Ⅰ 誰能告訴我一下反向液相色譜的工作原理嗎它與正向的有什麼區別嗎
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離。
Ⅱ 四大色譜原理是什麼
色譜法分類
按兩相的物理狀態可分為:氣相色譜法(GC)和液相色譜法(LC)。氣相色譜法適用於分離揮發性化合物。GC根據固定相不同又可分為氣固色譜法(GSC)和氣液色譜法(GLC),其中以GLC應用最廣。液相色譜法適用於分離低揮發性或非揮發性、熱穩定性差的物質。LC同樣可分為液固色譜法(LSC)和液液色譜法(LLC)。此外還有超臨界流體色譜法(SFC),它以超臨界流體(界於氣體和液體之間的一種物相)為流動相(常用CO2),因其擴散系數大,能很快達到平衡,故分析時間短,特別適用於手性化合物的拆分。
按原理分為吸附色譜法(AC)、分配色譜法(DC)、離子交換色譜法(IEC)、排阻色譜法(EC,又稱分子篩、凝膠過濾(GFC)、凝膠滲透色譜法(GPC)和親和色譜法,此外還有電泳。按操作形式可分為紙色譜法(PC)、薄層色譜法(TLC)、柱色譜法。四、色譜分離原理
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法
使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法
使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法
採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法
一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法
固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法
又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10
mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法
固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
Ⅲ 離子交換色譜產生的信號值是什麼
離子交換來色譜中的固源定相是一些帶電荷的基團, 這些帶電基團通過靜電相互作用與帶相反電荷的離子結合。如果流動相中存在其他帶相反電荷的離子,按照質量作用定律,這些離子將與結合在固定相上的反離子進行交換。固定相基團帶正電荷的時候,其可交換離子為陰離子。這種離子交換劑為陰離子交換劑;固定相的帶電基團帶負電荷,可用來與流動相交換的離子就是陽離子,這種離子交換劑叫做陽離子交換劑。陰離子交換柱的功能團主要是-NH2,及-NH3 :陽離子交換劑的功能團主要是-SO3H及-COOH。其中-NH3 離子交換柱及-SO3H離子交換劑屬於強離子交換劑,它們在很廣泛的pH范圍內都有離子交換能力;-NH2及-COOH 離子交換柱屬於弱離子交換劑,只有在一定的pH值范圍內,才能有離子交換能力。離子交換色譜主要用於可電離化合物的分離,例如,氨基酸自動分析儀中的色譜柱,多肽的分離、蛋白質的分離,核苷酸、核苷和各種鹼基的分離等。
Ⅳ 離子交換色譜法的流動相
離子交換色譜的流動相最常使用水緩沖溶液,有時也使用有機溶劑如甲醇,或內乙醇同容水緩沖溶液混合使用,以提供特殊的選擇性,並改善樣品的溶解度。
離子交換色譜所用的緩沖液,通常用下列化合物配製:鈉、鉀、鋇的檸檬酸鹽,磷酸鹽,甲酸鹽與其相應的酸混合成酸性緩沖液或氫氧化鈉混合成鹼性緩沖液等。
Ⅳ 離子交換色譜法的分離原理
離子交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離回子基團及可交換的答離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。
陽離子交換:
陰離子交換:
