,半透膜又稱分離膜或濾膜,膜壁布滿小孔,根據孔徑大小可以分為:微濾膜(MF)、超濾膜(UF)、納濾膜(NF)、反滲透膜(RO)等,膜分離都採用錯流過濾方式。
根據前瞻產業研究院《中國膜產業市場調研與投資戰略規劃分析報告》最新的監測數據顯示,近十幾年來,中國膜產業高速增長,總產值從1994年2億元上升到2008年200億元(膜行業總產值是指膜製品、膜組件、膜附屬設備及相關工程的總值,膜製品與膜組件是整個行業的核心);2009年、2010年中國膜產業產值分別為230億元和300億元左右,同比增長率達到30%。2011年,我國膜產業產值更是達400億元。
中國膜產業已經進入一個快速成長期,超濾、微濾、反滲透等膜技術在能源電力、有色冶金、海水淡化、給水處理、污水回用及醫葯食品等領域的工程應用規模迅速擴大,多個具有標志性意義的大型膜法給水工程、污水回用工程及海水淡化工程已經相繼建成。
前瞻產業研究院發布的《2014-2018年中國膜產業市場前瞻與投資戰略規劃分析報告》顯示,「十二五」期間,我國膜產業預計將保持20%-25%的年增長率,到2015年,我國膜產業產值將達到852億元左右。
膜分離的基本工藝原理是較為簡單的。在過濾過程中料液通過泵的加壓,料液以一定流速沿著濾膜的表面流過,大於膜截留分子量的物質分子不透過膜流回料罐,小於膜截留分子量的物質或分子透過膜,形成透析液。故膜系統都有兩個出口,一是迴流液(濃縮液)出口,另一是透析液出口。在單位時間(Hr)單位膜面積(m2)透析液流出的量(L)稱為膜通量(LMH),即過濾速度。影響膜通量的因素有:溫度、壓力、固含量(TDS)、離子濃度、黏度等。
由於膜分離過程是一種純物理過程,具有無相變化,節能、體積小、可拆分等特點,使膜廣泛應用在發酵、制葯、植物提取、化工、水處理工藝過程及環保行業中。對不同組成的有機物,根據有機物的分子量,選擇不同的膜,選擇合適的膜工藝,從而達到最好的膜通量和截留率,進而提高生產收率、減少投資規模和運行成本。

㈤ 膜分離實驗截留率及液通量隨壓力的變化趨勢

通量與壓力成正比關系,壓力越大,通量越大。

截留率是隨著通量增大變化的,在回最佳操作壓力的答左邊,截留率隨著通量的增大而增大,但是當壓力大於最佳操作壓力後,截留率隨著通量的增大而減小。通常我們認為他是一個正拋物線。

㈥ 膜通量定義

膜通量(或稱透過速率)是膜分離過程的一個重要工藝運行參數,是指單位時間內通過單位膜面積上的流體量,一般以m3/(m2*s)或L/(m2*h)表示(或以m/s表示)。
膜通量由外加推動力和膜的阻力共同決定,其中膜本身的性質起決定性作用。