式中"--"表示在固定相上,Kxy和Kzm是交換反應的平衡常數,Z+和X-代表被分析的組分離子。M+和Y-表示樹脂上可交換的離子團。
離子交換反應的平衡常數分別為:
陽離子交換:
陰離子交換:
平衡常數K值越大,表示組分的離子與離子交換樹脂的相互作用越強。由於不同的物質在溶劑中離解後,對離子交換中心具有不同的親合力,因此具有不同的平衡常數。親合力大的,在柱中的停留時間長,具有高的保留值。
Ⅵ 簡述離子交換色譜法
離子交換色譜法(ion exchange chromatography,IEC)
離子色譜分析法出現在20世紀70年代,80年代迅速發展起來,以無機、特別是無機陰離子混合物為主要分析對象。
離子交換色譜利用被分離組分與固定相之間發生離子交換的能力差異來實現分離。離子交換色譜的固定相一般為離子交換樹脂,樹脂分子結構中存在許多可以電離的活性中心,待分離組分中的離子會與這些活性中心發生離子交換,形成離子交換平衡,從而在流動相與固定相之間形成分配。固定相的固有離子與待分離組分中的離子之間相互爭奪固定相中的離子交換中心,並隨著流動相的運動而運動,最終實現分離。
表達式
離子交換色譜的分配系數又叫做選擇系數,其表達式為:
K_s=\frac{[RX^+]}{[X^+]}
其中[RX + ]表示與離子交換樹脂活性中心結合的離子濃度,[X + ]表示游離於流動相中的離子濃度
分離原理
離子交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離子基團及可交換的離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。
陽離子交換:
陰離子交換:
式中"--"表示在固定相上,Kxy和Kzm是交換反應的平衡常數,Z+和X-代表被分析的組分離子。M+和Y-表示樹脂上可交換的離子團。
離子交換反應的平衡常數分別為:
陽離子交換:
陰離子交換:
平衡常數K值越大,表示組分的離子與離子交換樹脂的相互作用越強。由於不同的物質在溶劑中離解後,對離子交換中心具有不同的親合力,因此具有不同的平衡常數。親合力大的,在柱中的停留時間長,具有高的保留值。
固定相
離子交換色譜常用的固定相為離子交換樹脂。目前常用的離子交換樹脂分為三種形式,一是常見的純離子交換樹脂。第二種是玻璃珠等硬芯子表面塗一層樹脂薄層構成的表面層離子交換樹脂,第三種為大孔徑網路型樹脂。它們各有特點,例如第二種樹脂有很高的柱效,但它的柱容量不大;第三種樹脂適用於非水溶液中物質的分離,因為它們的孔徑和內表面積大,不需要用水溶脹,便可滿意地使用。
典型的離子交換樹脂是由苯乙烯和二乙烯基苯交聯共聚而成:
其中,二乙烯基苯起了交聯和加牢整個構型的作用,其含量決定了樹脂交聯度大小。交聯度一般控制在4%~16%范圍內,高度交聯的樹脂較硬而且脆,也較滲透,但選擇性較好。在基體網狀結構上引入各種不同酸鹼基團作為可交換的離於基團。
按結合的基團不同,離子交換樹脂可分為陽離子交換樹脂和陰離子交換樹脂。陽離子交換樹脂上具有與樣品中陽離子交換的基團。陽離子交換樹脂又可分為強酸性和弱酸性樹脂。強酸性陽離子交換樹脂所帶的基團為磷酸基(一),其中和有機聚合物牢固結合形成固定部分,是可流動的能為其他陽離子所交換的離子。
陰離子交換樹脂具有與樣品中陰離子交換的基團。陰離子交換樹脂也可分為強鹼性和弱鹼性樹脂。
陰離子交換樹脂屬強鹼性,它是由有機聚合物骨架和一季胺鹼基團所組成,它帶有正電荷。而與相反的是可以移動的部分,它能被其它陰離子所交換
流動相
離子交換色譜的流動相最常使用水緩沖溶液,有時也使用有機溶劑如甲醇,或乙醇同水緩沖溶液混合使用,以提供特殊的選擇性,並改善樣品的溶解度。
離子交換色譜所用的緩沖液,通常用下列化合物配製:鈉、鉀、被的檸檬酸鹽,磷酸鹽,甲酸鹽與其相應的酸混合成酸性緩沖液或氫氧化鈉混合成鹼性緩沖液等。
Ⅶ 制備型高效液相色譜有哪幾種模式,比如說正相反相,離子交換什麼的
高效液相色譜儀分為分析型和制備型兩種,按流量大小分類。
您說的10A,15A,是指的日本島津SHIMADZU品牌的LC10ATvp型和LC-15A型,前者已經停產,15A是10A的升級換代產品。
常用的實驗室液相色譜儀HPLC
進口品牌有日本島津SHIMADZU,美國沃特斯WATERS,美國戴安,美國安捷倫Agilent,美國熱電,美國珀金埃爾默PE,德國諾爾等
國產品牌有北京普元精儀、北京普析、北京東西電子、北京創新通恆、北京瑞利、上海天美、上海通微、浙江福立、江蘇天瑞等
Ⅷ 從分析原理簡述hplc中,離子交換色譜,離子對色譜及離子色譜有何異同
離子色譜原理與離子交換色譜原理類似,離子色譜後一般使用電化學內檢測器進行檢測,適容用於分析無機與有機陰陽離子和氨基酸,以及糖類和DNA、RNA的水解產物等;離子對色譜主要是補充離子抑制色譜的不足,離子抑制色譜是指在流動相中加入弱酸或弱鹼來抑制待測組分的離解,提高k值以利於組分的分離,一般針對酸性待測組分,可在流動相中加入弱酸,使待測組分減少在流動相中的離解,加強與固定相的分配,適用於有機弱酸鹼或兩性化合物的檢測,但由於色譜柱一般是硅膠基質化學鍵合相色譜,其酸度耐受范圍是2-8,因此在加入酸鹼調節劑時還要兼顧流動相pH,導致無法通過此方法分析強酸強鹼,因此引入離子對色譜,在流動相中加入可與強酸強鹼抑制的離子對,通常分析鹼加入烷基磺酸鈉,分析酸加入季胺鹽,適用於較強有機酸鹼的分析。
Ⅸ 陽離子交換色譜流動相不能重現是什麼原因
陽離子交換色譜流動線不能從事這個是原因是因為它里邊兒混動著,然後你需要給他重新連接一下。
Ⅹ 高效液相色譜中固定相分類最常用的是哪類
高效液相色譜柱大致可分為五類:一、高效反相液相色譜柱 以C18為代表的高效反相液相色譜柱一直被描述為葯物發現、開發、方法驗證(validation)的心臟! 高效反相液相色譜柱也極其廣泛應用在葯物代謝及動力學、生命科學、醫療健康、生物分析檢測、毒品和興奮劑檢測、食品安全分析、環境分析、軍事、國土安全等領域! 高效反相液相色譜制備柱也是最重要的分離純化技術之一! 無論是過去,現在和可預見的未來, 以球形B型硅膠(5um 或 3um)為材料骨架的高效反相液相色譜柱在實際應用中永遠佔有統治地位!常規HPLC方法的開發幾乎總是從C18作為出發點,反相色譜佔了80%以上的應用。 過去數十年來, 無數努力集注於: 1) 改善硅膠的品質, 優化鍵合化學; 2)開發新穎的材料骨架替代硅膠。十多年前, 使用有機硅材料取代無機硅材料作為起始原料生產球形硅膠代表一個劃時代的革命! 生產的球形硅膠命名為B型球形硅膠。無機A型硅膠重金屬含量很高, 硅膠表面若干位置嚴重酸化及螯合效應等導致許多鹼性化合物回收率低。球形B型硅膠重金屬含量很低, 在非常大的程度上消除了A型無機硅膠表面若干位置嚴重酸化及螯合效應等問題。用B型球形硅膠合成高效液相色譜填料, 導致高效液相色譜柱產品質量有質的飛躍!然而,另一方面,基於客戶的大量反饋和我們對幾乎所有色譜廠商產品的評估, 我們相信鍵合化學問題沒有獲得很好的解決。具體體現在:
(1) 「純粹」反相機理的鍵合相例如C18和C8市場上仍然是單功能,三功能和聚合物鍵合相"魚目混雜"。 (2) 鍵合相封端問題沒有獲得很好的解決, 一直是困擾色譜領域最大的問題! 迄今為止全部的嘗試只獲得有限的成功。
(3) 極性嵌入式(Polar embedded)鍵合相
極性嵌入式(Polar embedded)鍵合相是C18高效反相液相色譜"衛星群"中最重要的產品, 是C18和C8鍵合相最重要的補充。
極性嵌入式(Polar embedded)鍵合相起源於Supelco ABZ。Supelco ABZ的鍵合方法是用aminopropyl鍵合相和長鏈羧酸縮合反應形成一個C16醯胺。 那麼市場上的極性嵌入式(Polar embedded)鍵合相群的主要問題是什麼? 極性嵌入式鍵合相和所謂的水相C18主要問題是鍵合相泄漏, 鍵合相不穩定等。兩者之間的內在差異是: 極性嵌入式鍵合相鍵合相泄漏和鍵合相不穩定等問題能夠獲得很好的解決, 但使用極性硅烷試劑封端的所謂的水相C18鍵合相鍵合相泄漏和鍵合相不穩定等問題是不可逆轉的。 在類似C18鏈長度的硅烷試劑中嵌入極性醯胺或醯酯, 使得鍵合相親水, 在100%水相條件下穩定。