㈦ 反滲透過濾器對規定分子量物質的截留率有行業標准嗎,是多少

大分子截留率在90%左右
小分子截留率在50%左右

㈧ 誰能幫我介紹一下p-膜(物理)拜託各位了 3Q

納濾膜分離技術在飲用水制備方面具有獨特的作用,是制備優質飲用水的有效方法.依據電荷效應,納濾膜可以降低水質硬度,去除飲用水中對人體有害的硝酸鹽、砷、氟化物和重金屬等無機污染物;依據篩分效應,納濾膜可以有效地去除農葯殘留物、三氯甲烷及其中間體、激素以及天然有機物等有機污染物.文章詳細綜述了國內外納濾膜技術在飲用水制備中應用研究的最新進展,納濾膜對地表水或地下水中存在的各種無機、有機污染物的分離特性及飲用水制備過程中的納濾膜污染與防治對策. 膜分離技術處理電鍍廢水的實驗研究 慧聰網 2005年9月20日10時17分 信息來源:夏俊方 網友評論 0 條 進入論壇 由圖9可知,當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)的增加而上升;當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)增加而呈下降趨勢。這一現象的原因和納濾過程相似。當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)的正向變化趨勢可和納濾過程作同樣的解釋。當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)的反向變化趨勢。這可能是由於壓力已經達到反滲透膜最佳運行壓力范圍的上限。此時,膜攔截溶質的能力已大為減弱,溶質開始大量透過膜片,導致其截留率呈下降趨勢。 由圖10可知,COD截留率(R2)隨著壓力(ΔP)的增加而上升。和Cu離子的上升變化趨勢的原因一樣,非平衡熱力學模型的Spiegler-Kedem方程能很好的解釋這一現象。 有一個問題:Cu離子的截留率(R1)和COD的截留率(R2)變化曲線不同,COD曲線沒有下降趨勢。這可能是由於反滲透膜對COD分子和Cu離子的截留能力有所差異。當運行壓力(ΔP)大於3.0 MPa時,膜對Cu離子的截留能力已經下降了很多,而對COD分子的截留能力下降不大。但可以發現,COD曲線隨著壓力的增加,已逐漸趨於平緩,這說明膜對COD的截留能力也在下降。 壓力實驗表明:SE抗污染反滲透膜的最佳運行壓力為3.0 MPa。 3.2.2濃縮倍數(n)對反滲透膜分離性能的影響 反滲透實驗採用3.0 MPa的壓力運行。反滲透濃縮實驗料液為納濾過程濃縮10倍的濃縮液,體積50L。 反滲透濃縮試驗採用濃水迴流方式,即濃水迴流入料液桶。濃縮倍數是按照料液桶內剩餘料液的體積與原始料液的體積比來確定。例如,料液桶內還剩下1/10料液時,即為濃縮10倍,取樣測試。 濃縮倍數對反滲透膜分離性能的影響曲線如圖11、12、13所示。 由圖11可知,膜通量(Jw)隨著料液濃度(C)增加而降低。這一現象和納濾過程一樣,也可以根據優先吸附——毛細孔流模型來解釋。 由圖12可知,在濃縮兩倍之前,Cu離子截留率(R1)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象可根據細孔理論來解釋。細孔理論的依據有兩點:其一是膜截留溶質分子主要考慮篩分作用的機理;其二是視溶質分子為剛性球。反滲透過程截留溶質(中性分子和電解質)主要是依靠篩分機理,因此可以用細孔理論來解釋。細孔理論表明:膜對溶質溶液的截留率在一定濃度范圍內隨溶液濃度的變化不大,可視為不變。在本實驗中,濃縮兩倍的濃度可能還未超出細孔理論所限定的范圍,溶質濃度雖然增加,但還不能大量通過膜片,因此溶質的透過量變化不是很大。而同時,膜通量(Jw)在下降,但下降趨勢不是很大。綜合溶質透過量和膜通量兩方面的因素,Cu離子的截留率呈略微上升的趨勢。濃縮2倍以後,該濃度值可能已經超過細孔理論所限定的范圍,溶質濃度的進一步增加導致其透過膜片的量開始逐步增加,因而Cu的截留率(R1)會呈下降趨勢。 由圖13可知,在濃縮6倍之前,COD離子截留率(R2)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象的原因和Cu離子截留率變化的原因一樣。反滲透膜截留COD分子和Cu離子所依據的都是篩分原理,導致COD截留率在濃縮6倍時出現下降趨勢,可能是6倍濃度是超過細孔理論所限定范圍的臨界點。 表2 反滲透濃縮分離實驗數據表 項目濃度濃縮倍數 滲透液(mg/L) 濃縮液(mg/L) 截留率 膜通量(L/min) Cu離子 COD Cu離子 COD Cu離子 COD 初始4.07 343 1478 2430 99.72% 85.88% 0.393 2倍 6.06 552 2950 4375 99.79% 87.38% 0.346 4倍 17.17 923 5889 8010 99.71% 88.48% 0.224 6倍 47.78 1200 9183 11920 99.48% 90.16% 0.133 8倍 121.49 4160 12216 15000 99.01% 72.27% 0.036 10 倍 220.45 5510 14325 17020 98.46% 67.63% 0.021 6.反滲透濃縮的實驗結果 反滲透濃縮實驗的目的是希望能夠盡可能的濃縮料液,本次實驗是在納濾濃縮的基礎上將料液再濃縮10倍,實驗數據如表2所示。 由表2可以知道,在初始狀態時,料液Cu離子濃度為1478mg/L,滲透液濃度為4.07mg/L;料液濃縮10倍後,其濃度達到14625mg/L,透過液濃度為220.45mg/L。 在初始狀態時,料液COD值為2430mg/L,滲透液濃度為343mg/L;濃縮10倍後,濃縮液COD為17020mg/L,滲透液濃度為5510mg/L。 4. 結論 通過實驗室規模的實驗,研究了不同壓力(ΔP)和濃縮倍數(n)條件下,納濾膜和反滲透膜的分離性能,得到如下結論: 1.在ΔP=1.5 MPa條件下進行濃縮,納濾膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。納濾膜對Cu離子的截留率在96%以上,對COD的截留率在57%以上。隨著濃度的增加,納濾膜的截留率會降低。 2.在ΔP=3.0 MPa條件下進行濃縮,反滲透膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。反滲透膜對Cu離子的截留率在98%以上,對COD的截留率在67%以上。隨著濃度的增加,反滲透膜的截留率會降低。 3.本實驗在濃縮過程中,沒有調整料液pH值。原因是pH值對膜分離性能確有影響,但在實際工程中調整pH值需要增加設備投資和運行費用。綜合權衡效果和投資這兩方面的影響,實際工程中一般不會調節對廢水pH值後再進行膜分離處理。 4.和反滲透階段相比,納濾階段的透過液濃度不是太高。因此,納濾階段的濃縮倍數應該還可以提高。

採納哦

㈨ 反滲透膜的截留率怎麼算

進水電導率減去出水電導率在除以進水電導率

閱讀全文

與反滲透膜通量和截留率研究相關的資料

熱點內容
vue2內置過濾器 瀏覽:386
植物芳香油蒸餾設備 瀏覽:418
聚醚楓超濾膜進水pH 瀏覽:907
外置過濾桶推薦 瀏覽:676
75g反滲透 瀏覽:347
純水機桶怎麼裝 瀏覽:524
車子怎麼換空氣濾芯 瀏覽:959
凈化器排污怎麼接 瀏覽:66
浴室鏡子除垢 瀏覽:840
樹脂膠抽料泵 瀏覽:383
海德能ro膜是哪國的 瀏覽:256
工業純水處理設備怎麼選 瀏覽:253
自己在家沒酒麴怎麼釀蒸餾酒 瀏覽:948
馬桶上面的黃水垢尿垢怎麼清理 瀏覽:405
大話2回血鬼用極品靈寶 瀏覽:584
甲醛釋放量蒸餾萃取法 瀏覽:559
新柴490bpg怎麼拆機油濾芯 瀏覽:837
純水的汽點是多少 瀏覽:724
生活污水廠的污泥的有效管理 瀏覽:459
樂東污水處理公司 瀏覽:579