但按照類似C18的鍵合化學, 鍵合覆蓋率低, 鍵合相不穩定。 Chrom-Matrix InnovationTM PEG鍵合相是非常極性的產品, 但測試結果表明: PEG鍵合相非常穩定, 在LC-MS測試中沒有檢測到泄漏。這一成功和我們在膠體與界面科學領域的長期經驗幫助我們成功開發了新型催化條件下新的鍵合化學。加上超臨界流體技術封端, Chrom-Matrix InnovationTM 極性醯胺或醯酯鍵合相比那麼市場上的極性嵌入式(Polar embedded)鍵合相群穩定得多。色譜柱產品質量和壽命有質的飛躍! 即使這樣, LC-MS測試顯示: Chrom-Matrix InnovationTM 極性醯胺或醯酯鍵合相仍然有非常低的泄漏。(4) 無泄漏低孔和高比表面積C18鍵合相等是小分子化合物分離純化的終端保證!制備型高效反相液相色譜柱, 制備型高效正相液相色譜柱, 制備型高效離子交換色譜柱和對應的閃光色譜(flash chromatograpy) 是小分子化合物分離純化最重要的終端保證!但是市場上大多數色譜產品和閃光色譜(flash chromatograpy)鍵合相有明顯的泄漏。盡管泄漏在紫外可見檢測器中是看不見的, LC-MS信號非常明顯! 最重要的是泄漏的硅烷實實在在洗脫到顧客的終端純化產品中, 而且沒有考慮在內。
Chrom-Matrix公司成功地解決了上述所有問題! InnovationTM所有反相高效液相色譜產品都使用B型球形硅膠合成, 使用最優化個性化合成工藝, 使用超臨界流體封端, 使用LC-MS/MS和表面電荷滴定等多種獨特技術配合多種色譜測試保證產品的品質和批次重現性。其中大部分產品LC-MS/MS測試無泄漏, 極性嵌入式(Polar embedded)鍵合相非常低的泄漏。二、高效正相液相色譜柱 正相液相色譜是最早的色譜模式。直到現在, 合成後通過硅膠柱做進一步純化仍然是有機化學家日常工作的一個重要組成部分。在理論上, 幾乎所有的溶於正己烷,乙酸乙酯或異丙醇的有機化合物都可以用高效正相液相色譜分析。但在實際應用中,高效正相液相色譜的應用比高效反相色譜少得多。這是因為正己烷, 乙酸乙酯沒有像水,甲醇或乙腈那樣受歡迎。此外, A型硅膠正相液相色譜給客戶一個慣性思維: 高效正相液相色譜的平衡時間很長。事實上, 高效正相液相色譜在制備規模的色譜純化中一直發揮了重要作用。這是因為:(1) 高效正相液相色譜比高效反相色譜柱壓低得多。(2) 高效正相液相色譜用的溶劑例如正己烷, 乙酸乙酯很容易通過旋轉蒸發除去。(3) 吡咯等蒸發性溶劑徹底改善了鹼性有機化合物在B型球形硅膠, Diol和PEG正相液相色譜柱上的峰形。此外, 不管制備規模或分析測試,(1) 結構異構體分離分析必須使用正相液相色譜或超臨界流體色譜。(2) 環境中腐殖酸的結構鑒定必須使用甲基化或硅烷化消除小分子聚集, 然後使用正相液相色譜或超臨界流體色譜。這種小分子聚集的自然現象一定相當廣泛。PEG正相液相色譜鍵合相等將讓客戶重新評估高效正相液相色譜的價值。三、高效親水液相色譜柱 高效親水液相色譜是一個介於正相和反相高效液相色譜之間的運作模式。這個模式最早來自NH2色譜柱的糖分析應用。在此之後,逐步在Diol, 硅膠和親水性高分子鍵合相找到了一些有價值的應用。近年來,高效親水液相色譜成為比較流行的色譜的運作模式, 主要是因為親水性化合物有良好的保留和高效親水液相色譜在LC-MS/MS中的應用。盡管如此,迄今為止沒有權威的論文, 評論和教科書揭示了高效親水液相色譜真正的價值和局限性。近年來,我們幫助客戶採用高效親水液相色譜的運作模式成功地開發和驗證了數以百計的HPLC和LC-MS/MS應用。我們總結出:(1) 高效親水液相色譜是LC-MS/MS應用的第一選擇。請參閱我們的LC-MS/MS產品手冊應用案例。(2) 除了InnovationTM TX多功能色譜柱, 所有親水液相色譜僅可用於分析,而不是制備規模的分離。(3) 高效親水液相色譜流動相A是乙腈(pH值用少量的甲酸或其他調節), 流動相B是水(pH值用少量的甲酸或其他調節)。化合物洗脫秩序類似於正相液相色譜, 疏水性化合物首先洗脫, 然後是親水化合物。流動相A一般不使用甲醇或丙酮或其他有機溶劑。(4) 進樣體積太大會導致一些峰值扭曲或分裂。柱承載能力通常是非常小的。(5) InnovationTM TX, HP Amide, Silica三種高效親水液相色譜覆蓋99 %以上的應用, NH2色譜柱用於簡單糖分析應用。(6) 除了InnovationTM TX多功能色譜柱, 所有親水高效液相色譜柱柱效不如正相和反相高效液相色譜。四、高效強陽離子交換液相色譜柱 離子交換液相色譜是生物分離最常見最有用的一種色譜模式。另一方面,小分子分離分析極少使用高效離子交換液相色譜。這是因為:(1) 新穎的反相和多功能鍵合相例如InnovationTM Polar-Embedded Stable Amide和TX連續出現, 在很大的程度上補償了常規C18鍵合相的缺點。 C18, C8鍵合相也有重大進展。高效親水液相色譜柱也覆蓋了許多分析應用。(2) 相比之下, 硅膠基質的高效離子交換鍵合相近幾十年來產品質量沒有取得質的突破。硅膠基質的高效離子交換鍵合相柱壽命普遍短, 疏水相互作用明顯。(3) 聚合物基質的高效離子交換鍵合相在生物分析上面的應用比較廣泛, 但其柱效過低,表面積太小,對小分子分離分析難有吸引力。 科學發明往往來自現實世界的挑戰! 在對海洋毒素, 微生物代謝產物和天然植物(包括中草葯)有效成分的分離純化過程中, 我們深深感到高質量的硅膠基質的高效離子交換鍵合相是必不可少的! 因此,我們開發了硅膠基質的SCX, WCX, DEAE和SAX高效離子交換鍵合相。五、InnovationTM高效多功能液相色譜柱我們介紹四種高效多功能液相色譜柱:(1) InnovationTMTX毒品分析HPLC柱 InnovationTM TX毒品分析HPLC柱是實際應用中最有價值的一種色譜柱。由於其在毒品分析上出色的表現, DEA專家稱它毒品分析HPLC柱。InnovationTM TX是一個多功能色譜柱, 具有反相, 弱陽離子離子交換, 親水等作用, 能夠使用在100%水相或100%有機相。由於它的弱陽離子離子交換機理, InnovationTM TX對鹼性化合物的分離效果是所有色譜柱中最好的。它對鹼性化合物有完美的峰形。它的絕對柱效和反相色譜分析柱相同的,甚至優於反相, 遠勝傳統的親水色譜分析柱。(2) InnovationTM DNPH HPLC柱 InnovationTM DNPH HPLC柱主要用於環境中醛和酮DNPH衍生物分析。在特定的DNPH衍生物分析應用中, 任何其他色譜柱沒有它優越的選擇性。(3) InnovationTM PAH HPLC柱 (4) 血漿,血清直接進樣的InnovationTM PEG色譜柱 限制進入鍵合相(Restricted access media)最早由Merck公司發明。一個典型的方法是首先製造Diol鍵合相, 然後通過醯酯或醯胺反應嵌入疏水鏈。硅膠外表面的醯酯或醯胺鏈使用酶切斷開。但酶不能擴散到內表面。由此外表面親水, 內表面疏水。血漿,血清, 尿樣可以直接進樣。蛋白質等生物流體通過親水外表面時沒有保留, 小分子化合物可以擴散到內表面通過反相保留最後洗脫。限制進入鍵合相(Restricted access media)在學術領域比較歡迎, 但隨著固相萃取產品的發展, 在工業領域的應用相當少。 但我們最後發現, 血漿,血清, 尿樣可以直接進樣的限制進入鍵合(Restricted access media), 尤其是InnovationTM PEG色譜柱在葯物代謝領域具有獨特價值。葯物代謝研究, 尤其是全盲條件下的早期葯物代謝研究, 追求絕對回收率! 一種葯物代謝之後, 打破成許多小分子化合物。全盲條件下不可能使用固相萃取回收全部小分子代謝產物。最理想的方法是, 血漿,血清, 尿樣可以直接進樣, 每毫升收集液使用14C同位素檢測, 然後建立一個明確的代謝概況。 InnovationTM PEG色譜柱是一種多功能色譜柱。它是最好的正相色譜柱! 同時,使用乙醇取代儲存溶劑後, 它能夠被用來作為反相讓血漿,血清, 尿樣可以直接進樣。